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Abstract—Unmanned Aerial Vehicles (UAVs) are becoming
increasingly popular thanks to an increase in the accessibility
of components with high reliability and reduced cost, making
them suitable for civil, military and research purposes. Vehicles
classified as UAVs can have largely different properties in terms
of physical design, size, power, capabilities, as well as associated
production and operational cost. In this work, we target UAVs
that feature a high number of degrees of freedom (DOF) and
that are instrumented with a large number of sensors. For such
platforms, we propose an architecture to perform data acquisition
from on-board instrumentation at a frequency (100 Hz) that is
twice as fast as existing products. Our architecture is capable of
performing acquisition with strict timing constraints, thus, the
produced data stream is suitable for performing real-time sensor
fusion. Furthermore, our architecture can be implemented using
embedded, commercial hardware, resulting in a low-cost solution.
Finally, the resulting data acquisition unit features a low-power
consumption, allowing it to operate for two to three hours with
a miniature battery.

I. INTRODUCTION

Unmanned Aerial Vehicles (UAVs) are becoming increas-
ingly popular thanks to an increase in the accessibility of com-
ponents with high reliability and reduced cost. This includes:
high-performance airframes; high energy-density batteries;
efficient and lightweight motors; low-power and long-range
radio frequency (RF) devices; high-performance, low-profile
sensors, storage and processing units. Thanks to advances
in technology and accessibility, UAVs are becoming more
appealing for practical use in civil, military and research
domains. For example, UAVs are used for surveillance, remote
sensing and monitoring, as well as transport. The autopilot
systems in UAVs represent the on-board logic that performs
monitoring of state variables and produces actuation com-
mands. Consequently, a robust and accurate autopilot system
is indispensable for UAVs to successfully perform the assigned
tasks.

In this work, we target UAVs that feature a high number
of input degrees of freedom (DOF, number of actuation
inputs) and that are instrumented with a large number of
sensors to have an accurate overall view of the system state.
Specifically, we focus on small to mid-sized, low-cost (less
than 100,000 USD) UAVs that are challenging for two main
reasons: first, their reduced size does not imply a simplification
in physical behavior of the model, nor the complexity of its
actuation; second, particular attention is needed to produce an
avionic infrastructure that is lightweight, features low power
consumption, and requires a proportional budget to be set in
place.

For such systems, actuators require a controller running at

50 Hz to maintain stability. The frequency requirement stems
from the fact that commercial actuators found on small and
mid-sized UAVs (e.g. servos, electronic speed controllers) are
designed to operate at that frequency. Therefore, optimal and
accurate control requires having a sensor sampling frequency
of 100 Hz. For the aforementioned reason, in this paper, we
focus on an architecture that performs data sampling from on-
board instrumentation at the target frequency of 100 Hz. As
detailed, the proposed solution has a set of desirable features
that make it practically applicable to a wide-range of UAVs.
In particular, we propose a data logging platform that:

1) Is able to perform data sampling from a complete set
of on-board sensors at a target frequency of 100 Hz,
resulting in being twice as fast as existing products;

2) Can be assembled using low-cost commercial embed-
ded devices;

3) Relies on novel software solutions rather than hardware
over-provisioning to meet the real-time constraints of
the incoming data flow;

4) Owing to the low-profile components involved, we pro-
pose a solution that features low power consumption
and weight, making it suitable to be carried on small-
sized UAVs and able to operate for hours with a small
battery;

5) Being mostly software-defined, rather than hardware
constrained, is largely re-organizable, expandable and
on-the-fly re-configurable.

We perform an analysis of the proposed high-frequency
sensor sampling architecture with respect to commercial data
acquisition products for UAVs of comparable size and char-

Fig. 1. Sensor data acquisition unit.



acteristics. We found that, to the best of our knowledge, our
architecture is able to achieve the highest sampling frequency
for a large number of data sources and that it can be assembled
at the lowest cost. Specifically, our platform is equipped with
a 6-DOF inertial measurement unit (IMU), GPS, altimeter,
airspeed sensor, magnetometer, and a large number of analog
and digital I/O channels with the ability to perform on-board
storage and real-time transmission of flight data at 100 Hz.

The rest of the paper is organized as follows. Section II re-
views the related work on modeling and sensor data acquisition
solutions for UAVs. Next, in Section III we draw a comparison
of our platform with existing commercial solutions. Section IV
contains a detailed description of our architecture from both
the hardware and software point of view. We perform an
evaluation of our solution using real flight data in Section V.
Finally, the paper concludes in Section VI.

II. RELATED WORK

UAVs have largely been studied from both a theoretical
perspective and from an applicative point of view. Theoretical
work has been done in understanding the dynamics of multiro-
tor vehicles, such as quadrotors [1, 2, 3], hexarotors [4, 5] and
octorotors [6, 7]. Similarly, the problem of controlling variable
scaled-size helicopters has been investigated in [8], while
in [9] the problem of accounting for servo actuation delay
is studied. Moreover, the problem of modeling [10, 11] and
controlling [12] fixed-wing UAVs (airplanes) with different
configurations have been investigated.

A common problem in deploying a control strategy to
UAV flight control systems is having a detailed and accurate
knowledge of the overall state of the system, which includes
actuator position as well as the physical state of the aircraft.
Such state variables have to be monitored on-line at a fast
enough speed (as previously mentioned, a frequency of 50 Hz
is used on commercial UAVs) to perform proper automatic
control.

The problem of collecting state data has been approached
in two main ways. A first solution involves instrumenting the
flying site with motion-capture systems that are able to track
the flying object and feed it live state data (position, velocity,
orientation, proximity to other UAVs/objects). For instance,
in [13] Kushleyev et al. use an infrastructure based on the
Vicon motion capture system [14] to provide accurate mea-
surements (sampling at 100 Hz) to a group of small quadro-
tors. Similar setups of motion capture systems have been
used in [15, 16, 17]. In [18, 19, 20], different architectures
for supporting the development of indoor flight testbeds are
proposed that aim at optimizing resource usage or providing
fault-tolerance guarantees. The main disadvantages of indoor
instrumentation are that: (1) the cost of the equipment can
easily be orders of magnitude greater than the UAVs that are
being controlled and (2) such an environment is suitable for
UAVs that do not require large open spaces to be operated.

A second approach consists of embedding sensing devices
into the UAVs, so that sensing (and control) is performed
on-board. This implies that the targeted UAVs must carry
enough payload for the avionics components. This solution
is applied to UAVs [21, 22, 23, 24, 25]. The problem of

retrieving a coherent view of on-board imprecise sensors has
been extensively studied in [26], and Kalman Filters [27, 28]
are used to correct drifts and measurement errors. In [29], a
solution is proposed for a low-cost flying-wing operating at
sampling rate of 50 Hz. Similar works have been proposed
in [30, 31].

Flight data coming from on-board sensors can be used
to perform live control or build a complete time history of
the state of the monitored vehicle, to be analyzed offline.
The ability to perform on-board sensor data acquisition and
processing is a prerequisite for autonomous flight. Electronic
devices that can aggregate data from sensors and perform
on-board control take the name of autopilots [32, 33, 34].
However, for the sake of maintaining stability, having a full
set of on-board sensor data is not strictly necessary for the
entire duration of the flight.

Conversely, data recording solutions, which typically do
not need to perform data processing, must achieve a large
enough sampling frequency from all data sources in order to
collect enough data to allow for accurate post-flight analysis.
Accuracy in data collection, although not necessarily safety-
critical, is fundamental for a meaningful reconstruction of
flight conditions. Commercial data recording solutions for
small UAVs are currently available [35, 36]. However, to the
best of our knowledge, none of the proposed solutions are
able to achieve a stable sampling frequency of 100 Hz while
maintaining a small volume and weight factor, high energy
efficiency, and the capability to record traces from a large
number of sources for extended periods of flight, as discussed
in Section III.

III. PRODUCT COMPARISON

In order to properly evaluate our solution, existing com-
mercial products that are able to perform sensor data acqui-
sition were studied. In this section, we draw a comparison
to highlight the performance gap between what is proposed
in this work and the leading commercial products. The ex-
amined units are the Cloud Cap Piccolo II autopilot [33],
the MicroPilot MP2128g autopilot [34], the RCAT Systems
Industrial UAV data-logger [36] and the Eagle Tree Systems
Flight Data Recorder Pro data-logger [35]. All of these units
are intended to be used on small to mid-sized UAVs and thus
are comparable to our system. It should be noted that non-
customizable commercial solutions are not included in this
comparison. However, generally these units operate at high
frequencies, are tuned specifically for a given fight vehicle
(quadrotor), and are therefore not suitable for open end-user
development.

The comparison is summarized in Table I, where the
proposed solution is reported in the last column. The table
includes information about the types of sensors supported by
the unit under analysis, its sampling frequency, as well as the
storage capabilities and estimated cost. As can be seen, our
solution is able to collect data from the widest range of on-
board sensors and at the highest frequency. The platform can
be assembled using commercial components, resulting in a
remarkably low deployment cost.



Product Cloud Cap Piccolo II MicroPilot MP2128g RCAT Systems Industrial
UAV

Eagle Tree Systems Flight
Data Recorder Pro

Our sensor data acquisi-
tion unit

Sensors
Inertial sensors 3-axis, ±10 g accelerome-

ter 3-axis, ±300 deg/s gy-
roscope

3-axis, ±5 g accelerometer
3-axis gyroscope

1-axis, ±8 g accelerometer 2-axis, ±38 g accelerome-
ter

3-axis, ±18 g accelerome-
ter 3-axis, ±300 deg/s gy-
roscope

Magnetometers Add-on supported Add-on supported - - 3-axis ±750 mG and 3-
axis ±11 G

Altimeter (barometric) 1 ft resolution 1 ft resolution 8 ft resolution 1 ft resolution 1 ft resolution
Airspeed (pitot probe) up to 180 mph up to 300 mph 10–290 mph 9–350 mph 5–180 mph
GPS 4 Hz 4 Hz 1 Hz 10 Hz 120 Hz (IMU assisted)
Digital I/O 16 8 - - 20
Analog inputs 4x 10 bit 32x 24 bit at 5 Hz 2x 2x 7x 10 bit, 16x 12 bit, 1x

14 bit
Other inputs CANbus - 2 Thermocouples, current

and voltage measurement,
optical RPM measurement

2 Thermocouples, current
and voltage measurement,
optical RPM measurement,
4 CH PWM measurement

8 CH PWM measurement,
1x serial port, CANbus

Data Handling
Sampling rate 20 Hz 5–30 Hz 20 Hz 40 Hz 100 Hz
Local output LPT Serial - - Serial or Ethernet
Storage - 1.5 MB on-board up to 512 MB SD 10 kB on-board up to 64 GB microSD
RF link 25 mi 3 mi 15 mi 14 mi 25 mi

Estimated cost $20,000+ $6,000+ $2,500+ $650–1,500+ $̃300 + $80 for IMU1

TABLE I
PRODUCT COMPARISON

IV. ARCHITECTURE DESCRIPTION

In this section, we detail our implementation on a commer-
cial embedded board and discuss the aspects of our design that
required particular attention in order to achieve the desired
high-end performance given the constrained hardware. The
complete set of system schematics and source codes of the
developed architecture are available upon request.

A. Hardware Description

A system diagram depicting the main components of the
hardware platform is shown in Figure 2. In the figure, the main
blocks that compose the functional units are highlighted. For
each of them, some details are provided about the device type
as well as the communication interface. The specifications for
all the components used in the sensor data acquisition system
are given in Table II.

1) Inertial Measurement Unit: The inertial measurement
unit (IMU) depicted in the figure is equipped with a 3-axis
gyroscope, a 3-axis accelerometer and a GPS receiver. This
provides the unit a total of 6 degrees of freedom. A 2-
channel, 14-bits analog to digital converter is also included
in the same block, of which one channel is used for airspeed
measurement. Finally, even though the IMU unit also includes
a 3-axis magnetometer, a separate, external magnetometer
unit, mounted on the tail of the aircraft, has been used to
acquire measurements for the magnetic field, as detailed in
Section IV-A2.

The reason for this design choice is that measurements
taken with the built-in magnetometer are heavily influenced
by the activity of the airplane electric motor. A way to reduce
this effect consists in placing the magnetometer unit as far as

1This cost considers using a DIYDrones ArduIMU+ V3 which features
the same sensors specifications as the XSens Mti-g IMU used in this
implementation for availability reasons.

Processing unit BeagleBone running 32-bit Ubuntu Linux
Sensors

IMU XSens Mti-g 6-DOF IMU with Wi-Sys WS3910 GPS
Antenna

Airspeed probe EagleTree Systems pitot-static probe
Airspeed sensor All Sensors 20cmH2O-D1-4V-MINI differential pressure

sensor
Magnetometer PNI Corp MicroMag 3

Analog-to-digital
converters

2x Gravitech 12 bit - 8 Channel ADC

Power
Regulators Castle Creations CCBEC
Batteries Thunder Power ProLite 2S 450 mAh

Transceiver Digi 9X Tend 900-MHz card
Data Storage 8GB microSD card
Data Rate 100 Hz

TABLE II
SENSOR DATA ACQUISITION UNIT SPECIFICATIONS

possible from the motor. Thus, the ideal position for the IMU
would be the tail of the model. However, the disadvantage
of placing the IMU unit in the tail is twofold. First, the
weight of the unit itself is not negligible and placing it in the
tail would unbalance the overall weight distribution. Second
and more important, the IMU is also providing measurement
of acceleration, which, in order to be representative of the
behavior of the whole body, needs to be taken as close as
possible to the center of mass of the model. For the typical
airplane, the center of mass is located between a 1/4 to 1/3 the
distance between the leading and trailing edges of the wings,
which is just behind the motor and power system.

The unit has to be initialized and programmed with the
sampling frequency and desired accuracy. The unit considered
in our implementation is the XSens MTi-g [37]. It features a
serial interface and is connected to one of the UART interfaces
of the data acquisition unit, which is programmed to work as
a RS-232 serial port. The IMU unit works in an asynchronous
way: data is internally produced and exposed on the serial



IMU 

GPS 

Pitot 3D-Mag ADC 

microSD 

BeagleBone 

Pots 

 

RC 

PWM 

900 MHz 

TX/RX 

  

Device (shading): 

█ Computer 

█ Sensor 

█ Radio 

█ Storage 

 

Signal (line): 

█ Raw Pulse 

█ Serial 

█ SPI 

█ I2C 

Color Key 

External Data 

Processing Unit 

Fig. 2. Architectural block diagram of the system

interface at the programmed sampling frequency. Thereby, a
polling strategy has to be set in place in order to capture
the transmitted sample when it is offered by the unit. If
a transmitted frame is missed, the sample is lost. A 16-bit
counter updated by the IMU itself and included in each frame
can be used to detect the loss of a sample.

2) Magnetic Measurement Unit: As mentioned earlier, the
magnetometer included in the IMU unit cannot be used due to
the strong interference in the magnetic field coming from the
electric motor. For this reason, in our design, we included
a separate stand-alone module to perform measurement of
the magnetic field in order to compute the heading of the
aircraft. The magnetometer module, for the reason explained
above, is placed at the tail of the model. Specifically, the
sensor used in our implementation is a MicroMag3 3-axis
magnetometer, which can sample up to a frequency of 2 KHz,
with a maximum resolution of 1.5(10)−4 G2.

The MicroMag3 magnetometer is accessible through a Se-
rial Peripheral Interface (SPI). The communication protocol
required by this component requires that a full sampling
command is sent for each of the 3 axis. The command also
includes the precision at which the returned sample should
be acquired. However, higher sampling frequencies result in
sharply decreasing precision.

3) Analog to Digital Converters: The design also includes
an analog-to-digital converter (ADC) unit that can expose up
to 16 12-bits channels. The ADC channels can be used for a
wide range of measurements that are significant in the setup
of a non-trivial UAV testbed like the one considered in this
paper. Specifically, ADC channels can be used to collect data
from potentiometers, airspeed sensors, temperature, voltage
and current sensors. In the current implementation, 8 ADC
channels have been wired and acquired, but, keeping the same

2G stands for Gauss which is a unit of measurement for the intensity of a
magnetic field. One G is equal to 100 µT (micro-Tesla).

hardware layout, up to 16 channels can be obtained. The
communication with the ADC module is performed over a
I2C bus.

Potentiometers are components that are able to measure the
value of a rotation angle by outputting a representation of the
angle with an analog value of voltage. Thus, the accuracy of
the measurement only depends on the quantization bits used in
the digital representation. In an airplane model, potentiometers
can be employed to monitor the actual status of each control
surface (flaps, ailerons, elevators, rudder). For an accurate
measurement of all the relevant variables involved in the state
of the considered testbed, such values are in fact necessary.
This is because control surfaces are controlled using servo-
motors, which set their rotation angle according to a pulse-
width modulated (PWM) signal. A common misconception is
that knowing the PWM signal input to the servo is enough to
know its rotation angle. This is not true for three main reasons.
First, commercial servos have a number of steps that is in the
range 512 to 2048, thus, in low-cost configurations, no more
than 512 values of angles can be determined. Second, a failing
servo cannot be detected without having a feedback from its
physical status. Third, a servomotor applies a certain amount
of torque to a control surface, but the resulting position of
the surface is also determined by opposing force of airstream
pushing on the surface in flight conditions3. Note that the
latter varies together with the flight conditions (flight speed,
orientation, wind speed and so on), as well as the angle of the
surface itself.

ADC channels can be used to acquire data from additional
airspeed sensors, which can provide accurate measurement in
case of slow flight, windy conditions and landing/take-off at
a higher rate than GPS. Thermocouples sensors, which are
useful to monitor the temperature of aircraft-testbed internal
components (such as motor, batteries, avionic instrumenta-

3This effect is known as control surface blow-back.



tion), are measured through ADC channels as well. Finally,
measurements from voltage/current sensors can be acquired
in the same way and are useful to monitor both power con-
sumption and activity of the components in both the avionic
instrumentation and the propulsion subsystem.

4) Pulse Width Modulation Inputs: As previously men-
tioned, servos actuating the control surfaces as well as the
motor are commanded using PWM signals. Thereby, typically,
the outputs of the radio receiver are PWM signals, as well
as the actuation commands coming from the autopilot. Being
able to record such signals permits a full reconstruction of the
history of the actuation outputs sent to the UAV, allowing, for
instance, to study the behavioral response of the aircraft to a
given sequence of commands.

In the PWM signal, the information is carried by a square
wave and encoded as the time between a rising edge and a
falling edge. Typical PWM signals for flight control compo-
nents operate at a frequency of about 50 Hz and the time
difference between the rising and falling edges varies from
0.9 to 2.1 ms. Even though the PWM channels are coming
from a single device, which is either a radio control receiver
or an autopilot, the generated PWM waves cannot be assumed
to be in phase.

Although the PWM module is depicted as a separate com-
ponent, in our design the PWM demodulation is performed
directly on the data acquisition unit. For this purpose, any
programmable micro-controller could be used, but the benefit
of having the demodulation done on a dedicated module is
counterbalanced by the need to add additional wiring, thereby
increasing the weight and power consumption. Instead, we
demonstrate that such task can be performed directly on the
monitoring unit without introducing excessive overhead as to
compromise the acquisition of data coming from the aforemen-
tioned units. As a result, 8 PWM channels are connected to
a correspondent number of GPIO pins on which the sampling
is performed.

5) Data Acquisition Unit: The data recorded at the in-
dividual functional blocks described above are collected for
acquisition in a single aggregation point. The hardware com-
ponent used as the data acquisition unit is a commercial
embedded board equipped with a breadboard on which the
IMU, magnetometer and ADC units are located on or wired
to.

Specifically, we have used a BeagleBone [38] board. This
board featured a Cortex-A8 ARM CPU operating at a fre-
quency of 720 MHz. The DRAM size is 256 MB, while
the boot scripts as well as the root filesystem is stored on a
microSD card. This resource-constrained setup has the obvious
advantage of being extremely limited power consumption. This
is highly desirable for a flying testbed since it directly allows
to reduce the weight of the carried batteries. According to our
measurements on the power consumption of the board in a
fully operational state, the data acquisition unit absorbs about
0.45 W. This means that a small two-cell 500 mA lithium
battery can operate it for a time window of two to three
hours. Conversely, commercial data recording solutions have
a consumption of about 1 W, with an accuracy that is 50%
lower.

The choice of this embedded platform is also driven by the
need to have a set of interconnected devices that communicate
over different protocols and interfaces, such as SPI, I2C, GPIO
and UART. Moreover, since different sets of measurements
could be relevant over time, future extendability has to be
taken into account. In particular, our setup can be easily
extended including 16 additional ADC channels. This platform
also allows for wired and wireless data-link connections.

Considering an output format of simple plain data (filtering
and compression can be performed at a later stage) containing
the output of the described units, we have evaluated a data
generation rate of about 25 KB/s. Indicatively, it means that
each 15 minutes of flight leads to the production of about
50 MB of data4. Thereby, the other advantage of having
a fully customizable solution for data recording is that the
system can be easily configured to monitor the incoming
data without recording and enable/disable recording upon the
recognition of a provided set of events. Possible events can
be the GPS position being within a provided distance from a
specified waypoint, the altitude and/or the speed being above
a given threshold, the position of a configured switch on the
transmitter, and in general anything that triggers a change of
state in the monitored values.

B. Software Layer

In order for the data acquisition unit to minimize the data
loss and to keep the desired sampling and recording rate given
the constrained hardware, a careful, real-time oriented design
of the software layer which handles communication protocols
and sampling intervals has to be performed. Moreover, side
effects of the software layer design choices must be taken into
account. For instance, among different designs that are able to
achieve the desired sampling rate, the one that minimizes CPU
usage should be chosen because processor utilization directly
reflects into power consumption, which, as already discussed,
is a crucial parameter to be taken into account.

In this section we describe our design, which represents
a good compromise between modularity, sampling speed and
power consumption.

1) Overall Logic: We have discussed in the previous sec-
tion how Figure 2 describes the hardware organization in our
platform. Indicatively, each module of the system represents
an area of concern characterized by an interface, a certain
amount of data bandwidth and sampling speed. Intuitively,
the same separation should be reflected in the design of the
software layer. The advantage of this is twofold: (1) a modular
design allows long-term maintainability of the layer, which
is a crucial issue since the same platform should be easily
adaptable to different UAV models and sensor configurations;
(2) in order to allow fully on-the-fly reconfigurable platform,
it is necessary to design the system in a way that units can
be individually powered off (for example in case of detected
failure), paused or brought back on-line (for instance upon
detection of an event).

On the other hand, the requirement for modularity implies
that control flows among different units need to be separated.

4Most sensors require a calibration to be performed on the ground, which
lasts for about 15 minutes.



In a traditional Linux system like the one employed in our
platform, the way such separation can be achieved is through
the definition of different executable units. Thus, a perfect
modularity would imply defining a different process per each
functional unit. However, due to the complete address-space
separation of traditional Linux processes, we have evaluated
that the time and CPU resources involved in context switches
have a heavy and negative impact on the timing properties of
the single units, not allowing an overall sampling frequency
higher than about 50 Hz.

To draw a trade-off between modularity and optimization
in the usage of CPU resources, the design of our software
layer employs lightweight threads, each handling the commu-
nication and the data acquisition from an assigned functional
unit.

The overall logic, thus can be described as follows. At
system start-up, a customized initialization procedure is per-
formed per each unit. No data acquisition is started before
all the functional units are reported as on-line. The main
operations performed at initialization time are:

1) Allocation of memory buffers for incoming data and
initialization of the final output file;

2) Initialization procedure for UART, I2C and SPI inter-
faces. Parameter setup is also performed on the con-
nected devices;

3) Memory-mapping of hardware devices (such as timers
and GPIO registers) that are used bypassing the OS
interface;

4) Creation of worker threads that will be responsible for
each functional unit.

Once the initialization has been completed and the data
acquisition is started, each worker thread is responsible for
(1) periodically interrogating the assigned functional unit and
(2) place collected data in an assigned buffer. The periodicity
of each thread reflects the sampling speed of the assigned
unit and, in a scenario with perfect time synchrony between
threads and peripherals, it would be enough to let each thread
perform the next data collection at the expected arrival time of
the next data frame. Unfortunately, this assumption does not
hold considering the low-cost nature of the employed sensors.
Thus, a strategy to handle data skew, eliminating the presence
of stale data becomes necessary.

We have engineered each thread to reduce its processing
latency and to always release the CPU in case data are not
available at the time of wakeup. This is necessary because on
a single core scenario with a constrained clock speed, each
uncontrolled busy period can easily introduce unacceptable
latency in a different component of the system, leading to
data frame loss. Often, the communication interface has been
reimplemented in user-space and simplified to reduce the
produced latency and hardware resources are directly accessed
to avoid the slowdown resulting from frequent system calls. A
detailed description of the different solutions adopted in order
to achieve the desired performance per each functional unit is
provided in the following sections.

Finally, a separate thread is dedicated to collect sampled
data from the local buffers associated to each functional unit
and produce an unique, timed view of the aggregated output.

Since this is the only thread with a direct notion of wall-clock
time, it is also responsible for stale data elimination.

2) Timing: When working with physical devices in which
the notion of time is important to characterize both functional
behavior (e.g. timing of the communication channel) and
interpretation of data, fast access to time samples is crucial.

The Linux kernel is able to provide precise time samples,
suitable for real-time purposes, through the gettimeofday
and clock_gettime system calls. However, the fundamen-
tal problem is that a system call is required whenever a new
sample is needed. Since our objective is sampling all the
channels at 100 Hz, the system call approach cannot scale
due to the significant overhead of performing a single call.

For this reason, the approach followed system-wide in our
design is to assign a hardware timer to the data acquisition
process. Specifically, the board used as a data acquisition
unit provides a set of 5 32-bit-wide general purpose timers
that are clocked at 32 KHz (i.e. with a maximum resolution
of 31.25 µs). In our implementation, we select one of the
unused timers at initialization phase and configure it to work in
auto-reload mode with the maximum resolution. The registers
containing the incremented timer value can be accessed by
mapping a portion of physical memory (/dev/mem) in user-
space. In this way, a time sample can be acquired by any
worker thread by performing a single memory operation. This
eliminates the need (and related overhead) for system calls to
acquire time samples. Note that reading from the hardware
timer is enough to calculate the length of time intervals, but
it does not provide any notion of absolute (wall-clock) time.

3) IMU Handling Thread: The IMU unit provides sensor
readings through a serial interface. Once initialized, the IMU
starts the sampling process internally so as to offer a new
sample of all the embedded sensors every 10 ms (100 Hz). In
order to prevent frame loss, the data acquisition unit has to poll
the device when data may be ready to be transferred. If the
acquisition unit does not perform polling with an appropriate
timing, the sample in the IMU queue gets overwritten with
new measurements and the frame is dropped.

In first approximation, an event-prediction based approach
can be used by (1) considering the time-stamp of the captured
sample, (2) accounting for the transfer and processing time
and (3) calculating the arrival time of the next event. However,
there are two reasons why the approach as described leads to
poor performance and a high frame drop rate. First, waking
up the thread responsible for sampling the IMU at exactly the
same frequency is not always possible; another thread could
be performing computation (or waking up to process events)
at the same time. Second, due to timing skew, the IMU may
have data ready to be transferred slightly ahead of time or past
the nominal arrival time.

For the explained reasons, we followed a reverse-
exponential backoff approach. Specifically, the wake-up time
is calculated in the way a pure event-based approach requires,
but the thread is activated slightly in advance (about 1/2 ms),
in line with the observed skewness of the IMU unit. If no
data are ready at that time, it means that a sample is going to
be available at the serial interface within about 1 ms. Thus,
we divide the possible slack time in two halves and put the



thread to sleep for the resulting amount of time (in the first
step, 1/2 ms). If no sample is captured after this additional
amount of time, the procedure is repeated reducing the sleep-
time in half – hence the reverse-exponential backoff.

An optimization is used here: if the calculated sleep time
due to the backoff procedure falls below the resolution of
the used kernel, the call performed to release the CPU for
the desired amount of time is converted to a sched_yield.
In this way, we introduce no explicit sleep time, making the
polling loop faster but without keeping the CPU busy.

4) MAG Handling Thread: The additional magnetometer
installed on the tail of the model is interfaced using a SPI
interface. The board used as a data acquisition unit provides
direct support for SPI. However, for our evaluation, we found
that the overall stack provided to perform SPI communication
introduced a too high and unnecessary timing overhead.

As previously mentioned, the communication protocol for
the particular magnetometer unit used in our design requires
that an explicit sampling command is sent to the unit to request
a sample. This has to be done independently for each of the
three axes and with the desired speed (100 MHz). For this
reason and observing that the timing overhead of the standard
SPI kernel interface is not negligible, we have reimplemented
the SPI communication interface to work entirely in user-
space.

Specifically, through the platform’s internal MUX switches,
the SPI pins are routed to GPIO pins, whose bank’s physical
address can be mapped inside the process space at initial-
ization time. Thus, basic SPI read/write operations can be re-
implemented performing simple memory operations instead of
read/write operations over file descriptors.

Reimplementing the SPI interface in user-space has two
main advantages. First, a consistent number of system calls
can be avoided, reducing the overall communication latency
and CPU usage. Second, the inter-bit time of the SPI protocol
can be tuned to exactly match the specific device in use. Using
this set of optimizations, we were able to achieve a 2 kHz
maximum sampling speed. Unfortunately, due to hardware
constraints, the device itself produces progressively inaccurate
samples as the requested sampling frequency increases. A
good compromise for this device has been observed to be at a
sampling frequency of 50 Hz. Thus, in the final design, such
operating frequency has been selected, even though we were
able to consistently acquire data from the considered device
(together with the output of the other units) at 100 Hz.

For the magnetometer, the sampling strategy is fairly simple:
the handling thread is activated with a 50 Hz frequency and
the command to read a sample is sent. After the command is
issued, the device asserts a ready signal when data are ready to
be received from the master. As such, a polling mechanism is
required to conditionally wait for data arrival. To prevent the
thread from keeping the CPU busy during the polling cycle,
the sched_yield system call is used.

5) ADC Handling Thread: The main device used to ac-
quire measurements from analog devices to be converted in
digital samples (ADC conversion) is connected to the data
acquisition unit through an I2C interface. In this case, the
observed overhead introduced by the provided I2C abstraction

provided by the kernel has been found to be acceptable for
the desired sampling frequency (100 Hz). This is mainly
because the device permits the number of sampled channels
to be programmed and then returns a unique block of data
containing all the measurements.

Consequently, at every wake-up time, a write operation is
performed (to request the samples of a given set of channels),
followed by a read operation. The acquired block of data is
simply split into separate locations of the buffer associated
with the working thread.

6) PWM Handling Thread: The PWM demodulation is
the most computationally intense operation performed by the
platform and, intuitively, also the most time-sensitive. The
signal coming from the PWM channels is a set of square waves
in an arbitrary phase in which the value carried by the signal
is represented in terms of timing between a rising edge of
the wave and the corresponding falling edge. Although the
employed hardware includes PWM modulators in hardware,
no support is provided for demodulation. As a result, it must
be done in software.

In UAV models, PWM signals are those coming from the
transmitter and as a feedback from the sensor that monitors
the revolving speed of the motor. In such signals, the distance
between a rising edge and a falling edge varies within a range
of 0.8 and 2 ms. It means that having a latency of just 100 µs
in the edge detection can introduce an error higher than 10%
for the resulting demodulation.

A first solution would be mapping the corresponding GPIO
registers in which the PWM channels are connected and con-
tinuously sampling the observed values calculating the timing
between two detected edges of the signal. Since multiple
GPIO pins can be read with a single memory operation, in
our evaluations, we have experienced that this leads to a
perfect PWM demodulation. The obvious drawback is that this
solution keeps the CPU busy and thus (1) makes the other
threads suffer an unacceptable latency and (2) whenever the
spinning thread that continuously monitors the PWM channels
is descheduled, an edge in the signal can be missed, leading
to an incorrect signal demodulation.

The adopted solution involved setting up the GPIO lines as
sources of interrupts at both the rising and falling edge. In this
way, other threads can be scheduled between any edge, while
higher priority is given to the interrupt handler whenever a
change in any of the PWM signals occurs. The Linux kernel
provides a user-space interface to GPIO-triggered interrupts
through the virtual sys filesystem. Individual GPIO lines are
exported as file descriptors and poll system calls can be used
to detect interrupt arrival without spinning the CPU. However,
we have evaluated that the observed latency of this solution
is still unacceptable, mainly because of the large number of
system calls involved (more than one per 1 ms).

For this reason, a custom kernel module has been de-
signed to attach fast and simple interrupt handlers to each
observed GPIO pin. Whenever an interrupt occurs, the kernel
handlers calculate the timing of the signal and perform the
demodulation, writing the resulting value in a memory page.
The physical address of the memory page used as an output
buffer is exported to the user-space using the proc virtual



filesystem. Finally, the user-space thread responsible for PWM
data collection performs a mapping of the exported physical
address and fetches the values of the demodulated signal
performing simple memory operations. In this way, no system
call is involved in PWM demodulation, and the achieved result
has the maximum precision permitted by the latency involved
in the interrupt handling of a standard Linux kernel (see
Section V).

7) Dumper Thread: Finally, all the samples accumulated in
the buffers of each one of the worker threads, are collected,
aggregated and transferred to disk by a dumper thread. The
dumper thread is activated exactly at a time frequency of
100 Hz.

Each time the dumper reads into the buffer of a given
worker thread, it also resets the buffer. This is useful to make
sure that the final data do not contain stale samples, i.e.
samples containing an old value of the data that has not been
updated by the corresponding worker thread. This can happen,
for example, if the underlying sampled device is effectively
operating at a frequency lower than 100 Hz.

Since the dumper thread performs both read and write
operations on the buffers, data races have to be taken into
account. On the other hand, due to the enforced timing on
the threads, the probability of having data races is limited. To
exploit the latter property while still ensuring data correctness,
we have replaced standard pthread mutex (pthread_mutex)
with fast user-space mutex (futex). This allows the threads to
perform write operations on the buffers in a serialized way
(preserving data correctness) while still avoiding expensive
system calls whenever only one entity at a time is accessing
the buffer.

Futex constructs are used between the user-space sampling
processes and dumper thread. One exception, however, is the
PWM sampling process. In this case, serialization on a given
block of memory has to be achieved between a user-space
thread and a set of interrupt handlers. To the best of our
knowledge, no primitive exists to simply achieve this type
of synchronization. For this reason, the user-thread, upon
acquisition of a sample, uses atomic swap instructions (SWP)
to reset the buffer shared with the kernel-space PWM interrupt
handlers. Note that, on uni-processor platforms, ensuring that
the reset operation is performed with exactly one instruction
would be enough to ensure correctness. However, using the
SWP instruction makes the overall logic easy to port on a
multi-core platform.

V. EVALUATION

A fixed-wing trainer-type radio control aircraft was built
for testing the sensor data acquisition unit. The aircraft built
was a Great Planes Avistar Elite [39], which has a 62.5 in
wingspan and weighs 7 lb. It is powered by a AXI 4120/14
600 W motor[40], a Castle Creation Phoenix ICE 75 Amp
electronic speed controller[41], and a Thunder Power 14.8 V,
5 Ah lithium polymer battery[42]; and is controlled using
Futaba servos and a 2.4 GHz spread spectrum receiver[43].
The aircraft has the following control surfaces: 2 ailerons
(roll), 2 flaps, 1 elevator (pitch), and 1 rudder (yaw). The
completed flight-ready aircraft is shown in Figure 3.

The sensor data acquisition unit and sensors were installed
into the aircraft. In order, the following installations were
made: (1) the IMU was hard-mounted to the floor of the
fuselage (body of the aircraft) at the center of gravity location,
(2) the sensor data acquisition unit was installed in the center
of the fuselage, near and above the IMU, (3) the magnetometer
was installed in the tail of the aircraft, and (4) the pitot probe
was mounted on the left wingtip, with tubing connecting its
pressure taps to the differential pressure sensor, which was
mounted in the left wing panel. Some modifications were done
to the aircraft structure to allow these installations. The center
section of the fuselage is shown in Figure 4.

The completed, instrumented aircraft was taken to Eli Field
in Monticello, IL for flight testing. The aircraft was flown
completely manually so the data logging unit could be tested.
The data logging unit was started and the aircraft was left to
sit for 15 min to allow the sensors to calibrate. The aircraft
was then throttled up, took off, was flown through a simple
traffic pattern, and landed, totaling 98 s of flight time from
throttle-up for takeoff to full stop after landing. The aircraft
flight path is shown in Figure 5, and the data recorded are
shown in Figure 6.

In the first 7 s of the flight recording, the aircraft remained
stationary on the runway, which allowed for steady-state
measurements to be taken. The plots in Figure 6 show that
there was little to no change in the measurements coming from
all of the sensors during this time period. Therefore, it can
be assumed that there is minimal interference being induced
between any of the subsystems.

Then, at 7 s, the aircraft was throttled-up for takeoff and
at 105 s it completely stopped after landing. During this time
period, the sensors tell the story of the flight.

In Figure 6 (a), the position of the aircraft can be seen with
the start position assigned the location (0,0,0); it should be
noted that the end location is not the same as the start location
because the rolled to a stop 80 m South-East from the start
position. The time history of the aircraft location matches the
flight path plot.

Figure 6 (b) shows the attitude of the aircraft, where φ is
the roll angle, θ is the pitch angle, and ψ is the heading. The
time history of the attitude shows when the aircraft pitches up
to takeoff, down to loose altitude before landing, up to flare
right before touch-down, and while maneuvering. The changes
in heading correlate with the turns in the traffic pattern seen
in (a). It is important to note that when there is a vertical
line in the plot, where the heading changes from −180 deg to
180 deg, the airplane is turning smoothly from heading South-
West to South-East, through South, which is represented as
both −180 deg and 180 deg. The roll angles visible in the
plot correspond to the roll required for the banked turn and
therefore an increase in roll occurs as the turn is initiated and
a decrease when the turn is ended.

Figures 6 (c) and (d) show the linear accelerations and
rotation rates experienced by the aircraft. The noise seen in
these figures are cause by motor vibration and can be removed
by using a low pass filter. The noise stops between the times
of 66 s and 88 s when the motor is turned off before landing in
order to lose speed and altitude. There are a few spikes in IMU



Fig. 3. Completed flight-ready Avistar aircraft. Fig. 4. Photo of the center section of the fuselage, with the nose pointed to
the left.
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Fig. 5. Flight path. The aircraft is drawn three times bigger than the actual size and once every second tangent to the flight path.

Z-axis measurements between 91 s and 93 s that correlate
to the aircraft bumping on the runway several times during
landing. Because the system records at 100 Hz, we are able to
tell that the aircraft had two large bumps separated by a time
interval of 1 s followed by a smaller third bump 0.5 s later,
with the airplane finally rolling down the runway after that;
this was confirmed with ground video taken of the flight.

The horizontal and vertical ground speeds of the aircraft
are shown in Figure 6 (e), and in Figure 6 (f), the total
ground speed and airspeed are plotted. The offset between
these speeds are easily accounted for by factoring in the wind.
A shift in the wind direction during takeoff caused a slight

change in the aircraft heading.

Figure 6 (g) provides a time history of the control inputs
given by the pilot. The control inputs for all of the maneuvers
described above can be seen.

Finally, Figure 6 (h) shows the magnetic field strength
as recorded by the IMU and the stand-alone magnetometer.
There is a larger offset in magnetic field strength between the
magnetometer and IMU when the motor is off as opposed
to on. The stand-alone magnetometer, which is located in the
tail, receives a smaller fraction of the magnetic field induced
by the electric propulsion system than the IMU receives. This
difference is magnified when the motor is off.



Fig. 6. Sensor measurements



The sensor data acquisition unit provided continuous high-
frequency flight state data for the entirety of the flight. There
were no faults evident.

VI. CONCLUSION

Tracking the overall state of a UAV in flight conditions
requires collecting data from different sources – the sensors of
the on-board instrumentation. Furthermore, we have discussed
that a desirable sampling speed is 100 Hz. In fact, achieving
such a data acquisition frequency, not only allows performing
precise stability and control actuation at 50 Hz, but also
permits an accurate reconstruction of the aircraft conditions
both live and in a post-flight phase.

Existing commercial sensor data acquisition solutions allow
the aggregation of a limited number of sources, achieving a
sampling speed which is considerably lower than 100 Hz and
featuring a relatively high cost. In this work, we propose an
architecture and an implementation for a sensor data acquisi-
tion unit that is suitable for small and mid-sized UAVs, and it
could easily be extended to other classes of vehicles. Owing
to its ability to perform fast aggregation of data originated
at a large number of sources, it is particularly applicable to
UAVs featuring a considerable number of degrees of free-
dom. Furthermore, the proposed unit is entirely composed of
commercial, easily accessible embedded components, overall
featuring low production costs, low power consumption and
reduced size/weight factor.

We have implemented the proposed architecture and instru-
mented a real testbed (an airplane) to perform the evaluation
of our solution. In this way, we were able to assess the
correctness of our implementation, as well as the achieved
performances in terms of accuracy of the collected data. In
future work, we plan to feed an autopilot with the data-
stream produced by the presented architecture, in order to
investigate complete sensor data fusion, faulty-sensor data
correction using measurements from different/redundant units,
and collaborative flight of UAVs exchanging locally computed
state variables.

Finally, we have made the complete set of schematics, as
well as the source code of the described platform, available
upon request.
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