
A Reliable and Predictable Scratchpad-Centric OS
for Multi-Core Embedded Systems

Rohan Tabish∗, Renato Mancuso∗, Saud Wasly∗∗, Sujit S. Phatak+, Rodolfo Pellizzoni∗∗ and Marco Caccamo∗
∗University of Illinois at Urbana-Champaign, USA, {rtabish, rmancus2, mcaccamo}@illinois.edu

∗∗University of Waterloo, Canada, {swasly, rpellizz}@uwaterloo.ca
+ Hitachi America, Ltd., sujit.phatak@hitachi-automotive.us

Abstract—The reliable use of multi-core platforms for de-
signing safety-critical systems still represents an open challenge.
Recently, the FAA [1] has formally expressed its concern towards
the use of multi-core systems in avionics. The sharing of hardware
resources introduces non-trivial timing dependencies between
logically independent components (e.g. cores); additionally, the
increase in size of circuitry, memory resources, and transistor
density makes these platforms more susceptible to transient
memory (soft) errors.

This work addresses the problem of memory soft errors and
their recovery at an OS/platform level on commercial multi-core
systems. Proposed strategy considers the schedulability impact
of recovery procedures on hard real-time workloads. Finally,
the implementation of a SPM-centric OS with the proposed
OS-level strategies was performed by using a commercially
available multi-core platform. The design has been validated
and evaluated using a combination of synthetic and realistic
(EEMBC) benchmarks.

I. INTRODUCTION

The high complexity of modern embedded and safety-
critical applications has resulted in a substantial increase in
the demand for computational power. Moreover, the traditional
strict constraints in terms of size, weight and power consump-
tion still apply. Multi-core processors represent the industry
response to such an increasing demand for computational
power required by embedded applications. Additionally, the
massive transition of hardware vendors to multi-core platforms
has drastically impacted the availability of single-core sys-
tems. Unfortunately, the reliable use of multi-core platforms
for building safety-critical systems still represents an open
challenge. Recently, the FAA [1] has formally expressed its
concern towards the use of multi-core systems in avionics.
The fundamental issue resides in the increased complexity

of multi-core hardware platforms. The impact of such an
increase in complexity is twofold. On one hand, non-trivial
timing dependencies are introduced between logically inde-
pendent components (e.g. cores) due to a fundamental sharing
of hardware resources. On the other hand, the substantial
increase in size of circuitry, memory resources, and transistor
density makes modern platforms more susceptible to transient
memory (soft) errors.
The problem of hardware resource contention in multi-

core systems has been extensively studied by the research
community, and several different works [2, 3, 4, 5, 6, 7] have
been proposed to mitigate its effects on application timing.
Similarly, a body of work has addressed how to recover
from soft errors via hardware-only or software-aided tech-
niques [8, 9]. However, predictability and error handling for

safety-critical, real-time applications have evolved on parallel
tracks. This work represents an attempt in bridging the gap
between predictability and reliability, in that it proposes a
unified technology to (i) achieve strict timing determinism for
the execution of real-time applications on multiple cores; and
(ii) a comprehensive set of software techniques to recover from
detectable soft errors.
The ability to recover from soft errors and effectively to

extend the Mean Time To Failure (MTTF) is particularly rele-
vant when considering safety-critical systems. This is because
real time embedded devices are often deployed in hostile
environments such as production plants, aircraft, and satellites.
In such environments, extended exposure to various kind of
radiations, such as alpha particles, high and low energy cosmic
rays, as well as strong electromagnetic fields, can increase
the probability of temporary “bit flips”, i.e. soft errors, in the
circuitry. The rate at which soft errors occur is called the Soft
Error Rate (SER). The commonly used unit of measure for
SER is the Failure In Time (FIT). One FIT is equivalent to
one failure in 109 device hours.
It has been estimated that the FIT/bit of SRAM memories

is about 0.001, i.e. one soft error per-bit every 1012 hours of
operation [10]. The probability of failure for each bit follows
an exponential failure distribution. Let us assume that failure
events are independent from each other. Therefore, a first-order
approximation for the probability of (at least) one failure in
the entire memory subsystem can be obtained by multiplying
the FIT/bit by the total number of bits in the system. As a
reference, the platform considered in our evaluation features
about 1 MB = 8 · 106 bits of SRAM memory including
main memory and local SRAM, also known as scratchpad
memories (SPM). This means that each SoC will experience
a single-bit soft error every 8 · 10−6 hours, i.e. about 0.0002
errors per day. According to statistics about the worldwide
population of automotive vehicles [11], about half a billion
cars were present in 2010, with numbers expected to exceed
the billion by 2020. The year 2020 also corresponds to the
expected commercialization of self-driving technology, which
will arguably determine an increase in the complexity of the
computing infrastructure of automotive vehicles. Let us con-
sider the current FIT for SRAM memories, and conservatively
suppose that the worldwide car population does not exceed 0.5
billion. Even assuming an average daily operation time of 5%,
about 5000 vehicles per day will be affect by a soft error, with
potentially catastrophic consequences.
In this work, we consider the case of detectable SRAM

memory errors and propose a set of OS-level strategies to
recover affected real-time applications into a full operational
state, without violating their timing constraints. The proposed

978-1-5090-5269-1/17 $31.00 © 2017 IEEE 374978-1-5090-5269-1/17 $31.00 © 2017 IEEE 379978-1-5090-5269-1/17 $31.00 © 2017 IEEE 377

strategies are designed and implemented on top of our previ-
ously proposed SPM-centric OS [12]. SPM-centric OS refers
to a scratchpad (SPM) oriented OS design where hard real-
time tasks are scheduled and executed following a three-phase
structure. In the first phase, a task to be executed is loaded
from main (SRAM) memory into the local SPM of a CPU.
Next, the task is locally executed by the CPU. Finally, the
state that needs to be preserved across task releases is unloaded
back into SRAM. Load/unload operations are performed using
a DMA, hence they can progress in parallel with the execution
phase of a different task.
Hereby, we describe how the SPM-centric OS has been

extended to recover from bit errors, in both SRAM and SPM,
that are detected but not corrected by the hardware logic
via error-correcting code (ECC). The strategy that we follow
largely leverages the existing redundancy in the employed
multi-phase task model. A minimum amount of additional
redundancy is introduced to protect data that do not exist as
multiple copies in the original scheme. Hence, we make the
following contributions:

1) We propose a set of strategies that can be used in systems
that implement a multi-phase task model to recover from
detectable bit errors;

2) We provide a schedulability analysis to take into ac-
count the overhead introduced by the proposed recovery
mechanisms;

3) We extend the implementation of our SPM-centric OS
with the proposed OS-level strategies using a commer-
cially available multi-core platform. The design has been
validated and evaluated using a combination of synthetic
and realistic (EEMBC) benchmarks.

It should be noted that our proposed techniques presented in
this work are able to improve the error correction capabilities
of modern SoCs’ ECC modules by working on top of them,
rather than re-implementing their functionality from scratch.
Since the implementation of HW ECC modules greatly varies
in capabilities, our proposed techniques work with different
kinds of ECC modules. For instance, in the case of parity-
based ECC modules that are only able to detect (no correction)
a single-bit error, our techniques can be used to perform
correction using the detection capabilities provided by the
hardware. Whereas in case of the ECC modules where the
hardware provides single-bit error correction and double-bit
error detection (no correction for double-bit errors), also
known as SEC-DED, our techniques rely on the hardware for
single-bit error correction. However, they extend the error cor-
rection capabilities to double-bit errors by relying on hardware
double-bit error detection mechanism and redundant copies of
application memory.
The rest of the paper is organized as follows. In Section II

we revise the related work. Section III discusses the system
model and assumptions. Next, we describe the proposed OS-
level recovery strategies in Section IV. In Section V, we
provide a schedulability analysis for real-time tasks subject
to faults and recovery procedures. Additional details about
our implementation are provided in Section VI. The proposed
methodology and implementation is evaluated in Section VII.
Finally, Section VIII concludes the paper.

II. RELATED WORK

A consistent number of works have investigated both hard-
ware modifications [13, 14, 15] and OS-level techniques [16,
2, 17, 12] to achieve predictability in spite of hardware

resource sharing. On the other end, modifications to scheduling
algorithms and schedulability analysis techniques to take into
account the effect of faults has been largely investigated
in [18, 19, 20, 21, 22].
In terms of timing predictability, it has been demonstrated

that promising results can be achieved with hardware modifica-
tions [13, 14, 15]. In this work, however, we focus on OS-level
modifications to achieve predictability on commercial multi-
core system, requiring no hardware modifications. The benefits
of software-only approaches mainly concern cost-effectiveness
and time-to-market minimization, since their adoption does not
involve hardware manufacturing processes.
Several works have proposed OS-level modifications that

can improve timing determinism of commercial multi-core
systems. A number of these works have focused on the
implementation of scheduling techniques for multi-core sys-
tems [23, 24, 25, 17]. Many of these works have used
the popular Linux-based LITMUSRT to test proof-of-concept
implementation of scheduling algorithms [16].
A second group of works have undertaken the challenge

of enforcing OS-level management of hardware resources to
reduce inter-core interference and to achieve timing deter-
minism. The MC2 framework initially proposed in [17] was
integrated with hardware management techniques to control
inter-core interference through shared resource partitioning [4]
and the trade-off between strict partitioning and data sharing
was evaluated in [26].
The work in [2, 3] proposes the idea of “Single Core

Equivalence” (SCE): a framework of OS-level techniques to
achieve predictable task execution on cache-based multi-core
systems. Under SCE, strict hardware resource management
is enforced to mitigate inter-core interference at the level
of shared caches, memory controller, DRAM banks and I/O
devices. When SCE is deployed, the performance overhead
arising from resource sharing can be bounded and analyzed.
On scratchpad-based architectures, a number of memory

allocation strategies targeting real-time systems have been
proposed [5, 6, 7]. Alongside, scheduling analysis for method-
ologies that involve scratchpad management have been inves-
tigated in [6, 7, 27]. In this context, our previous work [12]
has discussed the design and implementation of a scratchpad-
centric OS: i.e. an OS that uses scratchpad management with
DMA and CPU pipelining to achieve predictability on com-
mercial multi-core systems by design. The SPM-OS design
shares a number of similarities with the Acquisition Execution
Restitution (AER) task model [28], whose scheduling proper-
ties have been recently studied in [29].
Addressing fault recovery in real-time systems represents

an open challenge. Many theoretical results have been pro-
posed to extend schedulability analysis accounting for task-
level faults and restarts. The works in [18, 19, 21] analyze
systems where a minimum inter-arrival between faults can be
established, while an analysis that considers bursts of faults is
proposed in [20]. On the other end, system-level studies have
considered the implementation of fault recovery techniques
without taking hard real-time constraints into account. For
instance, the works in [30, 31] have used full system reboot
as a recovery mechanism. Similarly, a proactive approach
for memory fault avoidance and a software-based strategy to
recover from storage faults were proposed in [32] and [33]
respectively.
Compared to related work [20, 21, 22], the proposed recov-

ery strategy jointly addresses not only application-level fault

375380378

recovery, but also the memory contention problem suffered by
real-time applications running on multicore. While [20, 21, 22]
have discussed the impact of recovery on schedulability anal-
ysis, these works do not attempt to model the multi-core
memory interference at the level of shared memory and bus;
hence, their schedulability analysis would have to be extended
if the recovery strategy was deployed on multi-core platforms.
It follows that the contribution of proposed work is twofold:
(i) unlike the mentioned works [20, 21, 22] we propose
an implementation on commercial hardware by extending
an existing RTOS; (ii) while the literature in fault-tolerant
scheduling has essentially targeted single-core systems, we
propose and implement a real-time recovery strategy for multi-
core platforms. The strategy is based on task reloading, it
integrates seamlessly with the adopted memory management
scheme, and its impact on schedulability analysis can be
accounted and evaluated.
To the best of our knowledge, this work is one of the

first to address fault recovery at an OS/platform level on
commercial multi-core systems, while also considering the
design, implementation and impact of recovery procedures on
hard real-time workload. In fact, what sets this work apart
from the aforementioned literature is the establishment of a
complete OS-level framework to achieve both (i) strong time
determinism for hard real-time tasks; and (ii) a wide range of
capabilities to recover from detectable memory errors.

III. SYSTEM MODEL AND ASSUMPTIONS

In this section, we summarize the task model and the
hardware assumptions that we make for incorporating the
recovery mechanisms into our SPM-centric OS. This section
discusses assumption about the hardware and the task models.

a) Scratchpad Memories: We assume that each core in
the multi-core environment has scratchpad memories. The size
of scratchpad memories is big enough to fully contain the
footprint of at least two copies of the biggest tasks in the
considered task set.

b) DMA Engines: In order to avoid the CPU stall during
the load/unload phase of a task and allow parallel execution,
we assume that the hardware provides a direct memory access
engine (DMA). Together with the previous assumption on the
size of the scratchpad memory along with the assumption of
having a DMA module, we allow parallel loading/unloading
of the tasks from one partition and their execution from the
other.

c) Error Detection On SRAM, Flash and SPM: We
assume that hardware error detection logic is available for
different kinds of memories, such as SPM, SRAM and Flash.
For the purpose of our evaluation, we considered error detec-
tion capabilities of the Freescale MPC5777M processor. Our
platform implements Hsaio codes that provide single bit error
correction and double bit error detection (SEC-DED). Hsiao
Code [34] for correction and detection is popular in modern
embedded platforms.
Although for our implementation we use double bit error

detection, our approach works with any kind of error detection
logic, as long as it is possible for the OS to determine the
location of the error in physical memory.

d) I/O Subsystem: We assume that there is a separate
core to handle and manage the data from the I/O devices, we
name this core as the I/O core. The I/O core has a separate bus
using which it handles all the peripherals such that they do not
interfere with the normal operation of the application cores.
Figure 1 shows an overview of the considered architecture.

Fig. 1. Multi-core architecture satisfying our hardware assumptions

TABLE I
TASK’S PARAMETERS

Term Definition
τi a task in the system
τi.T task’s MIT or period (if task is periodic)
τi.c task’s execution time including all overheads
σ TDMA slot size for the DMA operation
ρ ISR recovery overhead on applicative core

e) Task Model: For the proposed design, we consider a
partitioned and fixed priority scheduling policy; additionally,
each core has a set Γ of N sporadic tasks, {τ1, . . . , τN},
each with different priority whereby τ1 has the highest priority
and τN has the lowest priority. The deadline of each task is
assumed to be less than or equal to its Minimum Inter-arrival
Time (MIT). Table I summarizes the notation used for task
parameters. As discussed in Section IV, tasks follow a three-
phases model. Hence, to satisfy temporal constraints, the last
phase (unload) of a task needs to complete before the deadline.
For ease of implementation, this work assumes non-preemptive
tasks, although we plan to relax this assumption as part of our
future work.

As discussed in Section IV, the proposed recovery mech-
anism are effective as long as no more than one bit error
occurs in any of the memory subsystems (SRAM, SPM, Flash)
every two periods of any task. It is estimated that the FIT of
SRAM memories is about 0.001, i.e. on average one bit upset
is observed every 1011 hours of operation [10]. Flash memory,
on the other hand, shows low SER susceptibility [35]. Since
the period of a real-time task is typically tens or hundreds of
milliseconds long, we deem this assumption to be satisfied in
the vast majority of embedded systems.

f) Error Free OS Data Structures: Error correction tech-
niques to recover from faults that affect OS memory require
special attention and are not within the scope of this work. For
this reason, we intend to study to what degree it is possible to
predictably recover faults in OS data structures as a part of our
future work. A promising approach in this context is system
check-pointing, i.e. periodically saving the system state of OS
and copying it into a more reliable piece of memory. Further
research is required to seamlessly integrate check-points into
our SPM management scheme.

IV. PROPOSED OPERATING SYSTEM DESIGN

Based on the assumptions and model presented in the
previous section, in this section we describe the details of
the presented OS incorporating the proposed error recovery
mechanisms.

376381379

Fig. 2. Different sections of a task.

A. Background of SPM-Centric OS
We hereby provide a brief background about the previously

proposed SPM-centric OS. We then introduce the new at-
tributes required for the proposed recovery mechanisms within
SPM-centric OS. Before, we delve into the details of that, let
us introduce the structure of the tasks that run in our system.
In particular, we describe how the tasks are structured and
what are the required data that need to moved to/from the
scratchpad upon task load/unload.
The task footprint contains the read-only and read/write

(R/W) data sections. The read-only part of the task contains
the .text and .rodata section of the task, whereas, the
R/W data include the .bss and .data sections of the
task. The stack of the task is created at run-time inside the
scratchpad memories (SPM). At boot time, the read-only part
of the task is copied from flash to main memory (SRAM).
Moreover, read/write data are also allocated and appropriately
initialized inside the SRAM. Figure 2 provides an overview
of the described task memory layout.
In the previously proposed SPM-centric OS, the applications

are never executed from the main memory but instead the fol-
lowing methodology is used: (1) task images are permanently
stored in the flash and are loaded into the SRAM at boot-time;
(2) a dedicated DMA engine is used to move task images
to/from SPM upon task activation; (3) a secondary DMA
engine is used to perform the I/O transfers between the devices
and I/O core; (4) tasks always execute from the SPM; (5) only
task-relevant I/O data are transferred upon tasks load from I/O
subsystem. Doing so helps achieving predictability by ensuring
conflict-free execution of the tasks from the local memories.
It also allows to exploit high-speed scratchpad memories. We
refer to the capability of our SPM-centric OS to dynamically
move applicative tasks in and out of the SPM memories as
support for relocatable tasks.
In our SPM-centric OS, we move tasks in and out of the I/O

core using TDMA based scheduling of the DMA. Since there
are M application cores and one DMA module, TDMA based
scheduling of the DMA module is proposed. Furthermore,
during each slot we either perform a load or unload. The
resulting scheme is referred as split-TDMA based scheduling
of the DMA module. This is depicted in Figure 4. The rules
to load/unload a task during one particular slot of TDMA are
as follows:
Rule 1: If a load operation can be performed, a load

operation is programmed on the application DMA;
Rule 2: If a load cannot be performed and there is a

previously running task to be unloaded, an unload operation
is programmed on the application DMA.

Fig. 3. Interaction between I/O Core and Core 1 for task scheduling.

�
�
�
�
��
��
	

�
	

�

�
�

�
�

�
�

�
��
� � �� ��� � � 	
 � � � �� �� �� �	 �
 �� �� �� ��

� � � � � � � �

�
�
�
�

�
�
�
�
�

�
��
�� � �

������������

����������

������������
��

���������������

���������������	�

��	�
�
��� !

�����	��������	�
�
��� "

#�$�	���	�

� ������	�%&'��		�	

� �������%�����

Fig. 4. Arbitrary scheduling example showing CPU, DMA and local memory

B. Integrating Error Recovery in SPM-Centric OS
The previously proposed system attains the goal of achiev-

ing predictability in a multi-core environment. However, in
the event of a memory error, it does not provide any recovery
countermeasure. In order to augment the predictable SPM-
centric OS to recover from a memory error, we largely leverage
on the existing redundancy that is built-in by design in multi-
phase task system.
In fact, in our system any read-only data of a running task

(in SPM) is duplicated in SRAM. On top of that, two copies
of the R/W portion of the task are kept inside the SRAM.
Although one can also keep two copies of the read-only data
of the task inside the SRAM, this is not required because an
additional copy of the read-only data is always available in
flash.
The redundant copies of a task inside the SRAM are used

to recover the system from a faulty state and allow to correclty
handle one error every two periods of the same task in any
of the memory modules. First, we describe how the overall
system with redundant task copies works, then we explain
how a fault in each of the memory modules (i.e. SRAM, SPM
and flash) is handled.
During normal operation of the OS, both the two copies of

R/W data and one read-only copy of the task in the system
are the working copies. The OS data structures are initialized
with proper information about both copies as working copies
and one of them is marked as currently being used. When a
task becomes active on an applicative core and the TDMA slot
for this core arrives on the I/O core, the I/O core first checks
if there is an empty partition available in one of the partition
of the SPM. If an empty partition is available, the I/O core

377382380

�
�
�
�
��
��
	

�
	

�

�
�

�
�

�
�

�
��
� � �� ��� � � 	
 � � � �� �� �� �	 �
 �� �� �� ��

� � � � � �

�
�
�
�

�
�
�
�
�

�
��
�� � � � �

�

������		
��������������	

�

� �

�� �� �� �	

�����

Fig. 5. The scheduling example with the proposed error recovery mechanism

programs the DMA to move the task from the SRAM copy
marked as currently being utilized into the SPM. Upon DMA
completion interrupt, the I/O core sends an interrupt to the
applicative core for which a load is being performed. If both
of the partition are found to be full and none of the task on
these partition is marked as completed, then the I/O core does
nothing during this slot. However, if any of the SPM partition
has a task that is marked as completed. The I/O core programs
the DMA to unload the task from the SPM into the SRAM.
Once this operation is successful, the I/O programs another
unload DMA operation to download task from SPM into the
SRAM to update the second copy of the task in the SRAM.
An overview of the scheduling approach in case of normal
operation is depicted in Figure 3.
Unlike what depicted in Figure 4, in case of memory

errors, additional operations need to be performed as shown
in Figure 5. In this case, the on-chip ECC modules detect
memory errors only when a read is performed on block
affected by the bit flip. Upon detection of an error, the ECC
modules are programmed to (i) generate an interrupt to the
application cores and to (ii) report the memory address where
the error occurred. In our system, we consider the occurrence
of memory errors in three different kinds of memories: SRAM,
SPM and flash. We now describe the proposed error recovery
strategies.

1) Fault happens inside the SPM: Based on when a fault
can be detected, the fault inside the SPM can be categorized
into two types: the first case corresponds to a fault that happens
in the read-only or read/write memory of the task during its
execution; in the second case, a fault in read/write memory is
detected during unload.
Whenever a fault is detected, all the applicative cores receive

an interrupt from the error detection logic. Upon receiving the
interrupt, all the applicative cores execute ISR 1 and check
if the memory location that caused the error lies within their
SPM memory range. Only the applicative core whose SPM
was affected by the fault further executes the ISR 1. The
affected core further checks if the error happened during the
execution of the task or during the unload phase. This can be
determined based on the SPM partition affected by the fault,
since the OS keeps track of the state and location of each task.
In case the error is detected during the execution of the task,

the applicative core marks the SPM partition from where the
task was executing as empty and reschedules the task with the
highest priority. This guarantees that the task is reloaded at the
next TDMA slot for this particular core, thus improving the
worst-case response time of the task as discussed in Section V.
This case is captured in ISR 1 at lines 3-5.
In the second case, the error is detected during the unload

phase of the task. As previously mentioned, during an unload
operation, only read/write data are copied from SPM to SRAM
twice. The error can occur during the first or the second
redundant copy. In the first sub-case (A), the task had correctly

ISR 1: ISR on Application Cores From Error Detecting Logic
1 MEMU ISR on Applicative Cores()
2 if ErrorAddress within local core SPM Range then
3 if Error during execution then
4 Mark the SPM partition as empty
5 Reschedule task with highest priority
6 else if Error during unload then
7 if Error at first unload then
8 Update descriptor to use second copy of R/W data for

next task load
9 Mark SPM partition as empty

10 Reschedule task with highest priority
11 else if Error at second unload then
12 Mark second copy of R/W data as faulty
13 Handle task as successfully completed
14 end
15 end
16 end

terminated its execution phase, and the error is detected before
the first copy of task R/W data from SPM to SRAM is
completed. In this case, the second copy in SRAM is not
updated, so that valid data from the previous task execution are
not overwritten with faulty data. Conversely, the first (faulty)
copy in SRAM is marked as faulty, so that the backup copy
will be used at next reload. Next, we mark the SPM partition
from where the task was unloaded as empty and reschedule
the task with highest priority, like in the previous case. This
scenario is handled in ISR 1 at lines 7-10. In the second
sub-case (B), the error is detected inside the SPM after the
first copy was successfully unloaded, and while the redundant
copy was being updated. In this case, we mark the second
copy in SRAM as faulty and update the OS data structures to
use the first copy in the SRAM at next load. Since the task
has successfully completed, no task restart is required. This
scenario is captured in ISR 1 algorithm at lines 11-14.

2) Fault happens inside the SRAM: As described earlier,
there are two copies of the R/W data inside the SRAM and
one copy of the read-only data inside the SRAM, whereas, a
second copy of for the read-only data resides in flash. An error
in SRAM can be detected only when a task is transferred from
SRAM to SPM (load). Potentially, the fault could be directly
reported to the I/O core by registering the corresponding
interrupt. For faults in SRAM, however, we do not register
and interrupt with the memory error management unit. Instead,
we follow a synchronous approach: at every DMA completion
interrupt, the OS checks if any error was reported by the ECC
circuitry. In case of a positive outcome, the faulty address is
derived.
If the faulty address lays within the memory range being

loaded from SRAM, two cases are possible. In case (A) the
error affected the copy of R/W data used for the transfer, the
task is not marked as “ready” and its descriptor is updated to
repeat another load at the next TDMA slot using the backup
R/W data copy. In the second scenario (B), the fault affects the
read-only data of the task in SRAM. In this case, the I/O core
directly copies the word that was corrupted by the error from
flash to both the SRAM and the SPM. No task re-load needs
to be performed. The complete procedure handling cases A
and B is described in ISR 2.

3) Fault happens inside the Flash: The flash in our system
is used during the bootup process. We keep two copies of the
OS image in flash. At bootup, we bring the task read-only data
from flash into SRAM. Moreover, we also allocate the R/W
data of each task in SRAM. At anytime during the bootup, if
an error is detected in the first working copy of the flash, we
switch to the second copy of the OS image in flash. Next, we

378383381

ISR 2: DMA completion Interrupt
1 DMA Completion Interrupt()
2 if DMA completion interrupt for load then
3 if Unrecoverable error bit is set then
4 if Error in SRAM R/W data region then
5 Directly copy the word that caused error from backup

SRAM copy to faulty SRAM copy as well as to the
SPM

6 else if Error in SRAM read-only data region then
7 Directly copy the word that caused error from flash to

SRAM as well as to the SPM
8 end
9 Resume regular operations for DMA completion – such as IPI to

application cores after moving task into ready queue.
10 end

repeat the bootup procedure from the new location in flash.

V. SCHEDULABILITY ANALYSIS

Based on the description in Section IV, in this section we
derive a safe bound on the worst case response time for the
task under analysis τi. Since we follow a similar execution
model as in [12], we employ the same analysis framework
introduced in previous work. However, since the recovery
mechanism is novel in this work, we need to account for the
recovery overhead in the analysis. Therefore, in this section we
first briefly summarize the response time calculation method
of [12], then we detail the new cases due to recovery and
prove the analysis correct.
During the analysis we assume that τi.c is the adjusted

worst-case execution time of τi which includes all overheads,
such as the context-switch and the regular ISR handling in
the applicative-core. In this section, for simplicity, we discuss
the case in which only one memory error can occur in two
consecutive period of any task. However, the analysis could be
easily extended to account for more frequent errors and with
more than M = 2 cores.
Figure 6 depicts an illustrative example of the worst

case scheduling scenario (critical instant at time t = 2
and following busy interval) for an example task set where
τ3 is the task under analysis. The schedule depicts a
busy period where τ3 suffers interference from two higher-
priority tasks, τ1 and τ2. As in [12], we consider the busy
period as composed by a sequence of scheduling inter-
vals Interval2, Interval3, Interval4 (each bounded by bold
vertical lines in the figure), followed by a final interval
IntervalF . During each scheduling interval, only one block-
ing or interfering task runs. During the final interval, the task
under analysis runs. Each scheduling interval always starts
with a CPU execution and ends either when the CPU finishes
executing the task or when the next task finishes being loaded
by the DMA, whichever happen last; at this point, the next
interval starts with the execution of the loaded task. The final
interval starts with the execution of the task under analysis
and finishes when the task under analysis is unloaded.
We say that a scheduling interval is CPU-bound when

it ends with CPU execution (ex: Interval1, Interval3 and
Interval4 in the figure), and I/O-bound when it ends with
DMA load operation (ex: Interval2). The length of a schedul-
ing interval is the maximum between the execution time of the
task running in the interval and the DMA operations required
to load the next task. We denote the size of the TDMA slot as
σ; in the worst case a load / unload operations can occupy the
entire slot, including the I/O-core ISR2 DMA handling which
might copy from/to the secondary copy in SRAM, Flash and
the SPM. For this reason, We upper bound the length of DMA
operations as a multiple of σ.

A. Response Time Calculation
Building on the above-mentioned definitions, we can follow

the same technique detailed in [12] to compute the worst
case response time for a task under analysis τi (τ3 in Figure
6). In [12], the response time of τi is computed by adding
three components: (1) the blocking time B caused by a lower
priority task that starts executing before the beginning of the
busy interval; this is Interval1 executing task τ5 in the figure;
(2) the interference H comprising the remaining scheduling
intervals in the busy period, which are Interval2, Interval3
and Interval4 in the figure. The number of such intervals
is equal to the number of interfering higher priority jobs
plus one, since an extra lower priority job that starts loading
before the beginning of the busy period (τ4 in the figure)
can execute within the busy period itself; (3) the worst case
length F for the final interval IntervalF during which the
task under analysis is executed, up to the finish time for the
unload operation of τi. Therefore, the response time of the
task under analysis is Rτi = B +H + F ; since the length H
of the interfering intervals depends on Rτi , this is computed
using a standard iterative method. In particular, notice that
the number of interfering higher priority jobs is computed
based on Rτi −F rather than Rτi : once τi starts executing in
IntervalF , newly arriving higher priority jobs cannot delay
its execution anymore.
As proved in [12], the critical instant is produced when the

task under analysis τi and all higher priority tasks arrive im-
mediately after a lower priority task has started loading into a
partition, and the other partition was loaded with another lower
priority task as late as possible (i.e., two slots before). Based
on the critical instant, we then obtain B = max(τl.c, 2·σ)−σ,
where τl is the lower priority task with the largest execution
time. Finally, based on Lemma 3 in [12], the maximum length
of the final interval is F = max(τi.c+ 5 · σ, 7 · σ).
Compared to [12], our solution differs as it accounts for

the possible memory error/recovery that might lead to a task
reschedule. We show that we can use the same response time
iteration as in [12] to calculate the response time of the task
under analysis after extending H or F depending on when the
memory error/recovery takes place.

B. Accounting for Error Recovery
Since we assume that no more than one error can occur

for any two consecutive periods of any task, it follows that
during the busy interval of the task under analysis τi there
can be at most one task that suffers one error. A failed task is
then rescheduled within bounded time.

Lemma 1: A failed task that is rescheduled with highest
priority will be reloaded after at most M TDMA slots.

Proof: Since the failed task will be raised to be the highest
priority task in the system and the load has priority over
unload, it is guaranteed to reload the failed task in the same
partition during next TDMA slot of the corresponding core,
which is once every M slots. Therefore, the failed task is
guaranteed to be reloaded after M TDMA slots, 2 in the case
of 2 cores as shown in Figure 6.
At the task level, the error might occur during the load,

execute, or the unload of the task. However, to produce the
worst-case workload induced by a task to the schedule, the
memory error must happen as late as possible during the
unload of the task.

Lemma 2: A task generates the worst-case workload in-
duced into the busy interval when the memory error occurs

379384382

�
�
�
�
��
��
	

�
	

�

�
�

�
�

�
�

�
��
� � �� ��� � � 	
 � � � �� �� �� �	 �
 �� �� �� �� �� �� �� �	 �
 �� ��

� � � � � � � �

�
�
�
�

�
�
�
�
�

�
��
�� � �

�
	

�

� � �

����	���
�

����	���
�

����	���
�

����	���
�

����	���
	

�

�
	�
�
	

�
	

�
�

��
�
�
�

��
�
�
	�
�
	

�
	

�
�

��
�
�
�

��
�
�
�
�
�
�
	�

�
�
�
�
�

�

� �

�

� �

�� �	�� �� �� �� �� �
 �� �� ��

� ��

�

�

�������	���
�

�������	���
�

�������	���
�

Fig. 6. SPM-centric OS task scheduling. Scheduling intervals are highlighted.

as late as possible, i.e. during the unload phase.
Proof: There are three cases in which the error can occur,

(1) during the load, (2) during the execution, and (3) during the
unload. Case (1) does not incur any extra overhead, since the
error is recovered by ISR2 on the I/O core and the overhead
is included in the TDMA slot size. However, in case (2),
the execution of the task is aborted (hence partially wasted)
and the task has to be rescheduled to load again after M
TDMA slots. Finally, in case (3) the task is fully executed
and unloaded before being rescheduled and reloaded after M
TDMA slots; since this case results in the most (wasted) time
added to the busy interval, it is the worst case.
Based on Lemma 2, we assume that a memory error always

occurs as late as possible during the unload phase of a task to
capture the worst case.
At the schedule level, we classify the memory error/recovery

based on when it occurs with respect to the task under analysis,
(1) prior to the final interval in which the task under analysis
runs or (2) during the final interval.

1) Error Recovery Prior to The Final Interval (IntervalF):

Lemma 3: For an error that occurs prior to F , adding an
extra interfering interval to H executing the task in the system
with the largest execution time other than τi leads to the worst
case response time for the task under analysis.

Proof: By definition, the error has to be in H or B to
affect the response time of the task under analysis. Based on
Lemma 2, the error should occur during the unload of a task;
hence, the recovery mechanism forces the failed task to be
rescheduled, i.e., a new scheduling interval is added to the
schedule. The rescheduling of the failed task will account for
the execution and the load/unload operations of the failed task.
Furthermore, regardless of the tasks priority, the rescheduled
(failed) task always runs as the highest priority in the system,
thus this additional scheduling interval causes interference to
the task under analysis.
Since we cannot make any assumption on which task might

fail, lower-priority task or higher-priority task, it is safe to
assume that the longest executing task in the system other
than the task under analysis will be scheduled to run in the
induced interval. Finally, note that even if the task that fails
is the one executed in B, the rescheduled task will execute
during H including its load/unload memory operations. Since
the algorithm in [12] is able to correctly upper bound the
interference in H caused by any task without making any
assumption regarding their order, we then simply add the
induced interval to H to capture the worst-case response time

for τi.
Based on Lemma 3, let Hrec be the computed length of

interfering intervals including one restarted task. To give a
concrete example on how an error happening prior to the final
interval (IntervalF) extends H , refer to Figure 7. In this
example, τ5 fails during unload; it is reloaded at time 8-9
and executes in a new third interval in place of τ1; τ1 then
executes in the fourth interval and τ2 in a fifth interval. Since
our analysis bounds the length of the intervals in H without
making any assumption on the order of the tasks, this is safe.
Note that the analysis is based on H always having tasks ready
to load by definition, which is not the case for IntervalF , thus
requiring a separate analysis in Lemma 4.

2) Error Recovery in The Final Interval (IntervalF):
Lemma 4: For an error that occurs within IntervalF , the

maximum length of the interval with M = 2 is Frec = 2 ·
max(τi.c + 5 · σ, 7 · σ) + max(τu.c, 4 · σ) − 2 · σ, where τu
is the task in the system with the largest execution time other
than τi.

Proof: As defined earlier, IntervalF starts with the
execution of the task under analysis τi and finishes with the
end of the unload phase of τi. Based on Lemma 2, in the worst
case, the error occurs during the unload phase. Therefore, the
error must occurs in the unload phase of τi, otherwise τi will
unload successfully and the interval finishes.
Based on Lemma 3 in [12], in the normal case, the unload

operation for τi completes after at most max(τi.c+5 ·σ, 7 ·σ)
time units from the beginning of the interval; in Figure 6,
this occurs at time 27. However, in the case of memory error
during the unload operation and task recovery, IntervalF
is extended. To simplify the computation of the worst-case
length Frec of IntervalF accounting for recovery, we divide
the interval in three sub intervals. The first execution of τi
is contained in the first sub interval SubInterval1, which
finishes with the first (failed) unload of τi. The last sub interval
SubInterval2 starts with the second execution of τi after the
reload and ends with the (successful) second unload, time 37
Figure 6. In the worst case, there can be a middle interval
SubIntervalu in which another task τu is loaded into the
other partition and executed.
Based on Lemma 1, τi will be reloaded afterM TDMA slots

(2 in our case). SubIntervalu finishes and SubInterval2
starts either when the reload operation is complete (case shown
in the figure) or when τu finishes, whichever happens last.
Since in the worst case SubIntervalu starts after τu has
been loaded, and we need M TDMA slots for the failed
unload and M TDMA slots for the reload of τi, the length

380385383

�
�
�
�
��
��
	

�
	

�

�
�

�
�

�
�

�
��
� � �� ��� � � 	
 � � � �� �� �� �	 �
 �� �� �� �� �� �� �� �	 �
 �� ��

� � � � � � � �

�
�
�
�

�
�
�
�
�

�
��
�� � �

�
	

�

� � �

����	���
�

����	���
�

����	���
�

����	���
�

����	���
	

�

�
	�
�
	

�
	

�
�

��
�
�
�

��
�
�
	�
�
	

�
	

�
�

��
�
�
�

��
�
�
�
�
�
�
	�

�
�
�
�
�

�

� �

�

� �

�� �� ��

�

�

����	���
�

Fig. 7. Example showing how H is extended by an induced interval due to error recovery prior to IntervalF

of SubIntervalu can be upper bounded as max(τu.c, 4 · σ)
when M = 2. The lengths of the sub intervals SubInterval1
and SubInterval2 are calculated the same way as in Lemma
3 in [12] as discussed above. However, as shown in Figure
6, SubInterval1 and SubIntervalU overlap by two TDMA
slots (time 25 to 27 in the figure). This is because the length
of SubInterval1, as in Lemma 3 in [12], is calculated up
to the end of the unload phase, while SubIntervalU starts
M = 2 slots before. To overcome this overlap, we subtract
the overlapped time which is 2 · σ when M = 2.
As a result, the length of IntervalF is computed as:

Frec = SubInterval1 + SubIntervalU

+ SubInterval2 − 2 · σ
= max(τi.c+ 5 · σ, 7 · σ) + max(τu.c, 4 · σ)
+ max(τi.c+ 5 · σ, 7 · σ)− 2 · σ,

which is the same as the value in the hypothesis.
Finally, we have to account for the overhead of executing

the recovering ISR 1 on the applicative core during the busy
interval. If we let ρ be the maximum length for the ISR, we
can compute a safe upper bound by simply adding ρ to the
response time iteration. In general, we do not know which
case will lead to the worst response time calculation for τi,
when the error occurs before IntervalF (case 1) or within
IntervalF (case 2). As a result, we independently calculate
both iterations:

R1
τi = ρ+B +Hrec + F, (1)

R2
τi = ρ+B +H + Frec, (2)

and take the maximum response time among R1
τi , R

2
τi . In

particular, note that it is easy to see that Frec − F is larger
than the size of the additional interval added for case 2. This
is the main reason why we chose to rescheduled failed tasks
at the highest priority: it minimizes the worst case length
of IntervalF in case the task under analysis fails. On the
other hand, rescheduling the task at higher priority means
that we have to consider any task, rather than just higher
priority tasks, for the extra interval in case 2, but as discussed
this is generally not the worst case. However, note that we
cannot formally avoid computing the iteration in Equation 1
because the interfering window for higher priority jobs is

based on R1
τi − F = ρ + B + Hrec, which is larger than

R2
τi − Frec = ρ+B +H .

VI. IMPLEMENTATION

In this section, we will describe the implementation of the
recovery mechanism for SPM-centric OS using component-
off-the-shelf (COTS) MPC5777M embedded platform.

A. Architectural Overview of Considered Platform
First, we summarize the architectural features of the con-

sidered MPC5777M processor that is compliant with the
hardware assumptions made in Section III. A brief summary
of these features is provided in Table II.

TABLE II
CHARACTERISTICS OF FREESCALE MPC5777M SOC

Chip Name MPC5777M (Matterhorn)
Manufacturer Freescale
Architecture Power-PC, 32-bit

CPU Unit
2x E200-Z710 + 1x E200-Z709 +

1x E200-Z425 (I/O)
CPU Frequency Application Cores (300 Mhz)

I/O Core (200 Mhz)
Processing Unit CPUs, DMA, Interrupt Controller, NIC

Operational Modes Parallel + Lockstep (on one applicative core)

ECC Protection Cache, RAM, Flash Storage

Cache Hierarchy
L1 (Private Instructions + Data) +

Local Memory

Local Memory (SPMs) Instructions (16 KB) + Data (64 KB)

L1 Cache Size Instructions (16 KB) + Data (4 KB)

SRAM Size 404 KB
Flash Size 8 MB

Main Peripherals Ethernet, FlexRay, CAN, I2C, SIUL

MEMU MEMU For SRAM, Peripheral RAM and Flash

In the considered platform, we have scratchpad memories
for each core. There is also an error correcting codes (ECC)
logic implemented in the hardware that provides single bit
error correction and double bit error detection (SEC-DED).
The module implements Hsaio Codes for detection and cor-
rection, this means that both correction and detection can be
simultaneously done. A DMA module to move data between
different memories is also present. A separate I/O core is
provided to handle the traffic from I/O peripherals. In order
to test and verify the safety features of the SoC, the chip also
implements fake error injection mechanisms that are helpful
to verify the reaction to various faults. We use these fault
injection mechanisms to evaluate our system.

381386384

B. OS-level Integration of Recovery Mechanisms

The proposed error recovery mechanisms for SPM-centric
OS were implemented using Evidence Erika Enterprise1.
Erika Enterprise is an open-source RTOS that is compliant
with the AUTOSAR2 (Automotive Open System Architecture)
standard. AUTOSAR is an open standard for automotive
architectures providing a basic infrastructure for vehicular
software. Erika Enterprise features a small memory foot-
print, supports multi-core platforms and implements common
scheduling policies for periodic tasks. We performed a porting
of Erika Enterprise on the MPC5777M MCU, adding sup-
port for UART communication interface, interrupt controller,
caches, memory protection unit (MPU), data engines (DMA),
Memory error management unit (MEMU), FCCU and Ethernet
controller.
In order to implement our SPM-centric OS, we have

augmented Erika Enterprise to support position-independent
(relocatable) tasks. We rely on the compiler3 support for
far-data and far-code addressing modes. In this way,
tasks are compiled to perform program-counter-relative jumps
and indirect data addressing with respect to an OS-managed
base register. We have extended the default task loader to
exploit DMAs for transferring task images from SRAM to
local memories and vice-versa. Similarly, the OS scheduler
has been adapted to implement the strategy discussed in
Section IV.
In Erika Enterprise, tasks are compiled and linked directly

inside the image of the OS. For each task in the system, Erika-
specific meta-data need to be defined. Additionally, meta-data
that extend the task descriptors for SPM-centric operations
are required. Manually configuring these parameters is tedious
and error-prone; hence, we developed an OS configurator. The
tool uses high-level task definitions and generates the final
configuration for our SPM-centric OS. Specifically, each core
is associated with a set of configuration files that describe:
number of tasks, their priority, task entry points, initial status
and so on. When a task is added, these files need to be
configured accordingly.
First, the body of all the tasks is placed in an ad-hoc file.

Similarly, task-specific data that need to be preserved across
activations are defined in different files and surrounded with
appropriate compiler-specific PRAGMA. This is fundamental
to ensure that: (A) specific linker section is used to store
task code and data images; and (B) position-independent data
and instructions are generated. A separate file also defines
the relocatable task table, which stores the status of each
relocatable task. This structure includes: (A) position in SRAM
of the task code and data images; (B) current status of the task
(e.g. loaded, completed, unloaded); (C) SPM partition of last
relocation.
Finally, appropriate sections to place data and code for tasks

need to be added in the linker script for the I/O core only. The
developed tool is able to perform this operation automatically
upon modification of any of the user-defined tasks. The DMA
is responsible for copying the required task image, on behalf
of any of the applicative cores, to the scratchpad memory of
the requesting core.
In the considered MPC5777M platform, there is a memory

1http://erika.tuxfamily.org/drupal/
2http://www.autosar.org/
3Applications and OS are compiled using the WindRiver Diab Compiler

version 5.9.4 - http://www.windriver.com/products/development-tools/

Fig. 8. Block diagram of error handling circuitry.

error management unit (MEMU) that is responsible for collect-
ing and detecting the faults in different memory subsystems
such as SRAM, SPM and Flash. The MEMU implements
separate tables for reporting correctable and uncorrectable
errors. There are separate tables for each kind of memories.
These tables contain the address of the fault that caused error,
moreover, there is a register inside the MEMU that tells if
the fault that occurred is a correctable or uncorrectable fault.
On MPC5777M, there is no way for the MEMU to send an
interrupt to the CPU in case of a fault. There is a separate
FCCU module present on the chip that collects all the errors
that are forwarded to it from the MEMU. The FCCU module
can be preprogrammed to take certain actions based on a
particular error. Moreover, it is also responsible of generating
interrupt to the processor to notify it in case any kind of errors
that are being reported to it from the MEMU. Figure 8 shows
how different modules are connected to each other.
In order to detect the faults in the SPM, we registered a

FCCU interrupt with application cores. This interrupt gets
generated when an error is reported by the MEMU to the
FCCU in one of the memory subsystem. Upon interrupt
generation all the application cores receive an interrupt check
if the address that caused the error belongs to the its own SPM
address range. If not the application core exists the ISR and
continues whatever it was doing. In case the address matches
SPM range it checks whether the fault is in the read-only or
read-write data of the task. In case of read-only errors the core
copies the word that caused error and starts re-executing again
from the point where the error occurred. In the later case, the
application core marks the partition as empty and reschedules
the task. The procedure is exactly same as we proposed in the
OS design section. This procedure only applies for errors in
the SPM. The errors for SRAM and Flash are handled by the
I/O core and they follow same procedure as the on presented
in the OS design section.

VII. EVALUATION
In order to validate the results of the proposed error recovery

mechanisms, we performed a variety of experiments. We
measured the overheads of different recovery handling routines
to account for the OS overhead. We then present the results of
the EEMBC benchmarks by running the tasks from the SRAM
versus SPM. Based on the collected data we then calculate
schedulability graphs.

A. SPM-Centric OS Overhead Evaluation
The most important parameter of our proposed system is

the size of the TDMA slot. The slot needs to be long enough

382387385

TABLE III
DETAILS OF OS PARAMETERS

Parameter Time (μs)
DMA Load time (Largest Code, R and R/W Data size) 209

DMA Unload time (Largest R/W Data size) 61.5
DMA setup 3.16
Context switch 0.46

Minimum ISR overhead on Applicative cores 0.70
Maximum ISR overhead on Applicative cores 8

Maximum ISR overhead on I/O core for DMA completion 2
TDMA slot size 215

to account for the load/unload of any task in the system.
In order to calculate the upper bound, we restrict the slot
size to be greater or equal to the footprint of the task with
maximum size among the benchmarks. In addition, based on
our recovery mechanism, the TDMA slot size must be long
enough to allow two unloads of the completed task. Therefore
the TDMA slot size is equal to max(worst task load, 2 ·
worst task unload) + IO core ISR overhead. Table III
shows the system parameters including DMA times and
TDMA slot size.
We have measured the DMA modules configuring overhead.

In addition, since the interrupt from the memory error man-
agement unit is delivered to all the application cores, we have
measured the overhead of ISR1. This ISR has minimum and
maximum overhead. The minimum overhead occurs when the
ISR only checks if the error address is relevant or not and
concludes by its irrelevance. On the other hand, the maximum
overhead is experienced in the case of a relevant memory fault.
We also measured the maximum overhead of I/O core ISR2 for
DMA completion interrupt. All of these results are reported
in Table III.

B. Results of EEMBC Benchmarks

In order to evaluate our system, we run the EEMBC
benchmark (automotive suite) on the platform. We compared
the execution time of running the reported applications in
Table IV out of the local SPM and the main SRAM memory.
When the applications run from the main memory they suffer
contention delay due to the shared access to the main memory,
refer to Table IV for more details. Here we have updated the
benchmark table to explicitly mark the sizes of the read-only
data and read-write data of the applications as it is relevant to
our recovery mechanism. The results are shown in Table IV.

TABLE IV
DETAILS OF EEMBC BENCHMARKS.

Benchmark SPM
Time
(μs)

SRAM
Time
(μs)

Relocatable
Code Size
(bytes)

Read only
Data Size
(bytes)

Read/Write
Data Size
(bytes)

tblook 1013 1015 1892 10916 60
matrix 1053 1054 4774 12188 124
a2time 1002 1029 2538 1704 148
pntrch 1036 1145 1398 4800 128
ttsprk 383 425 4772 2592 4848
iirflt 1040 1189 3512 888 248
canrdr 1009 1359 1562 12276 56
bitmnp 990 1389 3282 72 1494
rspeed 1012 1457 1208 13200 40
puwm 1036 1540 2500 2400 180
aifirf 1005 1564 2286 1120 84
aifftr 916 1642 4458 2304 1912
aiifft 1170 2092 3540 3072 1656
idct 1045 2126 4690 244 1788

Total size 42412 67776 27766

TABLE V
SPACE OVERHEAD OF HW VERSUS SW RECOVERY

HW
SEC-DED
(bits)

HW
DEC
(bits)

SW
DEC
(bits)

Number of extra bits
required for R/W data

(12,766 bytes)
12,766 22,344 127,660

Number of extra bits
required for R-only data
(42,412 + 67,776 bytes)

110,192 192,836 110,192

Total number of
extra bits

80,542 215,180 237,852

C. Overhead of Software versus Hardware Recovery

The proposed software-based recovery technique is able to
correct errors that can be detected (only) but not corrected
by the hardware. If the hardware provides double-bit error
correction (DEC) capabilities, then our approach is redundant
and should not be used. However, if the hardware, as it is
often the case, supports only SEC-DED, then we introduce
a timing penalty to recover 2-bit errors that are detected but
not corrected by the hardware. Under SEC-DED, 1-bit errors
are still corrected only by the hardware. Introducing a timing
overhead effectively means trading schedulability for reliabil-
ity. We quantify this trade-off in Figure 9 and 10. Clearly,
when software-based recovery is used, the time overhead can
be significant. Nonetheless, we believe that it is reasonable
to trade a portion of the CPU utilization to make sure that
safety-critical tasks produce correct outputs.

Let us focus on the typical ECC support provided by
commercial hardware, i.e. SEC-DED. We hereby compare the
overhead in space introduced by our software-based recovery
mechanism with an equivalent hardware-based implementa-
tion, i.e. DEC support in hardware. Introducing DEC support
in hardware is possible, but its implementation is complex
and costly. In fact, it has been shown [36] that the ASIC area
can grow up to 13x. The software approach, conversely, can
be deployed on less expensive hardware and only requires
to keep redundant copies of the R/W portion of application
memory. The SEC-DED requires 8 check bits to implement
the detection and correction mechanism for a 64-bit data word,
while DEC requires 14 check bits to correct a double bit
error [36] in a 64-bit data word. Using this information, we
compute the number of extra bits required for hardware-based
(HW) SEC-DED, hardware-based DEC, and our proposed
software-based (SW) recovery mechanism for DEC in Table V.
In the table, we assume that our taskset is comprised of all the
benchmarks in Table IV. First, note that our technique relies
on SEC-DED and only duplicates R/W data and ECC bits.
For read-only (R-only) memory, only the extra bits required to
implement SEC-DED are considered, because a second copy
of read-only data is always available in less expensive flash
memory. Moreover, for a fair comparison, we assume that HW
DEC support is only provided for application memory, instead
of the whole main memory. In this setting, the SW overhead is
about 10%. We argue however that (i) not requiring additional
ECC check logic in the SW approach partially offsets the cost
for the additional memory bits; and that (ii) if extra DEC bits
were considered on the whole main memory, the SW approach
is to be preferred in terms of overhead: in fact, with 512 KB
of main memory, DEC would require about 917,504 extra bits.

Next, we consider the overhead in time for hardware-
based recovery and the proposed software-based technique.

383388386

According to [36], hardware implementations of SEC-DED
introduce a latency of 1.3 ns, whereas DEC implementations
introduce a latency of 2.2 ns on every memory transaction.
Our SW approach on the other hand still requires SEC-DED,
but only introduces a time overhead if a double-bit error
occurs. Depending upon which part of the task is affected by
the two-bit error, the recovery overhead differs. For instance,
an error in the read-only data only requires one word to be
copied from a redundant copy, whereas, an error in read/write
data of the task in the worst-case may require the entire
task to be re-loaded and re-executed. It is hard to compare
the time overhead of software-based and hardware-based
approaches, because it depends on the number of memory
accesses performed by the tasks under analysis. Nonetheless,
we expect that hardware-based DEC implementation can be
more efficient in time. As vendors typically only provide SEC-
DED support, however, we believe that offering the choice
at design time to recover double-bit errors in software still
represents a valuable contribution in the context of safety-
critical systems. We discuss how software-based recovery
impacts system schedulability in Section VII-D.

D. Results of Schedulability Analysis

For the schedulability evaluation of our newly proposed
scheme we first present the schedulability curve of normal
case when there are no errors and compare it with the case
when we have errors. We also show the contention based
approach where we have no error recovery. The case referred
as “contention” corresponds to the case where no scratchpad
management is implemented and in which tasks execute di-
rectly from SRAM contending for bus access.
We computed the response time of the same workload for

the three cases: the traditional SPM-centric OS mechanism
with no errors as proposed in [12]; the augmented SPM-centric
OS with error recovery mechanisms using the analysis in
Section V and with artificial error injection; and the contention
based execution using standard response time analysis. For the
evaluation, we have considered the EEMBC benchmarks in
Table IV and the overheads in Table III.
For a given system utilization, each application is randomly

selected and assigned a random period in the range between
10 ms to 100 ms. The tasks utilization is then computed based
on the measured execution time of the applications and the
selected period. Tasks are randomly generated until the sum
of the individual tasks utilizations reaches the required system
utilization.
Figure 9 shows the result of the schedulability analysis of

our newly proposed SPM-centric scheme with error recovery
and compares it with the case when there are no errors. Based
on the figure, we can conclude that there is limited degradation
in schedulability for supporting the recovery mechanism. This
degradation can be justified by the fact that the system is
both predictable as well as fault tolerant. Moreover, from
the Figure 9 we can also see that our SPM-centric approach
with error recovery still performs significantly better than the
contention-based case where no error recovery is performed.
Figure 10 shows the system utilization when 50% of the

task sets are schedulable. The X-axis represents the window
of periods used to generate the task sets. As expected in
any non-preemptive scheduler, with tight periods all three
mechanisms degraded due to the blocking time. However,
with error recovery the degradation is more severe in the
case of very small periods due to the extra overhead paid

Fig. 9. Schedulability degradation when applying the recovery mechanism

Fig. 10. Utilization degradation as a function of tasks periods

for recovery. In most cases, with error recovery, the proposed
strategy achieves better utilization compared to the contention-
based approach. Additionally, the loss in utilization arising
from additional error recovery overhead remains within an
acceptable range, and marginally decreases for larger task
periods.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we have presented error recovery mechanisms
to recover from bit flips that cannot be recovered by hardware
modules by introducing redundant copies of the tasks in the
system. We integrate these strategies into the SPM-centric OS,
which by design supports redundancy to achieve predictability.
We exploit this design feature of the SPM-centric OS by
adding some more redundancy to make it fault tolerant to bit
flips errors. The result is a predictable SPM-centric OS which
is also fault tolerant to bit flips.
In our current work, we have considered the case in which

only one memory error can occur in two consecutive period
of any task. However, the analysis could be extended to
account for more frequent errors. Similarly, we discuss the
case with M = 2 cores, since it is used in our prototype,
however, the analysis could be extended to account for a
larger number of cores. As a part of our future work, we
intend to investigate the aforementioned extensions from both
an analytic and implementation standpoint.

384389387

ACKNOWLEDGMENT

The material presented in this paper is based upon work
supported by Hitachi America Ltd. under contract Hitachi
2013-07132, the National Science Foundation (NSF) under
grant numbers CNS-1302563 and CNS-1646383, NSERC DG
402369-2011 and CMC Microsystems. Any opinions, findings,
and conclusions or recommendations expressed in this publi-
cation are those of the authors and do not necessarily reflect
the views of the NSF and other sponsors.

REFERENCES
[1] FAA position paper on multi–core processors, CAST32 (rev 0).

http://www.faa.gov/aircraft/air cert/design approvals/air software/cast/
cast papers/media/cast32.pdf. Accessed: 2015-01-26.

[2] R. Mancuso, R. Pellizzoni, M. Caccamo, Lui Sha, and Heechul Yun.
WCET(m) estimation in multi-core systems using single core equiva-
lence. In Real-Time Systems (ECRTS), 2015 27th Euromicro Conference
on, pages 174–183, July 2015.

[3] L. Sha, M. Caccamo, R. Mancuso, J. E. Kim, M. K. Yoon, R. Pellizzoni,
H. Yun, R. B. Kegley, D. R. Perlman, G. Arundale, and R. Bradford.
Real-time computing on multicore processors. Computer, 49(9):69–77,
Sept 2016.

[4] N. Kim, B. C. Ward, M. Chisholm, C. Y. Fu, J. H. Anderson, and F. D.
Smith. Attacking the one-out-of-m multicore problem by combining
hardware management with mixed-critcality provisioning. In 2016 IEEE
Real-Time and Embedded Technology and Applications Symposium
(RTAS), pages 1–12, April 2016.

[5] S. Metzlaff, I. Guliashvili, S. Uhrig, and T. Ungerer. A dynamic
instruction scratchpad memory for embedded processors managed by
hardware. In Architecture of Computing Systems-ARCS 2011, pages
122–134. Springer, 2011.

[6] S. Wasly and R. Pellizzoni. A dynamic scratchpad memory unit for
predictable real-time embedded systems. In Real-Time Systems (ECRTS),
2013 25th Euromicro Conference on, pages 183–192. IEEE, 2013.

[7] J. Whitham and N.C Audsley. Explicit reservation of local memory in
a predictable, preemptive multitasking real-time system. In Real-Time
and Embedded Technology and Applications Symposium (RTAS), 2012
IEEE 18th, pages 3–12. IEEE, 2012.

[8] L. Bathen and N. Dutt. Exploiting unreliable embedded memories. In
International Symposium on Electronic System Design, December 2011.

[9] K. Lee, A. Shrivastava, I. Issenin, N. Dutt, and N. Venkatasubramanian.
Mitigating soft error failures for multimedia applications by selective
data protection. In Proceedings of the 2006 International Conference on
Compilers, Architecture and Synthesis for Embedded Systems, CASES
’06, pages 411–420, New York, NY, USA, 2006. ACM.

[10] C. Slayman. Whitepaper on soft errors in modern memory tech-
nology. Technical report, Ops A La Carte LLC., Santa Clara,
CA, 2010. URL http://www.opsalacarte.com/pdfs/Tech Papers/DRAM
Soft Errors White Paper.pdf.

[11] D. Sperling and D. Gordon. Two Billion Cars: Driving Toward
Sustainability. Oxford University Press, 2009.

[12] R. Tabish, R. Mancuso, S. Wasly, A. Alhammad, S. S. Phatak, R. Pelliz-
zoni, and M. Caccamo. A real-time scratchpad-centric os for multi-core
embedded systems. In 2016 IEEE Real-Time and Embedded Technology
and Applications Symposium (RTAS), pages 1–11, April 2016.

[13] D. Bui, E.A. Lee, I. Liu, H. Patel, and J. Reineke. Temporal isolation on
multiprocessing architectures. In Design Automation Conference (DAC),
pages 274 – 279, June 2011.

[14] T. Ungerer, F. Cazorla, P. Sainrat, G. Bernat, Z. Petrov, C. Rochange,
E. Quinones, M. Gerdes, M. Paolieri, J. Wolf, H. Casse, S. Uhrig,
I. Guliashvili, M. Houston, F. Kluge, S. Metzlaff, and J. Mische.
MERASA: Multicore execution of hard real-time applications supporting
analyzability. IEEE Micro, 30(5):66–75, 2010. ISSN 0272-1732.

[15] G. Gracioli, A. Alhammad, R. Mancuso, A. A. Fröhlich, and R. Pel-
lizzoni. A survey on cache management mechanisms for real-time
embedded systems. ACM Comput. Surv., 48(2), November 2015.

[16] J. M. Calandrino, H. Leontyev, A. Block, U. C. Devi, and J. H.
Anderson. LITMUSRT : A testbed for empirically comparing real-time
multiprocessor schedulers. In 2006 27th IEEE International Real-Time
Systems Symposium (RTSS’06), pages 111–126, Dec 2006.

[17] J. L. Herman, C. J. Kenna, M. S. Mollison, J. H. Anderson, and D. M.
Johnson. Rtos support for multicore mixed-criticality systems. In
2012 IEEE 18th Real Time and Embedded Technology and Applications
Symposium, pages 197–208, April 2012.

[18] G. Lima and A. Burns. An optimal fixed-priority assignment algorithm
for supporting fault-tolerant hard real-time systems. IEEE Transactions
on Computers, 52(10):1332–1346, Oct 2003.

[19] S. Punnekkat, A. Burns, and R. Davis. Analysis of checkpointing for
real-time systems. Real-Time Systems, 20(1):83–102, 2001.

[20] M. A. Haque, H. Aydin, and D. Zhu. Real-time scheduling under fault
bursts with multiple recovery strategy. In 19th Real-Time and Embedded
Technology and Applications Symposium, pages 63–74, April 2014.

[21] R. M. Pathan. Fault-tolerant real-time scheduling algorithm for tolerating
multiple transient faults. In 2006 International Conference on Electrical
and Computer Engineering, pages 577–580, Dec 2006.

[22] L. Jun, Y. Fumin, and L. Yansheng. A feasible schedulability analysis for
fault-tolerant hard real-time systems. In 10th IEEE International Con-
ference on Engineering of Complex Computer Systems (ICECCS’05),
pages 176–183, June 2005.

[23] B. Brandenburg and M. Gül. Global scheduling not required: Simple,
near-optimal multiprocessor real-time scheduling with semi-partitioned
reservations. In 37th IEEE Real-Time Systems Symposium (RTSS 2016),
December 2016.

[24] J. Li, Z. Luo, D. Ferry, K. Agrawal, C. Gill, and C. Lu. Global edf
scheduling for parallel real-time tasks. Real-Time Systems, 51(4):395–
439, July 2015. ISSN 0922-6443.

[25] D. Compagnin, E. Mezzetti, and T. Vardanega. Putting run into practice:
Implementation and evaluation. In 2014 26th Euromicro Conference on
Real-Time Systems, pages 75–84, July 2014.

[26] M. Chisholm, N. Kim, B. Ward, N. Otterness, J. Anderson, and F.D.
Smith. Reconciling the tension between hardware isolation and data
sharing in mixed-criticality, multicore systems. In 2016 IEEE Interna-
tional Real-Time Systems Symposium (RTSS’16), December 2016.

[27] S. Wasly and R. Pellizzoni. Hiding memory latency using fixed priority
scheduling. In Real-Time and Embedded Technology and Applications
Symposium (RTAS), 2014 IEEE 20th, pages 75–86. IEEE, 2014.

[28] Durrieu, G. and Faugere, M. and Girbal, S. and Pérez, D. G. and
Pagetti, C. and Puffitsch, W. Predictable flight management system
implementation on a multicore processor. ERTSS’14, 2014.

[29] C. Maia, L. M. Nogueira, L. M. Pinho, and D. G. Prez. A closer look into
the AER model. In 2016 IEEE International Conference on Emerging
Technology and Factory Automation, (ETFA 2016), September 2016.

[30] A. Bovenzi, J. Alonso, H. Yamada, S. Russo, and K. S. Trivedi. Towards
fast os rejuvenation: An experimental evaluation of fast os reboot
techniques. In 2013 IEEE 24th International Symposium on Software
Reliability Engineering (ISSRE), pages 61–70, Nov 2013.

[31] F. Abdi, R. Mancuso, S. Bak, O. Dantsker, and M. Caccamo. Reset-
based recovery for real-time cyber-physical systems with temporal safety
constraints. In 2016 IEEE International Conference on Emerging
Technology and Factory Automation, (ETFA 2016), September 2016.

[32] C. H. A. Costa, Y. Park, B. S. Rosenburg, C. Y. Cher, and K. D.
Ryu. A system software approach to proactive memory-error avoidance.
In SC14: International Conference for High Performance Computing,
Networking, Storage and Analysis, pages 707–718, Nov 2014.

[33] Y. Y. Chen, Y. L. Kuo, and K. L. Leu. An autonomous recovery software
module for protecting embedded os and application software. In Global
High Tech Congress on Electronics, IEEE, pages 165–169, Nov 2012.

[34] M. Y. Hsiao. A class of optimal minimum odd-weight-column sec-ded
codes. IBM Journal of R and D, 14(4):395–401, 1970.

[35] M. She. Semiconductor Flash Memory Scaling. University of California,
Berkeley, 2003.

[36] R. Naseer and J. Draper. Parallel double error correcting code design to
mitigate multi-bit upsets in srams. In Solid-State Circuits Conference,
2008. ESSCIRC 2008. 34th European, pages 222–225. IEEE, 2008.

385390388

