1. We say that a relation \triangleright satisfies the diamond property if whenever $a \triangleright b$ and $a \triangleright c$ then there exists a d such that $b \triangleright d$ and $c \triangleright d$. Show that \rightarrow does not satisfy the diamond property. (Hint: find terms a, b and normal form c such that $a \rightarrow b \rightarrow c$ and $a \rightarrow c$ and use the fact that \rightarrow is non-reflexive).

2. Prove the following typing judgements:

(FOb_{1})

(a) $\emptyset \vdash [x = 0, y = 0, add = \varsigma(s : A)s.x + s.y] : A$ where $A \equiv [x : Nat, y : Nat, add : Nat]$.
(b) $\emptyset \vdash [x = 0, y = 0, add = \varsigma(s : A)s.x + s.y].add \iff \varsigma(s : A)0 : A$ where $A \equiv [x : Nat, y : Nat, add : Nat]$.
(c) $\emptyset \vdash [\ell_1 = \varsigma(s_1 : A_1)[\ell = \varsigma(s_2 : A_2)s_1.\ell_2], \ell_2 = []] : A_1$ where $A_1 \equiv [\ell_1 : A_2, \ell_2 : []]$ and $A_2 \equiv [\ell : []]$.

(FOb_{1<})

(a) $\emptyset \vdash [x = 0, y = 0, add = \varsigma(s : A)s.x + s.y] : A'$ where $A' \equiv [x : Nat]$ and $A' \equiv [x : Nat]$.
(b) $\emptyset \vdash [\ell_1 = \varsigma(s_1 : A_1)[\ell = \varsigma(s_2 : A_2)[], \ell_2 = []], \ell_1 \iff \varsigma(s_1 : A_1)[] : A_1$ where $A_1 \equiv [\ell_1 : [], \ell_2 : []]$ and $A_2 \equiv [\ell : []]$.
(c) $\emptyset \vdash [x = 0, getx = \varsigma(s : A)s.x, setx = \varsigma(s : A)\lambda(n : Nat)s.x := n] : A$ where $A \equiv [x : Nat, getx : Nat, setx : Nat \rightarrow []]$.

3. Consider the object term $o \triangleq [\ell = \varsigma(s : A)s]$ in Ob_{1<}.

(a) Is there a type A in Ob_{1<} such that the term $o.\ell$ is typable?
(b) Is there a type A in Ob_{1<} such that the term $o.\ell \ell$ is typable?

4. Show that if we remove the type annotations in the system $F_{1<}$, then the minimum-types property is lost. You need to find a type-erased lambda term a such that $\emptyset \vdash a : A$ and $\emptyset \vdash a : A'$ with A and A' unrelated (i.e., with no common super type).