Depth Subtyping and Type Inference for Object Calculi

Michele Bugliesi
Dipartimento di Informatica
Universita Ca' Foscari di Venezia
michele@dsi.unive.it
http://www.dsi.unive.it/~michele

Santiago M. Pericás-Geertsen
Department of Computer Science
Boston University
santiago@cs.bu.edu
http://www.cs.bu.edu/~santiago

January 22, 2000
Introduction

- Our interest:
 - Type systems for objects with decidable and feasible type inference.

- Existing systems:
 - Recursive types + subtyping: decidable + feasible [Palsberg 95].
 - Self types: decidable + unfeasible [Jim/Palsberg 97].\(^a\)

⇒ Split Types:

- Type inference: decidable + feasible.
- Strictly more powerful than recursive types, but incomparable to Self types.
- Can be used to type: encoded functions, references, channels.

\(^a\)Type inference for a restricted form of Self types is NP-complete.
Sigma Calculus: Syntax

1. Syntax:

 \[a, b, c, d ::= q \mid s \mid [\ell_i = \varsigma(s) b_i \{ s \}^{i \in I}] \mid a.\ell \mid a.\ell \leftarrow \varsigma(s)b \]

2. Notation:

 - \([..., \ell = a, ...]\) stands for \([..., \ell = \varsigma(s)a, ...]\) where \(s \not\in \text{FV}(a)\).
 - \(a.\ell := b\) stands for \(a.\ell \leftarrow \varsigma(s)b\) where \(s \not\in \text{FV}(b)\).
 - \(b\{s\}\) stands for a term \(b\) where \(s\) may occur free.
 - \(b\{c\}\) stands for a term \(b\{s\}\) where occurrences of \(s\) were substituted by \(c\).
Recursive Types + Subtyping

- The rules (Sub Object) and (Sub μ) do not coexist naturally :-(

\[E \not\vdash \mu(X)[x : \text{int}, y : \text{int}, \text{move} : X] \leq \mu(Y)[x : \text{int}, \text{move} : Y] \]

Because of invariant subtyping, this would require \(X \leq Y \) and also \(Y \leq X \) since \(X \) must be the same type as \(Y \).

- Typing rules:

\[
\begin{align*}
(\text{Sub } \mu) & \quad E, X \leq Y \vdash A \leq B \\
E & \vdash \mu(X)A \leq \mu(Y)B \\
(\text{Sub Object}) & \quad J \subseteq I \\
E & \vdash [\ell_i : B_i]_{i \in I} \leq [\ell_j : B_j]_{j \in J}
\end{align*}
\]
Depth Subtyping?

- Is it sound to replace (Sub Object) by a more flexible typing rule?

\[
P_1 \equiv \mu(Y)[x : \text{int}, \text{move} : Y]
\]
\[
P_2 \equiv \mu(X)[x : \text{int}, y : \text{int}, \text{move} : X]
\]

Let \(p_1 \) be an arbitrary term of (proper) type \(P_1 \) and \(p_2 \) of type \(P_2 \).

\[
p_2 \triangleq [x = \varsigma(s)s.\text{move}.y, y = 0, \text{move} = \varsigma(s)s.y := s.y + 1]
\]

Then, the following program generates a \textit{run-time} error:

\[
(p_2.\text{move} := p_1).x \quad \text{(oops!!)}
\]
Some terms are still typable ...

- Define,

\[
p_1 \overset{\vartriangle}{=} [x = 0, move = \varsigma(s)s.x := s.x + 1]
\]
\[
p_2 \overset{\vartriangle}{=} [x = 0, y = 0, move = \varsigma(s)s.y := s.y + 1]
\]
\[
o \overset{\vartriangle}{=} p_2.\text{move} := p_1
\]

Clearly,

\[
\emptyset \vdash p_1 : \mu(X)[x : \text{int}, move : X] \equiv P_1
\]
\[
\emptyset \vdash p_2 : \mu(X)[x : \text{int}, y : \text{int}, move : X] \equiv P_2
\]

The term \(o \) can be assigned the type \(P \equiv [x : \text{int}, y : \text{int}, move : P_1] \) since \(P \leq [x : \text{int}, move : P_1] = P_1 \). Notice that we assigned a type to the term \(o \) even though \(P_2 \not\equiv P_1 \).
Others are not ...

- Define,

\[p_0 \triangleq [\text{move} = \varsigma(s)s] \]
\[p_2' \triangleq [x = \varsigma(s)s.\text{move}.y, y = 0, \text{move} = \varsigma(s)s.y := s.y + 1] \]
\[o \triangleq [\ell = p_2'], \ell := p_0 \]

Clearly,

\[\emptyset \vdash p_0 : \mu(X)[\text{move} : X] \equiv P_0 \]
\[\emptyset \vdash p_2' : \mu(X)[x : \text{int}, y : \text{int}, \text{move} : X] \equiv P_2 \]

The most informative type for \(o \) is \([\ell : []]\). Consequently, \(o.\ell.\text{move} \) is not typable.
Split Types

- Split types are object types of the form $\mu(X)[\ell_i : (B_{i}^{u}, B_{i}^{s})_{i \in I}]$ where $B_{i}^{u} \leq B_{i}^{s}$, for every $i \in I$.

- Intuitively, the component B_{i}^{u} – or update component – is used to type an update for ℓ_i, whereas the component B_{i}^{s} – or select component – is used to type a selection for ℓ_i.

- The restriction $B_{i}^{u} \leq B_{i}^{s}$ means that every method does not ``advertise'' (select component) more structure than what it actually ``has'' (update component). This restriction is required for soundness (i.e. for subject reduction).
Subtyping over Split Types

- Subtyping is no longer *invariant*, but *covariant* in the select components and *contravariant* in the update components.

(Sub Object)

\[
\vdash C^u_j \leq B^u_j \quad \vdash B^s_j \leq C^s_j \quad (J \subseteq I)
\]

\[
\vdash \left[\ell_i : (B^u_{i}, B^s_{i})^{i \in I} \right] \leq \left[\ell_j : (C^u_{j}, C^s_{j})^{j \in J} \right]
\]

- Every pair of object types \(A \) and \(A' \) has a *least upper bound* \(A \sqcup A' \) and a *greatest lower bound* \(A \sqcap A' \). The type \(A \sqcup A' \) is *often* more informative than any common supertype found with recursive types.
Split Types: System $\text{Ob}^{\downarrow\uparrow}$

- Let $A \equiv [\ell_i : (B^u_i, B^s_i)^{i \in I}]$ in,

\[
\begin{align*}
(\text{Val Select}) & \quad E \vdash a : A \quad \vdash A \leq [\ell_j : (\bot, D)] \quad \ldots \quad E \vdash a.\ell_j : D \\
(\text{Val Update}) & \quad E \vdash a : A \quad \vdash A \leq [\ell_j : (D, \top)] \quad E, s : A \vdash b : D \quad \ldots \quad E \vdash a.\ell_j \leftarrow \varsigma(s) b : A \\
(\text{Val Object}) & \quad E, s : [\ell_i : (B^u_i, B^s_i)^{i \in I}] \vdash b_i : B^u_i \quad \vdash B^u_i \leq B^s_i \quad \ldots \quad E \vdash [\ell_i = \varsigma(s) b_i^s]^{i \in I} : A
\end{align*}
\]
More terms are typable in Ob$^\uparrow\uparrow$

- Define,

\[p_0 \triangleq \text{move} = \zeta(s)s \]
\[p_2' \triangleq [x = \zeta(s)s.\text{move}.y, y = 0, \text{move} = \zeta(s)s.y := s.y + 1] \]
\[o \triangleq [\ell = p_2'].\ell := p_0 \]

We can prove,

\[\emptyset \vdash p_0 : \mu(X)[\text{move} : (X, X)] \equiv S_0 \]
\[\emptyset \vdash p_2' : \mu(X)[x : (\text{int, int}), y : (\text{int, int}), \text{move} : (X, X)] \equiv S_2 \]

The most informative type for \(o \) in Ob$^\uparrow\uparrow$ is,

\[[\ell : \mu(X)[\text{move} : (S_0 \cap S_2, X)]] \]

Consequently, \(o.\ell.\text{move} \) is \textit{now} typable.
Encoding the Lambda Calculus

- Encoding from [Abadi/Cardelli 96]:

1. \([q] = q,\)
2. \([x] = x,\)
3. \([\lambda(x)b\{x\}] = [arg = \varsigma(s)s.a.rg,\]
 \hspace{1cm}val = \varsigma(s)[b\{x\}]\{x := s.a.rg\}]\),
4. \([a(b)] = ([a].a.rg := [b]).val.\)
Preservation of Typings

- Encoding of types:

1. $\llbracket Q \rrbracket = Q$,

2. $\llbracket A \rightarrow B \rrbracket = \llbracket \text{arg}:(\llbracket A \rrbracket, \top), \text{val}:(\bot, \llbracket B \rrbracket) \rrbracket$.

Notice that, if $\vdash A \rightarrow B \leq A' \rightarrow B'$ is derivable in \mathbf{F}_\leq (simply typed + subtyping) then $\vdash \llbracket A \rightarrow B \rrbracket \leq \llbracket A' \rightarrow B' \rrbracket$ is derivable in $\mathbf{Ob}^\uparrow\uparrow$.

- Theorem (Preservation of Typing).

Let a be an arbitrary λ-term and A an arbitrary type. If $E \vdash a : A$ is derivable in \mathbf{F}_\leq then $\llbracket E \rrbracket \vdash \llbracket a \rrbracket : \llbracket A \rrbracket$ is derivable in $\mathbf{Ob}^\uparrow\uparrow$.
Type Inference Algorithm

Init. Form the initial pair \((\{\Gamma \triangleright a : \alpha\}, \emptyset)\), where \(\alpha\) is a fresh type variable and \(\Gamma\) an environment mapping the free variables of \(a\) to fresh type variables.

Iterate. Let \((J, C)\) be the current pair. If \(J\) is empty, then stop. Otherwise, select a judgement from \(J\) and rewrite it using the appropriate rule.

Theorem (Soundness and Completeness)
The type inference algorithm is sound and complete with respect to type derivations in \(\mathbb{Ob}^{\uparrow\uparrow}\).
Split Types vs. Recursive Types

- Recursive types: a recursive type can be encoded as a Split type where update and select components are identical (invariant subtyping).

- Recursive types + variance annotations: the object type $[\ell_i \nu_i : B_i^{i \in I}]$ where $\nu_i \in \{^+, ^-, \circ\}$ can be encoded as $[\ell_i : (B_i^u, B_i^s)^{i \in I}]$ where:

 - $B_i^u = B_i$ and $B_i^s = \top$ when $\nu_i = ^-$,
 - $B_i^u = \bot$ and $B_i^s = B_i$ when $\nu_i = ^+$,
 - $B_i^u = B_i^s = B_i$ when $\nu_i = \circ$.

Santiago M. Pericás-Geertsen
Split Types vs. Self Types

- Update rule for Self types:

\[(A \equiv \varsigma(X)[..., \ell : B\{X\}, ...])\]

\[
\frac{E \vdash a : A \quad E, Y \leq A, s : Y \vdash b : B\{Y\}}{E \vdash a.\ell \leftarrow \varsigma(s)b : A}
\]

- The typing power of the two systems is \textit{incomparable}:

 - Not typable with Self types:

\[
[move = \varsigma(s)s].move := [move = \varsigma(s)s]
\]

 - Not typable with Split types:

\[
p_0 \triangleq [move = \varsigma(s)s]
\]

\[
p_2' \triangleq [x = \varsigma(s)s.move.y, y = 0, move = \varsigma(s)s.y := s.y + 1]
\]

\[
o \triangleq ([\ell = p_2'].\ell := p_0).\ell.move \leftarrow \varsigma(s)s
\]
Split Types vs. Self Types

- Given,

\[S_1 \equiv \mu(X)[x : (\text{int, int}), move : (X, X)] \]
\[S_2 \equiv \mu(X)[x : (\text{int, int}), y : (\text{int, int}), move : (X, X)] \]

We have,

\[\vdash S_1 \leq \mu(X)[x : (\text{int, int}), move : (S_1 \cap S_2, X)] \]
\[\vdash S_2 \leq \mu(X)[x : (\text{int, int}), move : (S_1 \cap S_2, X)] \]

However,

\[\not\vdash S_2 \leq S_1 \]
Conclusions

Split Types:

+ Provide a flexible (in depth) form of subtyping.
+ Generalize recursive types and variance annotations.
+ Support a typed encoding for functions.

? Useful for other applications: reference types and channel types.

+/- Are not comparable with Self Types.

Type Inference Algorithm:

+ Runs in polynomial time.a

- Constraint sets are often hard to read.

aNo formal proof is included in the FOOL version of the paper.