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Abstract

We formulate the problem of supervised hashing, or learning binary embeddings of
data, as a learning to rank problem. Specifically, we optimize two common ranking-
based evaluation metrics, Average Precision (AP) and Normalized Discounted
Cumulative Gain (NDCG). Observing that ranking with the discrete Hamming
distance naturally results in ties, we propose to use tie-aware versions of ranking
metrics in both the evaluation and the learning of supervised hashing. For AP and
NDCG, we derive continuous relaxations of their tie-aware versions, and optimize
them using stochastic gradient ascent with deep neural networks. Our results
establish the new state-of-the-art for tie-aware AP and NDCG on common hashing
benchmarks.

1 Introduction

In this paper, we tackle the problem of supervised hashing, which is concerned with learning binary
embeddings of data in order to enable fast nearest neighbor search. Our goal is to design and
optimize appropriate learning objectives that match the evaluation metrics used at test time, which
has been recognized as difficult in the literature. Supervised hashing is usually evaluated assuming an
information retrieval setup, where a set of queries is retrieved against a database using the learned
binary representation. Retrieval performance can be measured using ranking-based metrics like
Average Precision (AP) and Normalized Discounted Cumulative Gain (NDCG) [15]. Thus, we are
interested in optimizing such ranking metrics for supervised hashing.

In the context of hashing, an important observation is that retrieval results ranked by discrete-valued
Hamming distances generally contain many ties, and different tie-breaking strategies can lead to
different, or even unfair, results (see Figure 1 and Section 3.2). Although this issue is known in the
information retrieval community [17], the learning to hash literature still relatively lacks tie-awareness,
and current evaluation criteria do not guard against exploitation of tie-breaking strategies. Thus,
we first advocate incorporating tie-awareness in evaluating supervised hashing, and give evaluation
procedures for tie-aware ranking metrics. By taking advantage of the discreteness of Hamming
distances, such metrics can be evaluated efficiently in linear time.

Our natural next step is to learn hash functions by optimizing tie-aware ranking metrics. This can be
seen as an instance of learning to rank, but restricted to the hashing problem. To solve the resulting
discrete (NP-hard) optimization problems, we apply continuous relaxation, which enables us to
perform gradient-based optimization with deep architectures. We specifically study the optimization
of tie-aware AP and NDCG, and our results establish the new state-of-the-art for these metrics on
common hashing benchmarks.

2 Related Work

Hashing is a widely used approach for practical nearest neighbor search, thanks to the efficiency of
evaluating Hamming distances using bitwise operations. It has been theoretically demonstrated [1]
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Figure 1: Different tie-breaking strategies in evaluating supervised hashing. Left: toy example where
all items are tied. The optimistic tie-breaking strategy achieves perfect AP of 1, while the pessimistic
achieves only 0.38. Right: on the CIFAR-10 dataset, we show box plots of mean AP values from 50
random trials, using the LSH method [5]. The gap between pessimistic and optimistic versions can
be high, especially for short codes, while tie-aware AP (Section 3.2) gives faithful estimates.

that data-dependent hashing methods outperform data-independent ones such as Locality Sensitive
Hashing [5]. This phenomenon is also widely observed in the growing literature on learning to hash.
Our work falls into the category of affinity-based hashing [8, 14, 19] as we consider supervision in
the form of pairwise affinities. Regarding optimization, the discrete nature of hashing usually results
in NP-hard optimization problems. Our solution uses continuous relaxations, which is in line with
relaxation-based methods, e.g. [8, 14], but differs from alternating methods that attempt to preserve
the discrete constraints, e.g. [13, 18, 19], and two-step methods [12].

Supervised hashing can be considered a special case of metric learning [18], which itself can be
formulated as a learning to rank problem [11, 16]. Optimizing ranking metrics such as AP and
NDCG has received much attention in the information retrieval and learning to rank literature. For
instance, it is well-known that a surrogate on AP can be optimized with the structural SVM [26], and a
bound optimization method exists specifically for NDCG [23]. Alternatively, there are gradient-based
methods based on smoothing or approximating the metrics [2, 6, 9]. These methods did not consider
applications in hashing.

Retrieving with the Hamming distance naturally results in tied rankings, but this fact is not widely
taken into account in the hashing literature. One existing solution is to sidestep this issue using
weighted Hamming distances [27], but at the cost of reduced efficiency. Fortunately, tie-aware
versions of common ranking metrics have been derived in the information retrieval community [17].
We show how to efficiently evaluate tie-aware ranking metrics for discrete hashing, based on the use
of counting sort on Hamming distances.

Several works have considered optimizing ranking metrics in the learning to hash literature. However,
none of them are tie-aware, and not all use gradient-based optimization. For example, [13] optimizes
ranking surrogates using the structural SVM, [21] optimizes precision at the top of the ranking, and
[24] optimizes approximated NDCG. Notably, [13] also exploits counting sort on Hamming distances
to speed up loss-augmented inference for the NDCG surrogate loss. Although many recent hashing
methods employ gradient optimization and/or deep neural networks, e.g. [10, 25], their learning
objectives are usually not designed to match the evaluation metrics. To enable gradient optimization
for tie-aware metrics, we use a recent result on differentiable histogram binning [22].

3 Hashing as Tie-Aware Learning to Rank

3.1 Preliminaries

Learning to hash. In the supervised hashing problem, we wish to learn a hash mapping Φ : X → Hb,
where X is the feature space, and Hb = {−1,+1}b is the b-dimensional Hamming space. A hash
mapping Φ induces the Hamming distance dΦ(·, ·), which takes values in {0, 1, . . . , b}. The form of
supervision we consider is pairwise affinities, which is standard in supervised hashing. Formally, we
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assume an affinity oracle A, where A(xi, xj) > 0 if xi, xj ∈ X are similar (the value indicates the
strength of similarity), and A(xi, xj) = 0 otherwise.

In this paper, we restrict A to take values from a finite set V , which includes two important special
cases. First, binary affinities, i.e., V = {0, 1}, are extensively studied in the current hashing literature,
which in practice can be derived from thresholding the Euclidean distance in X or from agreement of
class labels. The second case is when V consists of non-negative integers, or multi-level affinities,
which is frequently considered in information retrieval tasks, including in web search engines.

Throughout this paper we assume the setup where a query xq ∈ X is retrieved against some retrieval
set S ⊆ X . Retrieval is performed by ranking the instances in S by increasing distance to xq , where
the distance we use is the Hamming distance dΦ induced from hash mapping Φ. Unless otherwise
noted, we implicitly assume dependency on xq, S, and Φ, and omit them in our notation.

Ranking-based evaluation. The ranking can be represented by an index vector R, whose elements
form a permutation of {1, . . . , |S|}. Ranking-based metrics usually measure some form of agreement
between the ranking and ground truth affinities. We use the shorthand Aq(i) = A(xq, xi) below.

First, in the case of binary affinity, let the number of xq’s neighbors be N+ = |{xi ∈ S|Aq(i) = 1}|.
Average Precision (AP) averages the precision at cutoff k over all cutoffs:

AP(R) =
1

N+

|S|∑
k=1

Aq(Rk)

1

k

k∑
j=1

Aq(Rj)

 . (1)

Next, for integer-valued affinities, Discounted Cumulative Gain (DCG) is defined as

DCG(R) =

|S|∑
k=1

G(Aq(Rk))D(k), where G(a) = 2a − 1, D(k) =
1

log2(k + 1)
. (2)

G and D are called gain and discount, respectively. The normalized variant (NDCG) normalizes to
the range of [0, 1], where the normalizing factor is maxR DCG(R).

3.2 The Issue of Ties, and Tie-Aware Metrics

When evaluating information retrieval systems, special attention is required when there exist ties in
the distances [17]. In this case, the ranking R is not unique as the tied items can be ordered arbitrarily,
and the tie-breaking strategy may have a sizable impact on the result. We demonstrate a toy example
with binary affinity in Figure 1, where all retrievals have the same distance to a query. The optimistic
tie-breaking strategy ranks all neighbors in front and achieves AP of 1, while the opposite pessimistic
strategy’s AP value can be very low if the non-neighbors outnumber the neighbors.

Ties appear ubiquitously in hashing, since the Hamming distance only takes integer values in
{0, 1, . . . , b}. The difference between optimistic and pessimistic tie-breaking strategies is especially
large when b is small compared to the dataset’s size. In Figure 1, we also show a numerical experiment
comparing different versions of AP on the CIFAR-10 dataset [7]. We sample 1000 examples as the
test set, retrieve them against the rest using the LSH method [5], and repeat 50 times. The absolute
difference in the mean AP value can be as high as 0.1 for short codes (e.g. 16 bits), and remains
noticeable for longer codes. Unfortunately, current hashing evaluation protocols do not guard against
the potential exploitation of reporting optimistic values when ground truth affinities are known,
although we have not found evidence of such exploitation in the literature.

To make ranking metrics tie-aware, one needs to average the value of the metric over all possible
permutations of tied items. Tie-aware versions of common ranking metrics can indeed be derived in
closed form [17]; we refer readers there for detailed derivations. Here, we describe how to efficiently
compute them by exploiting the structure of Hamming distance, focusing on AP and NDCG. Recall
that we rank a retrieval set S with respect to a query xq. With integer-valued Hamming distances,
we redefine the ranking R to be a collection of (b + 1) “ties”, i.e. R = {R(0), . . . , R(b)}, where
R(d) = {i|dΦ(xq, xi) = d}. Below, we will make use of discrete histograms conditioned on affinity
values, (n0,v, . . . , nb,v), where nd,v = |R(d) ∩ {i|Aq(i) = v}|,∀v ∈ V , and their cumulative sums
(N0,v, . . . , Nb,v) where Nd,v =

∑
i≤d ni,v . We also define the total histograms as nd =

∑
v∈V nd,v

and Nd =
∑

i≤d ni.
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Tie-aware AP. We denote APT as the tie-aware version of AP. For binary affinities V = {0, 1}, let
n+
d = nd,1, n

−
d = nd,0, and N+

d , N
−
d be their cumulative sums. APT decomposes additively over

each tie R(d), whose contribution APT(R(d)) can be written as

APT(R(d)) =

Nd∑
t=Nd−1+1

N+
d−1 + (t−Nd−1 − 1)

n+
d −1

nd−1 + 1

t

n+
d

nd

∆
=

n+
d

nd

Nd∑
t=Nd−1+1

βd(t). (3)

And overall, APT(R) = 1
N+

∑b
d=0 APT(R(d)).

Tie-aware NDCG. We first consider the un-normalized DCG. Like APT, its tie-aware version
(denoted DCGT) also decomposes additively over the ties,

DCGT(R(d)) =
∑

i∈R(d)

G(Aq(i))

nd

Nd∑
t=Nd−1+1

D(t) =
∑
v∈V

G(v)nd,v
nd

Nd∑
t=Nd−1+1

D(t). (4)

And DCGT(R) =
∑b

d=0 DCGT(R(d)). For NDCGT, the normalizing factor is unaffected by ties.

Time complexity Analysis. Let |S| = N . Given the Hamming distances {dΦ(xq, x)|x ∈ S}, the
first step is to generate the rankingR, or populate the ties {R(d)}. This step is essentially the counting
sort for integers, which has O(bN) time complexity. Computing either APT or DCGT then takes
O(
∑

d nd) = O(N) time, which makes the total time complexity O(bN). In our formulation, the
number of bits b is a constant, and therefore the complexity is linear in N . In contrast, for real-valued
distances, sorting generally takes O(N logN) time and is the dominating factor.

For NDCG, computing the normalizing factor requires sorting the gain values in descending order.
Under the assumption that the affinity values are integers from V , the number of unique gain
values is |V|, and counting sort can be applied in O(|V|N) time. The total time complexity is thus
O((b+ |V|)N), which is also linear in N provided that |V| is known.

4 Optimizing Tie-Aware Metrics

In this section, we describe our approach to optimizing tie-aware ranking metrics. We are interested
in performing gradient-based optimization to take advantage of end-to-end deep architectures.

4.1 Continuous Relaxations

Gradient-based optimization for supervised hashing is inherently challenging, due to the discrete
(and usually NP-hard) nature of the problem. Specifically, in our case, there are two sources of
discreteness. First, as is universal in hashing formulations, the bits in the hash code are binary.
Second, the tie-aware metrics involve integer-valued histogram bin counts {nd,v}.
We first tackle the discreteness of the bits. A commonly used formulation for the Hamming distance
dΦ and hash mapping Φ is

dΦ(x, x′) =
1

2

(
b− Φ(x)>Φ(x′)

)
, (5)

Φ(x) = (φ1(x), . . . , φb(x)), φi(x) = sgn(fi(x;w)) ∈ {−1,+1},∀i, (6)

where fi are the logits for each bit, parameterized by w, e.g. a neural network. We adopt a standard
approximation technique in hashing [10, 14, 24, 25] and approximate the sgn function using sigmoid,
i.e., we replace φi(x) with φ̃i(x) = 2σ(αfi(x;w))− 1, where α is a tuning parameter.

As a result of this relaxation, both the hash mapping and the distance function (5) are now real-valued,
and will be denoted Φ̃ and d̃Φ, respectively. The remaining discreteness is from the histogram bin
counts {nd,v}. We also relax them into real-valued “soft histograms” {cd,v}, whose cumulative sums
are denoted {Cd,v}, but we face another difficulty: the definitions of APT (3) and DCGT (4) both
involve a finite sum with lower and upper limits Nd−1 + 1 and Nd, preventing a direct relaxation.
We approximate these finite sums with continuous integrals, thus removing the second source of
discreteness. We give results in the next proposition.
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Proposition 1. Denote the continuous relaxations of APT and DCGT as APr and DCGr, respectively.
We have the following result:

APr(R
(d)) =

c+d (c+d − 1)

cd − 1
+
c+d
cd

[
C+

d−1 + 1−
c+d − 1

cd − 1
(Cd−1 + 1)

]
ln

Cd

Cd−1 + 1
(7)

DCGr(R
(d)) = ln 2

∑
v∈V

G(v)cd,v
cd

[Li(Cd + 1)− Li(Cd−1 + 2)] (8)

where Li is the logarithmic integral function Li(x) =
∫ x

0
dx/ lnx.

Proof. First, recall that APT(R(d)) is defined as n+
d

nd

∑Nd

t=Nd−1+1 βd(t), where

βd(t) =
N+

d−1 + (t−Nd−1 − 1)
n+
d −1

nd−1 + 1

t
=
n+
d − 1

nd − 1
+
N+

d−1 + 1− n+
d −1

nd−1 (Nd−1 + 1)

t
. (9)

The right hand side is of the form A + B/t where A,B are constant in t. Summing the first term
is trivial. For the second term, ignoring the constant scaling, summing gives a partial sum of the
harmonic series, which is well approximated by the natural logarithm:

Nd∑
t=Nd−1+1

1

t
≈
∫ Nd

Nd−1+1

dt

t
= ln(Nd)− ln(Nd−1 + 1). (10)

Then, we can do relaxation by substituting {nd,v} and {Nd,v} with {cd,v} and {Cd,v}.

Next, the sum of discount values in DCGT(R(d)) is handled in the same way.
Nd∑

t=Nd−1+1

D(t) ≈
∫ Nd

Nd−1+1

dt

log2(t+ 1)
= ln 2

∫ Nd+1

Nd−1+2

dt

ln t
(11)

= ln 2 [Li(Nd + 1)− Li(Nd−1 + 2)] . (12)

Both relaxations (7)(8) have closed-form derivatives. The differentiation for APr is straightforward,
while for DCGr it recovers the logarithm.

4.2 End-to-End Learning

We perform end-to-end learning with gradient ascent. First, we can compute the partial derivatives of
the continuous relaxations APr and DCGr with respect to {cd,v}, the soft histograms. Next, we differ-
entiate the histogram binning process. Note that the un-relaxed discrete histogram (n0,v, . . . , nb,v)
for ∀v ∈ V can be estimated as follows:

nd,v =
∑

i|Aq(i)=v

1[dΦ(xq, xi) = d], d = 0, . . . , b. (13)

When dΦ is relaxed into d̃Φ, we employ a technique similar to [22], and replace the binary indicator
1[·] with a (sub-)differentiable function δ(d̃Φ(xq, xi), d), where the (sub-)gradient ∂δ(x, d)/∂x has
some simple form. Specifically, δ(d̃Φ(xq, xi), d) linearly interpolates the relaxed d̃Φ(xq, xi) into the
d-th bin with slope ∆ > 0:

δ(d̃Φ(xq, xi), d) =

{
1− |d̃Φ(xq,xi)−d|

∆ , |d̃Φ(xq, xi)− d| ≤ ∆,

0, otherwise.
(14)

As the result, we now have the soft histogram cd,v , which we can differentiate with respect to Φ̃ using
chain rule:

∂cd,v

∂Φ̃(xi)
= 1[Aq(i) = v]

∂δ(d̃Φ(xq, xi), d)

∂d̃Φ(xq, xi)

−Φ̃(xq)

2
,∀xi ∈ S, (15)

∂cd,v

∂Φ̃(xq)
=
∑
xi∈S

1[Aq(i) = v]
∂δ(d̃Φ(xq, xi), d)

∂d̃Φ(xq, xi)

−Φ̃(xi)

2
. (16)
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CIFAR-10 Setting 1, 32 bits
Method APT AP (O, P)
BRE 0.502 0.500 (0.543, 0.465)
StructHash 0.691 0.692 (0.727, 0.660)
MACHash 0.726 0.725 (0.755, 0.690)
FastHash 0.742 0.742 (0.770, 0.710)
Ours-AP 0.800 0.799 (0.827, 0.762)
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Figure 2: Left: we present the tie-aware APT, the tie-unaware AP, the optimistic AP (O), and the
pessimistic AP (P) for several methods, on CIFAR-10. Ours-AP is our method optimized using the
APr objective. Right: we plot AP values for the same methods, where error bars indicate the range
spanned by different tie-breaking strategies.

The next and final step is to back-propagate gradients to the parameters of the relaxed hash mapping
Φ̃, which amounts to differentiating the sigmoid approximation.

We train our models using minibatch-based stochastic gradient ascent. Within a minibatch, each
example is retrieved against the rest of the minibatch. That is, each example in a minibatch of size
M is used as the query xq once, and participates in the retrieval set for some other example M − 1
times. Then, the objective is averaged over the M queries.

5 Experiments

5.1 Experimental Setup

We conduct experiments on three image retrieval datasets that are commonly used in supervised
hashing: CIFAR-10 [7], NUS-WIDE [4], and 22K LabelMe [20]. CIFAR-10 contains 60K single-
labeled images from 10 classes. NUS-WIDE is a multi-label dataset with 270K Flickr images.
Following common practice [10, 25], we use a subset of 196K images associated with the most
frequent 21 labels. Lastly, LabelMe is an unlabeled dataset consisting of 22K images.

Each dataset is split into a test set and a retrieval set, and examples from the retrieval set are used
in training. At test time, each example from the test set is retrieved against the retrieval set, and the
mean value of the metric over the test set is reported. Similar to [25], we consider two experimental
settings for CIFAR-10. In the first setting, the test set is constructed with 100 random images from
each class (total: 1K), the rest is used as retrieval set, and 500 images per class are used for training
(total: 5K). The second setting uses a standard 10K/50K split and the entire retrieval set is used in
training. For NUS-WIDE, we sample 100 images per label to construct a test set of size 2.1K, and
use 500 images per label from the retrieval set for training (total: 10.5K). We randomly split LabelMe
into a test test of size 2K and retrieval set of 20K, and sample 5K examples for training.

We compare against a range of supervised hashing methods. First, we consider hashing methods
that learn from pairwise affinities, including Binary Reconstructive Embeddings (BRE) [8], Fast
Supervised Hashing (FastHash) [12], Hashing using Auxiliary Coordinates (MACHash) [19], and
Deep Pair-Supervised Hashing (DPSH) [10]. We also include Structured Hashing (StructHash) [13]
and Deep Triplet-Supervised Hashing (DTSH) [25], two triplet-based methods that are inspired by
learning to rank. Since tie-aware versions of ranking metrics have not been reported in the hashing
literature, we re-train and evaluate all methods using publicly available implementations. For our
method, we perform finetuning using our objectives on the ImageNet-pretrained VGG-F network [3],
which is used in DPSH and DTSH, two recent top-performing methods (in terms of AP). The other
methods are not amenable to end-to-end training, and for fairness we train them on fc7-layer features
from VGG-F, unless otherwise noted.
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Method
CIFAR-10 NUS-WIDE

12 Bits 24 Bits 32 Bits 48 Bits

S1
(A

P T
)

12 Bits 24 Bits 32 Bits 48 Bits

A
P T

BRE 0.361 0.448 0.502 0.533 0.561 0.578 0.589 0.607
MACHash 0.628 0.707 0.726 0.734 0.361 0.361 0.361 0.361
FastHash 0.678 0.729 0.742 0.757 0.646 0.686 0.698 0.712
StructHash 0.664 0.693 0.691 0.700 0.639 0.645 0.666 0.669
DPSH* 0.713 0.727 0.744 0.757 0.658 0.674 0.695 0.700
DTSH 0.710 0.750 0.765 0.774 0.660 0.700 0.707 0.723
Ours-AP 0.732 0.789 0.800 0.805 0.709 0.734 0.745 0.752
Method 16 Bits 24 Bits 32 Bits 48 Bits

S2
(A

P T
) 12 Bits 24 Bits 32 Bits 48 Bits

A
P@

5KDPSH* 0.908 0.909 0.917 0.932 0.758 0.793 0.818 0.830
DTSH 0.916 0.924 0.927 0.934 0.773 0.813 0.820 0.838
Ours-AP 0.922 0.935 0.939 0.941 0.795 0.835 0.848 0.862
* Trained using parameters recommended by DTSH [25].

Table 1: Comparison of APT on CIFAR-10 and NUS-WIDE. For CIFAR-10, we compare all methods
in the first setting (S1), and end-to-end methods in the second setting (S2). For NUS-WIDE, we
additionally report AP@5K for three methods. Ours-AP is trained with the VGG-F network and APr
as objective, and consistently achieves state-of-the-art performance on both datasets.

5.2 Evaluation of Tie-Awareness

Before reporting and comparing the results, we first evaluate the effect of tie-awareness, as it is part of
the motivation for this work. Similar to Figure 1, we present the actual values of APT, the optimistic
AP, and the pessimistic AP for various methods on CIFAR-10 (first setting) in Figure 2. As expected,
the gap between optimistic and pessimistic versions of AP can be quite large for short hash codes,
and decreases as the code length increases, since each tie would decrease in size as there are more
bits. We again emphasize that the evaluation of hashing algorithms should use tie-aware ranking
metrics to eliminate ambiguity in the results.

However, there is another interesting observation. The tie-unaware AP values are usually very close
to the tie-aware APT, matching up to two or three digits, for all methods we tested. The reason is that
with a randomly ordered retrieval set and a sufficiently large test set, averaging the tie-unaware AP
over the test set empirically behaves similarly to explicitly averaging over all permutations of ties.
Since randomizing the ordering of the retrieval set before sorting is common practice, we believe
the current AP values reported in the literature are indeed quite fair, and we are generally able to
reproduce them for the tested methods with small variations. Still, this is not robust as the variability
is not eliminated, and using general-purpose sorting algorithms on Hamming distances is not efficient.
In the following experiments, we focus on reporting tie-aware metrics APT and NDCGT.

5.3 AP Optimization

We evaluate AP optimization on the two labeled datasets, CIFAR-10 and NUS-WIDE. For labeled
data, it is common to infer affinities from label agreements. In CIFAR-10, two examples are neighbors
(i.e. have pairwise affinity 1) if they share the same label. In the multi-labeled NUS-WIDE, two
examples are neighbors if they share at least one label. On CIFAR-10, we compare all methods in the
first setting, and in the second setting we compare the end-to-end methods (DPSH, DTSH, and ours),
which generally outperform others.

Results. We present results in Table 1. By optimizing the relaxation of APT in an end-to-end fashion,
our method achieves the new state-of-the-art in AP on both datasets with pairwise supervision,
outperforming both the pair-based methods, and the triplet-based methods (StructHash and DTSH).
Note that triplets provide stronger supervision than pairs, as there are O(N3) triplets vs. O(N2) pairs
for N examples. Triplet-based losses can also be viewed as local ranking losses, but they are not
directly related to the test metrics.

For NUS-WIDE, it is customary in existing works to report AP evaluated at maximum cutoff of 5K
(AP@5K), the reasoning being that ranking the full retrieval set is inefficient using general-purpose
sorting algorithms. Our method also performs well in terms of AP@5K, but we note that focusing on
the top of the ranking would overestimate the true AP, as can be seen in Table 1. Using counting sort,
we are able to evaluate APT on the full ranking efficiently.
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Method NUS-WIDE LabelMe
16 Bits 32 Bits 48 Bits 64 Bits 16 Bits 32 Bits 48 Bits 64 Bits

BRE* 0.805 0.817 0.827 0.834 0.807 0.848 0.871 0.880
MACHash 0.821 0.821 0.821 0.821 0.683 0.683 0.683 0.687
FastHash 0.885 0.896 0.899 0.902 0.844 0.868 0.855 0.864
StructHash 0.889 0.893 0.894 0.898 0.857 0.888 0.904 0.915
DPSH 0.895 0.905 0.909 0.909 0.844 0.856 0.871 0.874
DTSH 0.896 0.905 0.911 0.913 0.838 0.852 0.859 0.862
Ours-NDCG 0.903 0.910 0.916 0.927 0.866 0.895 0.908 0.917
* Evaluated on the the 5K training subset of the retrieval set.

Table 2: Comparison of NDCGT on NUS-WIDE and LabelMe. Ours-NDCG is trained with the
NDCGr objective, using the VGG-F network on NUS-WIDE and single-layer linear hash functions
on LabelMe, and again consistently outperforms competing methods.

5.4 NDCG Optimization

We evaluate NDCG optimization with a multi-level affinity setup, i.e. the set of affinity values V
is a finite set of non-negative integers. Using multi-level affinities is common in some information
retrieval tasks, and offers more fine-grained specification of the desired structure of the learned
Hamming space. To our knowledge, this setup has not been considered in the hashing literature.

The NUS-WIDE dataset provides a natural testbed for this experiment as it is a multi-label dataset.
We compute affinities by counting the number of labels that two examples share in NUS-WIDE, and
keep other settings the same as in the AP experiments. Next, on the unlabeled LabelMe dataset we
derive affinities by thresholding the Euclidean distances between examples. An existing setup for
binary affinities on LabelMe is to treat pairs as neighbors if their Euclidean distance is within the top
5% on the training set. Similarly, we use four thresholds (5%, 1%, 0.2%, 0.1%) and assign affinity
values 1, 2, 5, and 10, respectively, to emphasize assigning high ranks to the closest neighbors in the
original feature space. We learn shallow models on precomputed GIST features on LabelMe; for
gradient-based methods, this means using linear hash functions, i.e. fi(x;w) = sgn(w>i x), in (6).
For methods designed to use binary pairwise affinities (FastHash, MACHash, DPSH), we convert the
affinities into binary values; note that this would reduce to the standard binary affinity setup on both
datasets.

Results. We summarize NDCG optimization results in Table 2. NDCG is less position-sensitive
than AP, since all items in the ranking contribute to the overall score, while AP only counts the
contributions from the neighbors. As a result, for a given method, the NDCG score is generally
higher than AP. Nevertheless, our method with the NDCG objective again outperforms all competing
methods on both datasets. On LabelMe, all methods are restricted to learn shallow models, and DPSH
and DTSH appear to perform less competitively in this case, indicating a mismatch between their
objectives and the evaluation metric. A close competitor to our method on LabelMe is StructHash,
which optimizes a surrogate on NDCG using boosted decision trees; our method still outperforms
StructHash with lower-capacity linear hash functions. We believe this highlights the benefit of
optimizing direct relaxations of the evaluation metric over optimizing surrogates.

6 Conclusion

In this work, we propose new formulations to both learn and evaluate supervised hashing models. Our
original motivation is to learn hash functions by optimizing appropriate objective functions, which
we believe should match the test-time evaluation metrics. By studying commonly used ranking-based
metrics, we first raise awareness on the issue of ties in evaluating supervised hashing algorithms,
and advocate using tie-aware versions of ranking metrics during evaluation. These metrics can be
efficiently computed in linear time, thanks to counting sort. We then make the novel contribution of
optimizing tie-aware ranking metrics for hashing, focusing on the two most widely-used examples:
AP and NDCG. To tackle the resulting discrete optimization problems, we derive their continuous
relaxations which have closed-form gradients, and perform end-to-end learning with stochastic
gradient ascent and deep neural networks. This results in the new state-of-the-art for AP and NDCG
on three benchmarks commonly used in supervised hashing.
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