
Texture Mapping II

Slides from constructed from various
Web sources

Sampling Issues

Interpolation

Nearest neighbor Linear Interpolation

Mip Mapping [Williams]

MIP = Multim In Parvo = Many things in a small place

G

R

B

R

G B

d

v

u

Mip Mapping - Example

Courtesy of John hart

Assigning Texture Coordinates

• We generally want an even sharing of texels
(pixels in the texture) across all triangles

• But what about this case?

– Want to texture the teapot:

Do we want this? Or this?

Planar Mapping

• Just use the texture to fill all of space

– Same color for all z-values

– (u, v) = (x, y)

Cylindrical Mapping

• “Wrap” the texture around your object

– Like a coffee can
– Same color for all pixels with the same

angle
• u = θ / 2π

v = y

Spherical Mapping

• “Wrap” the texture around your object

– Like a globe
– Same color for all pixels with the same

angle
• u = ϕ / 2π

v = (π - θ) / π

Spherical Mapping Example

Cube Mapping

• Not quite the same as the others

– Uses multiple textures (6, to be specific)

• Maps each texture to one face of a cube
surrounding the object to be textured

– Then applies a planar mapping to each face

Environment Maps

• Cube mapping is commonly used to
implement environment maps

• This allows us to “hack” reflection

– Render the scene from the center of the cube in
each face direction

– Store each of these results into a texture

– Then render the scene from the actual viewpoint,
applying the environment textures

Cube Environment Map

Sphere Environment Map

Spatially variant resolution

Bump Mapping

• How do we get this?

– The underlying model is just a sphere

Bump Mapping

• Requires per-pixel (Phong) shading

• Just interpolating from the vertex normals
gives a smooth-looking surface

• Bump mapping uses a “texture” to define
how much to perturb the normal at that
point

– Results in a “bumpy” surface

Bump Mapping

Rendered
Sphere

Bump Map Bump Mapped
Sphere

• At each point on the surface:
– Do a look-up into the bump map “texture”
– Perturb the normal slightly based on the “color”

• Note that “colors” are actually just 3- or 4-vectors

Note: Silhouette
doesn’t change

Images from Wikipedia

Bump Mapping

Bump Mapping

New Imaginary Surface P’

Bump Mapping

Bump Mapping

More Bump Mapping Examples

Displacement Mapping

• Bump mapping: use texture map to perturb
surface normal

• Displacement mapping: use texture map to
displace surface (perturb 3D shape)

Displacement Mapping

Bump Mapping Displacement Mapping

Displacement Mapping

• Displacement mapping shifts all points on
the surface in or out along their normal
vectors

– Assuming a displacement texture d,
 p’ = p + d(p) * n

• Note that this actually changes the vertices,
so it needs to happen in geometry
processing

Opacity Maps

Use texture to represent opacity

Illumination Maps

Use texture to represent illumination
footprint

Illumination Maps

Quake light maps

Ray Tracing

Slides from constructed from various
Web sources

Image courtesy Paul Heckbert 1983

Publicly available Ray Tracer

http://www.povray.org/

http://www.povray.org/
http://www.povray.org/
http://www.povray.org/

Ray Casting

Virtual Viewpoint

Virtual Screen Objects

Ray misses all objects: Pixel colored black
Ray intersects object: shade using color, lights, materials
Multiple intersections: Use closest one

Shadows

Virtual Viewpoint

Virtual Screen Objects

Light Source

Shadow ray to light is unblocked: object visible
Shadow ray to light is blocked: object in shadow

Shadow Rays

Computing Reflection Direction

d

n r

 nnddr  2

Mirror Reflections/Refractions

Virtual Viewpoint

Virtual Screen Objects
Generate reflected ray in mirror direction,
Get reflections and refractions of objects

Reflections

Turner Whitted 1980

Computing Transmission (Refraction) Direction

 

  

nzzt

nnddz

nnddr








 





2

2

1

1

2

n

n
d

n

r

t

n1

n2

θ2

θ1

z

θ2

Spawning Multiple Rays

• When light hits a transparent surface, we not only see
refraction, but we get a reflection off of the surface as well

• Therefore, we will actually generate two new rays and trace
both of them into the scene and combine the results

• The results of an individual traced ray is a color, which is the
color of the light that the ray ‘sees’

• This color is used as the pixel color for primary rays, but for
secondary rays, the color is combined somehow into the final
pixel color

Recursive Ray Tracing

• The classic ray tracing algorithm includes features
like shadows, reflection, refraction.

• A single primary ray may end up spawning many
secondary and shadow rays, depending on the
number of lights and the arrangement and type of
materials

• These rays can be thought of as forming a tree like
structure

Recursive Ray Tracing

Ray Tree

Recursive Ray Tracing

For each pixel

– Trace Primary Ray, from eye to find intersection (if
any) with the scene

– Trace Secondary Rays to all light(s)

• Color += Visible ? apply illumination, otherwise 0

– Trace Secondary Ray for reflected ray

• Color += kr* color of reflected ray

– Trace Secondary Ray for refracted ray

• Color += kt * Color of transmitted ray

Effects needed for Realism
• (Soft) Shadows

• Reflections (Mirrors and Glossy)

• Transparency (Water, Glass)

• Inter-reflections (Color Bleeding)

• Complex Illumination (Natural, Area Light)

• Realistic Materials (Velvet, Paints, Glass)

Discussed in this lecture
Not discussed but possible with distribution ray tracing
Hard (but not impossible) with ray tracing; radiosity methods

Distributed Ray Tracing

• Allows many physically correct effects:

– Soft area shadows

(from [Boulos07])

Distributed Ray Tracing

• Allows many physically correct effects:

– Soft area shadows

– Glossy surfaces

(from [Boulos07])

Distributed Ray Tracing

• Allows many physically correct effects:

– Soft area shadows

– Glossy surfaces

– Depth of Field

(from [Boulos07])

Distributed Ray Tracing

• Allows many physically correct effects:

– Soft area shadows

– Glossy surfaces

– Depth of Field

– Motion blur

(from [Boulos07])

Advanced Topics

Slides from constructed from various
Web sources

Forward ray tracing

Bidirectional Ray Tracing:

Adapted from slides © 2005 M. Thomas & C. Khambamettu, U. Del.
CISC 440/640: Computer Graphics, Spring 2005 – http://bit.ly/hz1kfU

© 1996 H. W. Jensen, University of California, San Diego
http://graphics.ucsd.edu/~henrik/

caustic

 Caustic – (concentrated) specular reflection/refraction
onto diffuse surface

 Standard ray tracing cannot handle caustics

http://bit.ly/hz1kfU
http://graphics.ucsd.edu/~henrik/

Henrik Jensen, http://www.gk.dtu.dk/~hwj

caustics

COLOR BLEEDING

Adapted from slides © 2005 M. Thomas & C. Khambamettu, U. Del.
CISC 440/640: Computer Graphics, Spring 2005 – http://bit.ly/hz1kfU

http://bit.ly/hz1kfU

radiosity

Dani Lischinski, Filippo Tampieri, and Donald P. Greenberg

radiosity

radiosity

advanced topics

advanced topics

