
Hashing as Tie-Aware Learning to Rank

Kun He Fatih Cakir Sarah Adel Bargal Stan Sclaroff
Department of Computer Science, Boston University

{hekun,fcakir,sbargal,sclaroff}@cs.bu.edu

Abstract

Hashing, or learning binary embeddings of data, is fre-
quently used in nearest neighbor retrieval. In this paper, we
develop learning to rank formulations for hashing, aimed at
directly optimizing ranking-based evaluation metrics such as
Average Precision (AP) and Normalized Discounted Cumu-
lative Gain (NDCG). We first observe that the integer-valued
Hamming distance often leads to tied rankings, and pro-
pose to use tie-aware versions of AP and NDCG to evaluate
hashing for retrieval. Then, to optimize tie-aware ranking
metrics, we derive their continuous relaxations, and perform
gradient-based optimization with deep neural networks. Our
results establish the new state-of-the-art for image retrieval
by Hamming ranking in common benchmarks.

1. Introduction
In this paper, we consider the problem of hashing, which

is concerned with learning binary embeddings of data in or-
der to enable fast approximate nearest neighbor retrieval. We
take a task-driven approach, and seek to optimize learning
objectives that closely match test-time performance mea-
sures. Nearest neighbor retrieval performance is frequently
measured using ranking-based evaluation metrics, such as
Average Precision (AP) and Normalized Discounted Cumula-
tive Gain (NDCG) [26], but the optimization of such metrics
has been deemed difficult in the hashing literature [30]. We
propose a novel learning to rank formulation to tackle these
difficult optimization problems, and our main contribution
is a gradient-based method that directly optimizes ranking
metrics for hashing. Coupled with deep neural networks,
this method achieves state-of-the-art results.

Our formulation is inspired by a simple observation.
When performing retrieval with binary vector encodings
and the integer-valued Hamming distance, the resulting rank-
ing usually contains ties, and different tie-breaking strategies
can lead to different results (Fig. 1). In fact, ties are a com-
mon problem in ranking, and much attention has been paid
to it, including in Kendall’s classical work on rank corre-
lation [15], and in the modern information retrieval litera-

Tie-Aware Optimization

 d = 0 d = 1 d = 2
Database

…

AP = 0.92

AP = 0.59

AP = 0.81

Query

DNN

AP = 1

Figure 1: When applying hashing for nearest neighbor re-
trieval, the integer-valued Hamming distance produces ties
(items that share the same distance). If left uncontrolled,
different tie-breaking strategies could give drastically dif-
ferent values of the evaluation metric, e.g. AP. We address
this issue by using tie-aware ranking metrics that implicitly
average over all the permutations in closed form. We further
use tie-aware ranking metrics as optimization objectives in
deep hashing networks, leading to state-of-the-art results.

ture [3,28]. Unfortunately, the learning to hash literature still
largely lacks tie-awareness, and current evaluation protocols
rarely take tie-breaking into account. Thus, we first advocate
using tie-aware ranking metrics in the evaluation of hashing,
which implicitly average over all permutations of tied items,
and permit efficient closed-form evaluation.

Our natural next step is to learn hash functions by opti-
mizing tie-aware ranking metrics. This can be seen as an in-
stance of learning to rank with listwise loss functions, which
is advantageous compared to many other ranking-inspired
hashing formulations. To solve the associated discrete and
NP-hard optimization problems, we relax the problems into
their continuous counterparts where closed-form gradients
are available, and then perform gradient-based optimization
with deep neural networks. We specifically study the op-
timization of AP and NDCG, two ranking metrics that are

1

ar
X

iv
:1

70
5.

08
56

2v
2

 [
st

at
.M

L
]

 2
3

N
ov

 2
01

7

widely used in evaluating nearest neighbor retrieval perfor-
mance. Our results establish the new state-of-the-art for
these metrics in common image retrieval benchmarks.

2. Related Work

Hashing is a widely used approach for practical nearest
neighbor retrieval [37], thanks to the efficiency of evaluating
Hamming distances using bitwise operations, as well as the
low memory and storage footprint. It has been theoretically
demonstrated [1] that data-dependent hashing methods out-
perform data-independent ones such as Locality Sensitive
Hashing [14]. We tackle the supervised hashing problem,
also known as affinity-based hashing [18, 25, 30], where
supervision is given in the form of pairwise affinities. Re-
garding optimization, the discrete nature of hashing usually
results in NP-hard problems. Our solution uses continuous
relaxations, which is in line with relaxation-based methods,
e.g. [4, 18, 25], but differs from alternating methods that
preserve the discrete constraints [22, 29, 30] and two-step
methods [5, 23, 46].

Supervised hashing can be cast as a special case of dis-
tance metric learning [29], which itself can be formulated
as a learning to rank problem [21, 27]. Optimizing ranking
metrics such as AP and NDCG has received much attention
in the learning to rank literature. For instance, surrogates
of AP and NDCG can be optimized in the structural SVM
framework [9, 43], and bound optimization algorithms ex-
ist for NDCG [36]. Alternatively, there are gradient-based
methods based on smoothing or approximating these met-
rics [2, 10, 19, 34]. These methods did not consider applica-
tions in hashing.

In the learning to hash literature, different strategies have
been proposed to handle the difficulties in optimizing listwise
ranking metrics. For example, [38] decomposes listwise
supervision into local triplets, [22, 42] use structural SVMs
to optimize surrogate losses, [33] maximizes precision at the
top, and [39, 45] optimize NDCG surrogates. In other recent
methods using deep neural networks, the learning objectives
are not designed to match ranking evaluation metrics, e.g.
[4, 20, 40, 46]. In contrast, we directly optimize listwise
ranking metrics using deep neural networks.

Key to our formulation is the observation that the integer-
valued Hamming distance results in rankings with ties. How-
ever, this fact is not widely taken into consideration in previ-
ous work. Ties can be sidestepped by using weighted Ham-
ming distance [22, 44], but at the cost of reduced efficiency.
Fortunately, tie-aware versions of common ranking metrics
have been found in the information retrieval literature [28].
Inspired by such results, we propose to optimize tie-aware
ranking metrics on Hamming distances. Our gradient-based
optimization uses a recent differentiable histogram binning
technique [4, 35].

3. Hashing as Tie-Aware Ranking

3.1. Preliminaries

Learning to hash. In learning to hash, we wish to learn
a hash mapping Φ : X → Hb, where X is the feature
space, and Hb = {−1, 1}b is the b-dimensional Hamming
space. A hash mapping Φ induces the Hamming distance
dΦ : X × X → {0, 1, . . . , b} as1

dΦ(x, x′) =
1

2

(
b− Φ(x)>Φ(x′)

)
. (1)

We consider a supervised learning setting, or supervised
hashing, where supervision is specified using pairwise affini-
ties. Formally, we assume access to an affinity oracle A,
whose value indicates a notion of similarity: two examples
xi, xj ∈ X are called similar if A(xi, xj) > 0, and dissim-
ilar when A(xi, xj) = 0. In this paper, we restrict A to
take values from a finite set V , which covers two important
special cases. First, V = {0, 1}, or binary affinities, are
extensively studied in the current literature. Binary affini-
ties can be derived from agreement of class labels, or by
thresholding the original Euclidean distance in X .2 The
second case is multi-level affinities, where V consists of
non-negative integers. This more fine-grained model of sim-
ilarity is frequently considered in information retrieval tasks,
including in web search engines.

Throughout this paper we assume the setup where a query
xq ∈ X is retrieved against some database S ⊆ X . Retrieval
is performed by ranking the instances in S by increasing dis-
tance to xq, using dΦ as the distance metric. This is termed
“retrieval by Hamming ranking” in the hashing literature.
The ranking can be represented by an index vector R, whose
elements form a permutation of {1, . . . , |S|}. Below, let Ri

be the i-th element in R, and Aq(i) = A(xq, xi). Unless
otherwise noted, we implicitly assume dependency on xq, S,
and Φ in our notation.

Ranking-based evaluation. Ranking-based metrics usu-
ally measure some form of agreement between the ranking
and ground truth affinities, capturing the intuition that re-
trievals with high affinity to the query should be ranked
high. First, in the case of binary affinity, we define N+ =
|{xi ∈ S|Aq(i) = 1}|. Average Precision (AP) averages the
precision at cutoff k over all cutoffs:

AP(R) =
1

N+

|S|∑
k=1

Aq(Rk)

1

k

k∑
j=1

Aq(Rj)

 . (2)

Next, for integer-valued affinities, Discounted Cumulative

1Although the usual implementation is by counting bit differences, this
equivalent formulation has the advantage of being differentiable.

2The latter is sometimes referred to as “unsupervised hashing” in the
literature due to the absence of class labels.

Gain (DCG) is defined as

DCG(R) =

|S|∑
k=1

G(Aq(Rk))D(k), (3)

where G(a) = 2a − 1, D(k) =
1

log2(k + 1)
. (4)

G and D are called gain and (logarithmic) discount, respec-
tively. Normalized DCG (NDCG) divides DCG by its maxi-
mum possible value, ensuring a range of [0, 1]:

NDCG(R) =
DCG(R)

maxR′ DCG(R′)
. (5)

3.2. Tie-Awareness in Hashing

When evaluating information retrieval systems, special
attention is required when there exist ties in the distances
[3, 28]. In this case, the ranking R is not unique as the tied
items can be ordered arbitrarily, and the tie-breaking strategy
may have a sizable impact on the result. We have given
an example in Fig. 1. Surprisingly, we found that current
ranking-based hashing evaluation protocols usually do not
take tie-breaking into account, which could result in ambigu-
ous comparisons or even unfair exploitation. Perhaps more
importantly, ties render the formulation of direct optimiza-
tion unclear: what tie-breaking strategy should we assume
when using AP or NDCG as optimization objectives? Thus,
we believe that it is important to seek tie-aware evaluation
metrics for hashing.

Rather than picking a fixed tie-breaking strategy or rely-
ing on randomization, the tie-aware solution that we propose
is to average the value of the ranking metric over all possi-
ble permutations of tied items. This solution is appealing
in several ways: it is deterministic, it is unambiguous and
cannot be exploited, and it reduces to the ordinary version
when there are no ties. However, there is one caveat: gener-
ating all permutations for n tied items requires O(n!) time,

which is super-exponential and prohibitive. Fortunately, [28]
observes that the average can be computed implicitly for
commonly used ranking metrics, and gives their tie-aware
versions in closed form. Based on this result, we further de-
scribe how to efficiently compute tie-aware ranking metrics
by exploiting the structure of the Hamming distance.

We focus on AP and NDCG, and denote the tie-aware
versions of AP and (N)DCG as APT and (N)DCGT, respec-
tively. First, we define some notation. With integer-valued
Hamming distances, we redefine the ranking R to be a col-
lection of (b+ 1) “ties”, i.e. R = {R(0), . . . , R(b)}, where
R(d) = {i|dΦ(xq, xi) = d} is the set of retrievals having
Hamming distance d to the query. We define a set of discrete
histograms conditioned on affinity values, (n0,v, . . . , nb,v),
where nd,v = |R(d) ∩ {i|Aq(i) = v}|,∀v ∈ V , and their cu-
mulative sums (N0,v, . . . , Nb,v) where Nd,v =

∑
j≤d nj,v.

We also define the total histograms as nd =
∑

v∈V nd,v with
cumulative sum Nd =

∑
j≤d nj .

Next, Proposition 1 gives the closed forms of APT and
DCGT. We give proof in the appendix.

Time complexity Analysis. Let |S| = N . Given the
Hamming distances {dΦ(xq, x)|x ∈ S}, the first step is to
generate the ranking R, or populate the ties {R(d)}. This
step is essentially the counting sort for integers, which has
O(bN) time complexity. Computing either APT or DCGT

then takes O(
∑

d nd) = O(N) time, which makes the total
time complexity O(bN). In our formulation, the number of
bits b is a constant, and therefore the complexity is linear in
N . In contrast, for real-valued distances, sorting generally
takes O(N logN) time and is the dominating factor.

For the normalized NDCGT, the normalizing factor is
unaffected by ties, but computing it still requires sorting the
gain values in descending order. Under the assumption that
the set of affinity values V consists of non-negative integers,
the number of unique gain values is |V|, and counting sort
can be applied in O(|V|N) time. The total time complexity
is thus O((b + |V|)N), which is also linear in N provided

Proposition 1. Both APT and DCGT decompose additively over the ties. For V = {0, 1}, let n+
d

∆
= nd,1, N

+
d

∆
= Nd,1, and

N+ =
∑

d n
+
d , the contribution of each tie R(d) to APT is computed as

APT(R(d)) =
n+
d

ndN+

Nd∑
t=Nd−1+1

N+
d−1 + (t−Nd−1 − 1)

n+
d −1

nd−1 + 1

t
. (6)

For DCGT, the contribution of R(d) is

DCGT(R(d)) =
∑

i∈R(d)

G(Aq(i))

nd

Nd∑
t=Nd−1+1

D(t) =
∑
v∈V

G(v)nd,v
nd

Nd∑
t=Nd−1+1

D(t). (7)

Proof. See appendix.

that |V| is known. We note that counting sort on Hamming
distances is also used by Lin et al. [22] to speed up loss-
augmented inference for their NDCG surrogate loss.

3.3. The Learning to Rank View

Since we focus on optimizing ranking metrics, our work
has connections to learning to rank [24]. Many supervised
hashing formulations use loss functions defined on pairs or
triplets of training examples, which correspond to pointwise
and pairwise approaches in learning to rank terminology.
We collectively refer to these as local ranking losses. Since
we optimize evaluation metrics defined on a ranked list, our
approach falls into the listwise category, and it is well-known
[8, 38, 42] that listwise ranking approaches are generally
superior to pointwise and pairwise approaches.

We further note that there exists a mismatch between
optimizing local ranking losses and optimizing for evaluation
performance. This is because listwise evaluation metrics are
position-sensitive: errors made on individual pairs/triplets
impact results differently depending on the position in the
list, and more so near the top. To address this mismatch,
local ranking methods often need nontrivial weighting or
sampling heuristics to focus on errors made near the top.
In fact, the sampling is especially crucial in triplet-based
methods, e.g. [22, 40, 46], since the set of possible triplets
is of size O(N3) for N training examples, which can be
prohibitive to enumerate. Triplet-based methods are also
popular in the metric learning literature, and it is similarly
observed [41] that careful sampling and weighting are key
to stable learning. In contrast, we directly optimize listwise
ranking metrics, without requiring sampling or weighting
heuristics: the minibatches are sampled at random, and no
weighting on training instances is used.

4. Optimizing Tie-Aware Ranking Metrics
In this section, we describe our approach to optimizing

tie-aware ranking metrics. For discrete hashing, such opti-
mization is NP-hard, since it involves combinatorial search
over all configurations of binary bits. Instead, we are in-
terested in a relaxation approach using gradient-based deep
neural networks. Therefore, we apply continuous relaxation
to the discrete optimization problems.

4.1. Continuous Relaxations

Our continuous relaxation needs to address two types
of discrete variables. First, as is universal in hashing for-
mulations, the bits in the hash code are binary. Second,
the tie-aware metrics involve integer-valued histogram bin
counts {nd,v}.

We first tackle the binary bits. Commonly, bits in the
hash code are generated by a thresholding operation using
the sgn function,

Φ(x) = (φ1(x), . . . , φb(x)), (8)
φi(x) = sgn(fi(x;w)) ∈ {−1, 1},∀i, (9)

where in our case fi are neural network activations, param-
eterized by w. We smoothly approximate the sgn function
using the tanh function, which is a standard technique in
hashing [4, 7, 20, 25, 39, 40]:

φi(x) ≈ φ̂i(x) = tanh(αfi(x;w)) ∈ (−1, 1). (10)

The constant α is a scaling parameter.
As a result of this relaxation, both the hash mapping and

the distance function (1) are now real-valued, and will be
denoted Φ̂ and d̂Φ, respectively. The remaining discrete-
ness is from the histogram bin counts {nd,v}. We also relax
them into real-valued “soft histograms” {cd,v} (described be-
low), whose cumulative sums are denoted {Cd,v}. However,
we face another difficulty: the definitions of APT (6) and
DCGT (7) both involve a finite sum with lower and upper
limits Nd−1 + 1 and Nd, variables to be relaxed. We approx-
imate these finite sums by continuous integrals, removing
the second source of discreteness. We outline the results
in Proposition 2, and leave proof and error analysis to the
appendix.

Note that both relaxations have closed-form derivatives.
The differentiation for APr (11) is straightforward, while for
DCGr it removes the integral in (12).

4.2. End-to-End Learning

We perform end-to-end learning with gradient ascent.
First, as mentioned above, the continuous relaxations APr

and DCGr have closed-form partial derivatives with respect

Proposition 2. The continuous relaxations of APT and DCGT, denoted as APr and DCGr respectively, are as follows:

APr(R
(d)) =

c+d (c+d − 1)

N+(cd − 1)
+

c+d
N+cd

[
C+

d−1 + 1−
c+d − 1

cd − 1
(Cd−1 + 1)

]
ln

Cd

Cd−1
, (11)

DCGr(R
(d)) = ln 2

∑
v∈V

G(v)cd,v
cd

∫ Cd+1

Cd−1+1

dt

ln t
. (12)

Proof. See appendix.

0101 0101

0001 0001

1110 0000

 0 1 2 3 4

 0 1 2 3 4

 0 1 2 3 4

APT = 0.92

APT = 0.92

APT = 0.58

:

:

:

DNN

≈ ≈

Figure 2: The flow of computation in our model. Input images are mapped to b-bit binary codes by a deep neural network
(b = 4 in this example). During training, in a minibatch, each example is used as query to rank the rest of the batch, producing
a histogram of Hamming distances with (b+ 1) bins. Tie-aware ranking metrics (APT shown here) are computed on these
histograms, and averaged over the batch. To maintain end-to-end differentiability, we derive continuous relaxations for APT

and NDCGT, and employ two differentiable approximations to non-differentiable operations (backward arrows).

to the soft histograms {cd,v}. Next, we consider differen-
tiating the histogram entries. Note that before relaxation,
the discrete histogram (n0,v, . . . , nb,v) for ∀v ∈ V is con-
structed as follows:

nd,v =
∑

xi|Aq(i)=v

1[dΦ(xq, xi) = d], d = 0, . . . , b. (11)

To relax nd,v into cd,v , we employ a technique from [4, 35],
where the binary indicator 1[·] is replaced by a differen-
tiable function δ(d̂Φ(xq, xi), d) with easy-to-compute gra-
dients. Specifically, δ(d̂Φ(xq, xi), d) linearly interpolates
d̂Φ(xq, xi) into the d-th bin with slope ∆ > 0:

∀z ∈ R, δ(z, d) =

{
1− |z−d|∆ , |z − d| ≤ ∆,

0, otherwise.
(12)

Note that δ approaches the indicator function as ∆→ 0. We
now have the soft histogram cd,v as

cd,v =
∑

xi|Aq(i)=v

δ(d̂Φ(xq, xi), d), (13)

and we differentiate cd,v using chain rule, e.g.

∂cd,v

∂Φ̂(xq)
=

∑
xi|Aq(i)=v

∂δ(d̂Φ(xq, xi), d)

∂d̂Φ(xq, xi)

−Φ̂(xi)

2
. (14)

The next and final step is to back-propagate gradients
to the parameters of the relaxed hash mapping Φ̂, which
amounts to differentiating the tanh function.

As shown in Fig. 2, we train our models using minibatch-
based stochastic gradient ascent. Within a minibatch, each
example is retrieved against the rest of the minibatch. That
is, each example in a minibatch of size M is used as the
query xq once, and participates in the database for some
other example M − 1 times. Then, the objective is averaged
over the M queries.

5. Experiments
5.1. Experimental Setup

We conduct experiments on image retrieval datasets that
are commonly used in the hashing literature: CIFAR-10 [16],
NUS-WIDE [12], 22K LabelMe [31], and ImageNet100 [13].
Each dataset is split into a test set and a database, and ex-
amples from the database are used in training. At test time,
queries from the test set are used to perform Hamming rank-
ing on the database, and the performance metric is averaged
over the test set.
• CIFAR-10 is a canonical benchmark for image classi-

fication and retrieval, with 60K single-labeled images
from 10 classes. Following [40], we consider two ex-
perimental settings. In the first setting, the test set is
constructed with 100 random images from each class
(total: 1K), the rest is used as database, and 500 images
per class are used for training (total: 5K). The second
setting uses the standard 10K/50K split and the entire
database is used in training.
• NUS-WIDE is a multi-label dataset with 270K Flickr

images. For the database, we use a subset of 196K
images associated with the most frequent 21 labels
as in [20, 40]. 100 images per label are sampled to
construct a test set of size 2.1K, and the training set
contains 500 images per label (total: 10.5K).
• LabelMe is an unlabeled dataset of 22K images. As

in [6], we randomly split LabelMe into a test test of
size 2K and database of 20K. We sample 5K examples
from the database for training.
• ImageNet100 is a subset of ImageNet [13] containing

all the images from 100 classes, totaling 130K images.
We use the same setup as in [7]: 100 images per class
are sampled for training, and all images in the selected
classes from the ILSVRC 2012 validation set are used
as queries.

Retrieval-based evaluation of supervised hashing was re-
cently put into question by [32], which points out that for
multi-class datasets, binary encoding of classifier outputs
is already a competitive solution. While this is an impor-
tant point, deriving pairwise affinities from multi-class label
agreement is a only special case in our formulation. As
mentioned in Sec. 3.1, our formulation uses a general pair-
wise affinity oracle A, which may or may not be derived
from labels, and can be either binary or multi-level. In fact,
the datasets we consider range from multi-class/single-label
(CIFAR-10, ImageNet100) to multi-label (NUS-WIDE) and
unlabeled (LabelMe), and only the first case can be addressed
by multi-class classification. For multi-level affinities, we
also propose a new evaluation protocol using NDCG.

We term our method TALR (Tie-Aware Learning to
Rank), and compare it against a range of classical and state-
of-the-art hashing methods. Due to the vast hashing litera-
ture, an exhaustive comparison is unfortunately not feasible.
Focusing on the learning to rank aspect, we select represen-
tative methods from all three categories:

• Pointwise (pair-based). Methods that define loss func-
tions on instance pairs: Binary Reconstructive Embed-
dings (BRE) [18], Fast Supervised Hashing (FastHash)
[23], Hashing using Auxiliary Coordinates (MACHash)
[30], Deep Pair-Supervised Hashing (DPSH) [20], and
Hashing by Continuation (HashNet) [7].

• Pairwise (triplet-based). We include a recent method,
Deep Triplet-Supervised Hashing (DTSH) [40].

• Listwise (list-based). We compare to two listwise rank-
ing methods: Structured Hashing (StructHash) [22]
which optimizes an NDCG surrogate, and Hashing
with Mutual Information (MIHash) [4] which optimizes
mutual information as a ranking surrogate for binary
affinities.

These selected methods include recent ones that achieve
state-of-the-art results on CIFAR-10 (MIHash, DTSH), NUS-
WIDE (DTSH, HashNet) and ImageNet100 (HashNet), and
they collectively outperform earlier ones such as [5, 14, 25,
44, 46].

Since tie-aware evaluation of Hamming ranking perfor-
mance has not been reported in the hashing literature, we
re-train and evaluate all methods using publicly available
implementations.

5.2. AP Optimization

We evaluate AP optimization on the three labeled datasets,
CIFAR-10, NUS-WIDE, and ImageNet100. As we men-
tioned earlier, for labeled data, affinities can be inferred
from label agreements. Specifically, in CIFAR-10 and Ima-
geNet100, two examples are neighbors (i.e. have pairwise
affinity 1) if they share the same class label. In the multi-

labeled NUS-WIDE, two examples are neighbors if they
share at least one label.

5.2.1 CIFAR-10 and NUS-WIDE

We first carry out AP optimization experiments on the two
well-studied datasets, CIFAR-10 and NUS-WIDE. For these
experiments, we perform finetuning using the ImageNet-
pretrained VGG-F network [11], which is used in DPSH
and DTSH, two recent top-performing methods. For meth-
ods that are not amenable to end-to-end training, we train
them on fc7-layer features from VGG-F. On CIFAR-10, we
compare all methods in the first setting, and in the second
setting we compare the end-to-end methods: DPSH, DTSH,
MIHash, and ours. We do not include HashNet as it uses a
different network architecture (AlexNet), but will compare
to it later on ImageNet100.

We present AP optimization results in Table 1. By opti-
mizing the relaxation of APT in an end-to-end fashion, our
method (TALR-AP) achieves the new state-of-the-art in AP
on both datasets, outperforming all the pair-based and triplet-
based methods by significant margins. Compared to listwise
ranking solutions, TALR-AP outperforms StructHash signifi-
cantly by taking advantage of deep learning, and outperforms
MIHash by matching the training objective to the evaluation
metric. A side note is that for NUS-WIDE, it is customary in
previous work [20, 40] to report AP evaluated at maximum
cutoff of 5K (AP@5K), since ranking the full database is in-
efficient using general-purpose sorting algorithms. However,
focusing on the top of the ranking overestimates the true
AP, as seen in Table 1. Using counting sort, we are able to
evaluate APT on the full database efficiently, and TALR-AP
also outperforms other methods in terms of AP@5K.

5.2.2 ImageNet100

For ImageNet100 experiments, we closely follow the setup
in HashNet [7] and fine-tune the AlexNet architecture [17]
pretrained on ImageNet. Due to space limitations, we re-
port comparisons against recent state-of-the-art methods on
ImageNet100. The first competitor is HashNet, which is
empirically superior to a wide range of classical and recent
methods, and was previously the state-of-the-art method on
ImageNet100. We also compare to MIHash, as it is the
second-best method on CIFAR-10 and NUS-WIDE in the
previous experiment. As in [7], the minibatch size is set
to 256 for all methods, and the learning rate for the pre-
trained convolution and fully connected layers are scaled
down, since the model is fine-tuned on the same dataset that
it was originally trained on. AP at cutoff 1000 (AP@1000)
is used as the evaluation metric.

ImageNet100 results are summarized in Table 2. TALR-
AP outperforms both competing methods, and the improve-
ment is especially significant with short hash codes (16 and

Method
CIFAR-10 NUS-WIDE

12 Bits 24 Bits 32 Bits 48 Bits

S1
(A

P
T

)

12 Bits 24 Bits 32 Bits 48 Bits

A
P

T

BRE [18] 0.361 0.448 0.502 0.533 0.561 0.578 0.589 0.607
MACHash [30] 0.628 0.707 0.726 0.734 0.361 0.361 0.361 0.361
FastHash [23] 0.678 0.729 0.742 0.757 0.646 0.686 0.698 0.712
StructHash [22] 0.664 0.693 0.691 0.700 0.639 0.645 0.666 0.669
DPSH [20]* 0.720 0.757 0.757 0.767 0.658 0.674 0.695 0.700
DTSH [40] 0.725 0.773 0.781 0.810 0.660 0.700 0.707 0.723
MIHash [4] 0.687 0.775 0.786 0.822 0.652 0.693 0.709 0.723
TALR-AP 0.732 0.789 0.800 0.826 0.709 0.734 0.745 0.752
Method 16 Bits 24 Bits 32 Bits 48 Bits

S2
(A

P
T

) 12 Bits 24 Bits 32 Bits 48 Bits

A
P@

5KDPSH [20]* 0.908 0.909 0.917 0.932 0.758 0.793 0.818 0.830
DTSH [40] 0.916 0.924 0.927 0.934 0.773 0.813 0.820 0.838
MIHash [4] 0.929 0.933 0.938 0.942 0.767 0.784 0.809 0.834
TALR-AP 0.939 0.941 0.943 0.945 0.795 0.835 0.848 0.862
* Trained using parameters recommended by authors of DTSH.

Table 1: AP comparison on CIFAR-10 and NUS-WIDE with VGG-F architecture. On CIFAR-10, we compare all methods in
the first setting (S1), and deep learning methods in the second (S2). We report the tie-aware APT, and additionally AP@5K
for NUS-WIDE. TALR-AP optimizes tie-aware AP using stochastic gradient ascent, and achieves state-of-the-art performance.

Method 16 Bits 32 Bits 48 Bits 64 Bits
HashNet [7] 0.5059 0.6306 0.6633 0.6835
MIHash [4] 0.5688 0.6608 0.6852 0.6947
TALR-AP 0.5892 0.6689 0.6985 0.7053

Table 2: AP@1000 results on ImageNet100 with AlexNet.
TALR-AP outperforms state-of-the-art solutions using mu-
tual information [4] and continuation methods [7].

32 bits). This indicates that our direct optimization approach
produces better compact binary representations that preserve
desired rankings. The state-of-the-art performance with com-
pact codes has important implications for cases where mem-
ory and storage resources are restricted (e.g. mobile applica-
tions), and for indexing large-scale databases.

5.3. NDCG Optimization

We evaluate NDCG optimization with a multi-level affin-
ity setup, i.e. the set of affinity values V is a finite set of
non-negative integers. Multi-level affinities are common in
information retrieval tasks, and offer more fine-grained spec-
ification of the desired structure of the learned Hamming
space. To our knowledge, this setup has not been considered
in the hashing literature.

In the multi-label NUS-WIDE dataset, we define the affin-
ity value between two examples as the number of labels
they share, and keep other settings the same as in the AP
experiment. For the unlabeled LabelMe dataset, we de-
rive affinities by thresholding the Euclidean distances be-
tween examples. Inspired by an existing binary affinity
setup [6] that defines neighbors as having Euclidean dis-
tance within the top 5% on the training set, we use four

thresholds {5%, 1%, 0.2%, 0.1%} and assign affinity values
{1, 2, 5, 10}. This emphasizes assigning high ranks to the
closest neighbors in the original feature space. We learn shal-
low models on precomputed GIST features on LabelMe. For
gradient-based methods, this means using linear hash func-
tions, i.e. fi(x;w) = w>i x, in (9). For methods that are not
designed to use multi-level affinities (FastHash, MACHash,
DPSH, MIHash), we convert the affinities into binary values;
this reduces to the standard binary affinity setup on both
datasets.

We give NDCG results in Table 3. Again, our method
with the tie-aware NDCG objective (TALR-NDCG) outper-
forms all competing methods on both datasets. Interestingly,
on LabelMe where all methods are restricted to learn shal-
low models on GIST features, we observe slightly different
trends compared to other datasets. For example, without
learning deep representations, DPSH and DTSH appear to
perform less competitively, indicating a mismatch between
their objectives and the evaluation metric. The closest com-
petitors to TALR-NDCG on LabelMe are indeed the two
listwise ranking methods: StructHash which optimizes a
NDCG surrogate using boosted decision trees, and MIHash
which is designed for binary affinities. TALR-NDCG outper-
forms both methods, and notably does so with linear hash
functions, which have lower learning capacity compared
StructHash’s boosted decision trees. This highlights the
benefit of our direct optimization formulation.

5.4. Effects of Tie-Breaking

We lastly discuss the effect of tie-breaking in evaluating
hashing algorithms. As mentioned in Sec. 3.2, tie-breaking
is an uncontrolled parameter in current evaluation protocols,

Method NUS-WIDE LabelMe
16 Bits 32 Bits 48 Bits 64 Bits 16 Bits 32 Bits 48 Bits 64 Bits

BRE [18]* 0.805 0.817 0.827 0.834 0.807 0.848 0.871 0.880
MACHash [30] 0.821 0.821 0.821 0.821 0.683 0.683 0.683 0.687
FastHash [23] 0.885 0.896 0.899 0.902 0.844 0.868 0.855 0.864
DPSH [20] 0.895 0.905 0.909 0.909 0.844 0.856 0.871 0.874
DTSH [40] 0.896 0.905 0.911 0.913 0.838 0.852 0.859 0.862
StructHash [22] 0.889 0.893 0.894 0.898 0.857 0.888 0.904 0.915
MIHash [4] 0.886 0.903 0.909 0.912 0.860 0.889 0.907 0.914
TALR-NDCG 0.903 0.910 0.916 0.927 0.866 0.895 0.908 0.917
* Evaluated on the the 5K training subset due to kernel-based formulation.

Table 3: NDCG comparison on NUS-WIDE (VGG-F architecture) and LabelMe (shallow models on GIST features). TALR-
NDCG optimizes tie-aware NDCG using stochastic gradient ascent, and consistently outperforms competing methods.

0.3 0.4 0.5 0.6 0.7 0.8 0.9

12 bits

0.3 0.4 0.5 0.6 0.7 0.8 0.9

24 bits

0.3 0.4 0.5 0.6 0.7 0.8 0.9

32 bits

0.3 0.4 0.5 0.6 0.7 0.8 0.9

48 bits
BRE
StructHash
MACHash
FastHash
DPSH
DTSH
MIHash
TALR-AP

Figure 3: Effects of tie-breaking: we plot the ranges of test-time mAP values spanned by all possible tie-breaking strategies,
for all methods considered in the CIFAR-10 experiment (first setting). Horizontal axis: mAP. Black dots: values of tie-aware
APT. Without controlling for tie-breaking, relative performance comparison between different methods can be ambiguous.
The ambiguity is eliminated by tie-awareness.

which can affect results, and even be exploited. To demon-
strate this, we consider for example the AP experiment in
CIFAR-10’s first setting, presented in Sec. 5.2. For each
method included in this experiment, we plot the range of test
set mAP spanned by all possible tie-breaking strategies. As
can be seen in Fig. 3, the ranges corresponding to different
methods generally overlap; therefore, without controlling for
tie-breaking, relative performance comparison between dif-
ferent methods is essentially ambiguous. The ranges shrink
as code length increases, since the number of ties generally
decreases when there are more bins in the histogram.

Current hashing methods usually compute test-time AP
and NDCG using random tie-breaking and general-purpose
sorting algorithms. Interestingly, in all of our experiments,
we observe that this produces values very close to the tie-
aware APT and NDCGT. The reason is that with a ran-
domly ordered database, averaging the tie-unaware metric
over a sufficiently large test set behaves similarly to the tie-
aware solution of averaging over all permutations. Therefore,
the results reported in the current literature are indeed quite
fair, and so far we have found no evidence of exploitation of
tie-breaking strategies. Still, we recommend using tie-aware
ranking metrics in evaluation, as they completely eliminate
ambiguity, and counting sort on Hamming distances is much
more efficient than general-purpose sorting.

Last but not least, we would like to emphasize that al-
though random tie-breaking is a close approximation to tie-
awareness at test time, it does not answer the question of how
to optimize the ranking metrics during training. Our original
motivation is to optimize ranking metrics for hashing, and
the existence of closed-form tie-aware ranking metrics is
what makes direct optimization feasible.

6. Conclusion

We have proposed a new approach to hashing for nearest
neighbor retrieval, with an emphasis on directly optimiz-
ing evaluation metrics used at test-time. A study into the
commonly used retrieval by Hamming ranking setup led
us to consider the issue of ties, and we advocate for using
tie-aware versions of ranking metrics. We then make the
novel contribution of optimizing tie-aware ranking metrics
for hashing, focusing on the important special cases of AP
and NDCG. To tackle the resulting discrete and NP-hard op-
timization problems, we derive their continuous relaxations,
which have closed-form gradients. Then, optimization is per-
formed end-to-end with stochastic gradient ascent in deep
neural networks. This results in the new state-of-the-art for
common image retrieval benchmarks.

References
[1] Alexandr Andoni and Ilya Razenshteyn. Optimal data-

dependent hashing for approximate near neighbors. In Proc.
ACM Symposium on Theory of Computing (STOC), 2015.

[2] Christopher J. Burges, Robert Ragno, and Quoc V. Le. Learn-
ing to rank with nonsmooth cost functions. In Advances in
Neural Information Processing Systems (NIPS), 2007.

[3] Guillaume Cabanac, Gilles Hubert, Mohand Boughanem,
and Claude Chrisment. Tie-breaking bias: Effect of an un-
controlled parameter on information retrieval evaluation. In
International Conference of the Cross-Language Evaluation
Forum, 2010.

[4] Fatih Cakir, Kun He, Sarah Adel Bargal, and Stan Sclaroff.
MIHash: Online Hashing with Mutual Information. In Proc.
IEEE International Conference on Computer Vision (ICCV),
2017.

[5] Fatih Cakir and Stan Sclaroff. Supervised hashing with error
correcting codes. In Proc. ACM International Conference on
Multimedia. ACM, 2014.

[6] Fatih Cakir and Stan Sclaroff. Adaptive hashing for fast
similarity search. In Proc. IEEE International Conference on
Computer Vision (ICCV), 2015.

[7] Zhangjie Cao, Mingsheng Long, Jianmin Wang, and Philip S
Yu. HashNet: Deep learning to hash by continuation. In Proc.
IEEE International Conference on Computer Vision (ICCV),
2017.

[8] Zhe Cao, Tao Qin, Tie-Yan Liu, Ming-Feng Tsai, and Hang
Li. Learning to rank: from pairwise approach to listwise
approach. In Proc. International Conference on Machine
Learning (ICML), 2007.

[9] Soumen Chakrabarti, Rajiv Khanna, Uma Sawant, and Chiru
Bhattacharyya. Structured learning for non-smooth ranking
losses. In ACM SIGKDD Conference on Knowledge Discov-
ery and Data Mining, 2008.

[10] Olivier Chapelle and Mingrui Wu. Gradient descent optimiza-
tion of smoothed information retrieval metrics. Information
Retrieval, 13(3):216–235, 2010.

[11] Ken Chatfield, Karen Simonyan, Andrea Vedaldi, and Andrew
Zisserman. Return of the devil in the details: Delving deep
into convolutional nets. In Proc. British Machine Vision
Conference (BMVC), 2014.

[12] Tat-Seng Chua, Jinhui Tang, Richang Hong, Haojie Li, Zhip-
ing Luo, and Yan-Tao Zheng. NUS-WIDE: A real-world web
image database from National University of Singapore. In
Proc. ACM CIVR, 2009.

[13] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and
Li Fei-Fei. ImageNet: A large-scale hierarchical image
database. In Proc. IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2009.

[14] Aristides Gionis, Piotr Indyk, and Rajeev Motwani. Similarity
search in high dimensions via hashing. In Proc. International
Conference on Very Large Data Bases (VLDB), 1999.

[15] Maurice G Kendall. Rank correlation methods. Griffin, 1948.

[16] Alex Krizhevsky and Geoffrey Hinton. Learning multiple
layers of features from tiny images, 2009.

[17] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.
Imagenet classification with deep convolutional neural net-
works. In Advances in Neural Information Processing Systems
(NIPS), 2012.

[18] Brian Kulis and Trevor Darrell. Learning to hash with binary
reconstructive embeddings. In Advances in Neural Informa-
tion Processing Systems (NIPS), 2009.

[19] Andrey Kustarev, Yury Ustinovsky, Yury Logachev, Evgeny
Grechnikov, Ilya Segalovich, and Pavel Serdyukov. Smooth-
ing NDCG metrics using tied scores. In Proc. ACM CIKM,
2011.

[20] Wu-Jun Li, Sheng Wang, and Wang-Cheng Kang. Feature
learning based deep supervised hashing with pairwise labels.
In Proc. International Joint Conference on Artificial Intelli-
gence (IJCAI), 2016.

[21] Daryl Lim and Gert Lanckriet. Efficient learning of maha-
lanobis metrics for ranking. In Proc. International Conference
on Machine Learning (ICML), 2014.

[22] Guosheng Lin, Fayao Liu, Chunhua Shen, Jianxin Wu, and
Heng Tao Shen. Structured learning of binary codes with
column generation for optimizing ranking measures. Interna-
tional Journal of Computer Vision (IJCV), 2016.

[23] Guosheng Lin, Chunhua Shen, Qinfeng Shi, Anton van den
Hengel, and David Suter. Fast supervised hashing with deci-
sion trees for high-dimensional data. In Proc. IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
2014.

[24] Tie-Yan Liu. Learning to rank for information retrieval. Foun-
dations and Trends R© in Information Retrieval, 3(3):225–331,
2009.

[25] Wei Liu, Jun Wang, Rongrong Ji, Yu-Gang Jiang, and Shih-Fu
Chang. Supervised hashing with kernels. In Proc. IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR),
2012.

[26] Christopher D Manning, Prabhakar Raghavan, Hinrich
Schütze, et al. Introduction to information retrieval. Cam-
bridge university press, 2008.

[27] Brian McFee and Gert R Lanckriet. Metric learning to rank. In
Proc. International Conference on Machine Learning (ICML),
2010.

[28] Frank McSherry and Marc Najork. Computing information
retrieval performance measures efficiently in the presence of
tied scores. In Proc. European Conference on Information
Retrieval, 2008.

[29] Mohammad Norouzi, David J Fleet, and Ruslan R Salakhut-
dinov. Hamming distance metric learning. In Advances in
Neural Information Processing Systems (NIPS), 2012.

[30] Ramin Raziperchikolaei and Miguel A Carreira-Perpinán.
Optimizing affinity-based binary hashing using auxiliary co-
ordinates. In Advances in Neural Information Processing
Systems (NIPS), 2016.

[31] Bryan C Russell, Antonio Torralba, Kevin P Murphy, and
William T Freeman. LabelMe: a database and web-based
tool for image annotation. International Journal of Computer
Vision (IJCV), 77(1):157–173, 2008.

[32] Alexandre Sablayrolles, Matthijs Douze, Nicolas Usunier, and
Hervé Jégou. How should we evaluate supervised hashing?
In IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), 2017.

[33] Dongjin Song, Wei Liu, Rongrong Ji, David A Meyer, and
John R Smith. Top rank supervised binary coding for visual
search. In Proc. IEEE International Conference on Computer
Vision (ICCV), 2015.

[34] Michael Taylor, John Guiver, Stephen Robertson, and Tom
Minka. Softrank: optimizing non-smooth rank metrics. In
Proc. ACM International Conference on Web Search and Data
Mining (WSDM), 2008.

[35] Evgeniya Ustinova and Victor Lempitsky. Learning deep
embeddings with histogram loss. In Advances in Neural
Information Processing Systems (NIPS), 2016.

[36] Hamed Valizadegan, Rong Jin, Ruofei Zhang, and Jianchang
Mao. Learning to rank by optimizing NDCG measure. In
Advances in Neural Information Processing Systems (NIPS),
2009.

[37] Jingdong Wang, Heng Tao Shen, Jingkuan Song, and Jianqiu
Ji. Hashing for similarity search: A survey. arXiv preprint
arXiv:1408.2927, 2014.

[38] Jun Wang, Wei Liu, Andy X Sun, and Yu-Gang Jiang. Learn-
ing hash codes with listwise supervision. In Proc. IEEE
International Conference on Computer Vision (ICCV), 2013.

[39] Qifan Wang, Zhiwei Zhang, and Luo Si. Ranking preserving
hashing for fast similarity search. In Proc. International Joint
Conference on Artificial Intelligence (IJCAI), 2015.

[40] Yi Wang, Xiaofang Shi and Kris M Kitani. Deep supervised
hashing with triplet labels. In Proc. Asian Conference on
Computer Vision (ACCV), 2016.

[41] Chao-Yuan Wu, R. Manmatha, Alexander J. Smola, and
Philipp Krähenbühl. Sampling matters in deep embedding
learning. In Proc. IEEE International Conference on Com-
puter Vision (ICCV), 2017.

[42] Zhou Yu, Fei Wu, Yin Zhang, Siliang Tang, Jian Shao, and
Yueting Zhuang. Hashing with list-wise learning to rank. In
Proc. ACM SIGIR Conference on Research & Development
in Information Retrieval, 2014.

[43] Yisong Yue, Thomas Finley, Filip Radlinski, and Thorsten
Joachims. A support vector method for optimizing average
precision. In Proc. ACM SIGIR Conference on Research &
Development in Information Retrieval, 2007.

[44] Lei Zhang, Yongdong Zhang, Jinhu Tang, Ke Lu, and Qi Tian.
Binary code ranking with weighted hamming distance. In
Proc. IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2013.

[45] Fang Zhao, Yongzhen Huang, Liang Wang, and Tieniu Tan.
Deep semantic ranking based hashing for multi-label image
retrieval. In Proc. IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2015.

[46] Bohan Zhuang, Guosheng Lin, Chunhua Shen, and Ian Reid.
Fast training of triplet-based deep binary embedding networks.
In Proc. IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2016.

Appendix

A. Proof of Proposition 1
Proof. Our proof essentially restates the results in [28] using our notation. In [28], a tie-vector T = (t0, . . . , td+1) is defined,
where t0 = 0 and the next elements indicate the ending indices of the equivalence classes in the ranking, e.g. t1 is the ending
index of R(0), and so on. Using our notation, we can see that R(d) = (R1+td , . . . , Rtd+1

), and td = Nd−1 =
∑d−1

j=0 nj .
We first consider APT. In Section 2.4 of [28], the tie-aware AP at cutoff k is defined as

APT@k(R) =

∑k
j=1

n+
i

ni

(
N+

i−1 + (j − ti − 1)
n+
i −1

ni−1 + 1
)

1
j∑|S|

j=1Aq(j)
, (15)

where i is the index of the tie that item j is in. To derive APT in our formulation, we take k to be the maximum possible cutoff
|S|, and substitute by definition N+ =

∑|S|
j=1Aq(j), ti = Ni−1:

APT(R) =
1

N+

|S|∑
j=1

n+
i

ni

(
N+

i−1 + (j −Ni−1 − 1)
n+
i −1

ni−1 + 1
)

j
. (16)

It is clear that this sum decomposes additively over j. Therefore, we can explicitly compute the contribution from items in a
single tie R(d),

APT(R(d)) =
1

N+

Nd∑
j=Nd−1+1

n+
d

nd

(
N+

d−1 + (j −Nd−1 − 1)
n+
d −1

nd−1 + 1
)

j
, (17)

and this gives (6).
Next, tie-aware DCG is given in Section 2.6 of [28] as

DCGT@k(R) =
∑
d

 1

nd

td+1∑
j=td+1

G(Aq(j))

min(td+1,k)∑
j=td+1

D(j)

 . (18)

Again, we consider a single tie R(d), take k = |S|, and make the substitution td = Nd−1:

DCGT(R(d)) =
1

nd

∑
j∈R(d)

G(Aq(j))

Nd∑
j=Nd−1+1

D(j) (19)

=
1

nd

∑
v∈V

nd,v︷ ︸︸ ︷∑
j∈R(d)

1[v = Aq(j)]G(v)

Nd∑
j=Nd−1+1

D(j) (20)

=
1

nd

∑
v∈V

G(v)nd,v

Nd∑
j=Nd−1+1

D(j). (21)

This completes the derivation for (7).

B. Proof of Proposition 2
Proof. First, we denote the summand in the definition of APT (6) as βd(t), and rewrite it as

βd(t) =
N+

d−1 + (t−Nd−1 − 1)
n+
d −1

nd−1 + 1

t
=
n+
d − 1

nd − 1
+
N+

d−1 + 1− n+
d −1

nd−1 (Nd−1 + 1)

t
. (22)

It is of the form A+B/t where A,B are constant in t. We proceed with the summation over t in (6):

APT(R(d)) =
n+
d

ndN+

Nd∑
t=Nd−1+1

βd(t) (23)

=
n+
d

ndN+

n+
d − 1

nd − 1
nd +

(
N+

d−1 + 1−
n+
d − 1

nd − 1
(Nd−1 + 1)

) Nd∑
t=Nd−1+1

1

t

 . (24)

The main obstacle in continuous relaxation is the finite sum in (24), which has in its limits Nd−1 and Nd, variables to be
relaxed. However, it is a partial sum of the harmonic series, which can be well approximated by differences of the natural
logarithm:

Nd∑
t=Nd−1+1

1

t
≈
∫ Nd

Nd−1

dt

t
= ln(Nd)− ln(Nd−1). (25)

(25) corresponds to the midpoint rule in approximating definite integrals by finite sums, but is applied in the reverse direction.
The relaxation of APT is then derived as follows:

APT(R(d)) ≈
n+
d

ndN+

[
n+
d − 1

nd − 1
nd +

(
N+

d−1 + 1−
n+
d − 1

nd − 1
(Nd−1 + 1)

)
ln

Nd

Nd−1

]
(26)

⇒ APr(R
(d)) =

c+d (c+d − 1)

(cd − 1)N+
+

c+d
cdN+

[
C+

d−1 + 1−
c+d − 1

cd − 1
(Cd−1 + 1)

]
ln

Cd

Cd−1
. (27)

Note that N+ =
∑

d n
+
d is a constant for a fixed query and fixed database, thus it is not affected by the relaxation.

Next, we consider DCGT, where the sum of logarithmic3 discount values similarly involves variables to be relaxed in its
limits. Thus, the same approximation strategy using continuous integrals is used.

Nd∑
t=Nd−1+1

D(t) =

Nd∑
t=Nd−1+1

1

log2(t+ 1)
≈
∫ Nd

Nd−1

dt

log2(t+ 1)
= ln 2

∫ Nd+1

Nd−1+1

dt

ln t
. (28)

Combining with the definition in (7), we get the continuous relaxation of DCGT:

DCGr(R
(d)) = ln 2

∑
v∈V

G(v)cd,v
cd

∫ Cd+1

Cd−1+1

dt

ln t
(29)

= ln 2
∑
v∈V

G(v)cd,v
cd

[Li(Cd + 1)− Li(Cd−1 + 1)] (30)

where Li is the logarithmic integral function: Li(x) =
∫ x

0
dx
ln x .

C. Approximation Error Analysis
We now analyze the approximation error when doing the continuous relaxations. We take APT as example, and note that

the analysis for DCGT is similar.
The continuous relaxation for APT(R(d)) is given in (25), which replaces a finite sum with a defnite integral, where the

finite sum has Nd −Nd−1 = nd summands. First, we consider the case where there are no ties, or nd ∈ {0, 1}, i.e. the d-th
histogram bin is either empty or contains a single item. In this case, we can directly evaluate the lefthand side sum in (25) to
be either 0 or 1

Nd
, without using the integral approximation. Therefore, when there are no ties, there is no approximation error.

Next we consider nd ≥ 2. Let the N -th harmonic number be H(N) =
∑N

t=1
1
t , then the lefthand side of (25) is exactly

H(Nd)−H(Nd−1). It is well known that the harmonic number can be closely approximated as

H(N) = γ + ln(N) +
1

2N
+O

(
1

12N2

)
, (31)

3Other types of discounts are also used in the literature, including linear discount: D(t) ∝ 1
t

. It is easy to see that our technique also applies.

where γ ≈ 0.5772 is Euler’s constant. A direct application of this approximation gives the following:

H(Nd) = γ + ln(Nd) +
1

2Nd
+O

(
1

12N2
d

)
(32)

H(Nd−1) = γ + ln(Nd−1) +
1

2Nd−1
+O

(
1

12N2
d−1

)
(33)

⇒ H(Nd)−H(Nd−1) = ln(Nd)− ln(Nd−1) +O

(
1

2Nd−1
− 1

2Nd

)
. (34)

Comparing (34) with (25), we see that the approximation error is

O

(
1

2Nd−1
− 1

2Nd

)
= O

(
nd

2Nd−1Nd

)
= O

(
nd

2Nd−1(Nd−1 + nd)

)
= O

(
nd

2N2
d−1

)
. (35)

The error is proportional to nd, the number of items in the d-th bin in the Hamming distance histogram. However, even if nd is
large, the error is still small since it has N2

d−1 in the denominator. Note that (25) can be further tightened by including the 1
2N

term, or even higher order terms in the approximation of Harmonic numbers, but the approximation using the first two terms
(Euler’s constant and natural log) is already quite tight, and is in fact used widely.

