
 

 

 

 

Abstract 
 

Automated facial expression recognition remains a grand 

challenge in computer vision. This paper lays the 

groundwork for building a system that automatically, and 

in real-time, accurately classifies Action Units (AUs) of 

the Facial Action Coding System. We use Local Binary 

Patterns (LBPs) for the feature extraction stage, followed 

by support vector machines for classification. LBPs 

require no manual initializations, are computationally 

simple, run in real-time, are illumination tolerant, and do 

not require high image resolutions. Experiments compare 

the performance of LBP to that of image quantization in 

the spatial and frequency domains. Results show that 

using LBPs for feature vector extraction of mouth AUs 

yielded the highest average classification rate of 80%, 

suggesting that such LBP feature vectors may be used for 

classifying more AUs and AU combinations. Results 

obtained are consistent for template matching and support 

vector machines. 

1. Introduction 

Automated facial expression classification has many 

applications including Human-Computer Interaction, 

psychological and computer vision research, and 

medicine. Examples include interactive computer games, 

smarter interfaces, automatic database labeling, automatic 

monitoring of patients’ moods, and driver state detection. 

Most of these applications require real-time 

implementations.   

Ekman and Friesen’s Facial Action Coding System 

(FACS) [5] is a comprehensive coding system for 

describing facial expressions. Muscle movements are 

coded as action units (AUs) and facial expressions are 

coded using one or more AUs. Humans produce thousands  

 

 

 

 

of expressions, all of which can be objectively described 

using FACS. Thus, FACS has been used extensively for  

the automated analysis of facial expressions, e.g., 

[3,6,15,19], and is more descriptive than systems that only 

recognize a limited set of basic emotions. 

Automated facial expression recognition consists of 

three main stages after image pre-processing: extracting 

the feature vector which describes the facial image, 

reducing the dimensionality of that vector if possible, and 

finally, classifying test images into certain classes after 

training using the reduced dimensionality vector. Feature 

extraction is key, because finding a descriptive, 

representative, efficient, and easy to compute feature 

vector of the facial image will largely impact the 

classification results. 

This paper describes feature extraction and 

classification of mouth AUs from static images. 

Seyedarabi et al. [21] emphasize that the mouth has the 

most flexible deformability, while Liu and Wang [16] 

assert that the mouth contributes the most to facial 

expressions. The principal contribution of the paper is the 

feature extraction of mouth AUs using Local Binary 

Patterns (LBPs), a feature extraction technique that is 

efficient, is automated and runs in real-time, while 

maintaining classification accuracy. LBPs are also 

illumination tolerant, and do not require high image 

resolutions and are therefore suited to real-world contexts 

and environments. 

The paper is organized as follows: section 2 surveys 

feature extraction methods for face analysis, as well as 

related work that use LBPs; section 3 gives an overview of 

Local Binary Patterns for representing mouth AUs. 

Section 4 describes classification using template matching 

and support vector machines; section 5 present 

experimental evaluation and result, while section 6 

concludes the paper. 
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2. Related work 

Feature vector extraction for AU classification has been 

addressed using several methodologies (see [7,20] for a 

survey).  More recently, Seyedarabi et al. [21] classify 

mouth AUs by using a two-step active contour for feature 

extraction.  Active contours do not run in real-time and 

require many parameter initializations. Pantic and Patras 

[19] use feature point tracking to detect 27 AUs, which 

mainly considers lined facial features. El Kaliouby and 

Robinson [12] perform recognition of affective and 

cognitive states using feature point tracking. Lien et al. 

[15] use feature point tracking, dense flow tracking, and 

gradient component analysis to detect upper-face AUs. 

Gradient component analysis mainly considers furrows 

and is best suited for areas like the forehead and cheeks. 

Dense flow tracking is not real-time. Fasel and Luettin [6] 

describe a system that recognizes AUs by obtaining 

difference images and projecting them once in the 

Principal Component Analysis (PCA) sub-space, and 

another in the Independent Component Analysis (ICA) 

subspace.  Whitehill and Omlin [23] use Haar features and 

Gabor filters to detect AUs. Although Gabor wavelets 

produce higher recognition rates, they are both slow and 

memory inefficient. 

LBP is a technique that is used for texture description 

[18]. Since 2004, LBP has been applied successfully to 

face detection and recognition [1, 2, 11], where it 

outperformed methods like PCA. Lian et al. [14] use LBP 

for gender classification with very high recognition rates. 

Emotion recognition (for the six basic emotions) using 

LBP is addressed holistically (on the whole face) giving 

impressive results [8–10]. Because LBPs are a simple 

computational operator that is real-time, and produces 

accurate results when applied to face recognition, gender 

classification, and emotion recognition, this has motivated 

us to apply LBP to facial AU classification. 

 

3. Local Binary Patterns 

LBPs have recently gained attention, outperforming 

other methods because of its performance and 

computational efficiency. Also, LBP is illumination 

tolerant [18], robust to parameter selection in terms of 

performance [1], does not require initial points, and 

performs reliably over a range of low image resolutions 

[22]. 

 

 

 

Figure 1. LBP codes are computed by thresholding on a central 

pixel and taking the decimal equivalent of the binary number. 

 
Initially, a neighborhood of a certain size is defined. 

The original LBP neighborhood [17] defined is 3*3. The 

central pixel is used to threshold surrounding pixels, 

producing an LBP Code (Fig 1). This was then extended 

to a neighborhood of P points for radius R; the notation 

LBP(P;R) is used. Each pixel is replaced by the decimal 

equivalent (LBP Code) of a P-bit binary pattern. The LBP 

histogram of the image depicts the frequencies of all 

possible LBP Codes. The histogram frequencies are 

represented as in Eq. 1. I(x, y) represents the image pixels 

at co-ordinates x and y, n represents the number of LBP 

Codes (bins: uniform or non-uniform), and F{A} = 1 if A 

is true, and is zero otherwise. 

 

Figure 2. Mouth AUs that are addressed in this paper (examples 

are from the Cohn-Kanada database [13]. 

 

 
As an extension, uniform patterns are introduced by 

Ojala et al. [18], reducing the dimensionality of the vector 

representing the histogram. A U2 uniform pattern is a 

sequence of zeros and ones that contains no more than two 

zero-to-one or one-to-zero transitions. The notation 

        
    is used for LBP using U2 uniform patterns. Ojala 

et al. [18] noticed that about 90% of patterns in texture 

images are uniform using the standard (8,1) neighborhood, 

and that the percentage decreases as the neighborhood 

grows.  For further encoding, the image is segmented into 

regions.  The feature vector would be the concatenation of 

all LBP histograms of all regions. This method produces a 

longer feature vector, however, it is more descriptive of 

the image; a trade-off exists. Eq. 2 shows the notation 

used for the concatenated histograms representing the 

feature vector for m regions, and i = 0, …, n-1 and j = 0, 

…, m-1: 



 

 

 

4. AU classification 

The mouth AUs listed in Fig. 2 are among the most 

frequently occurring lower-face AUs and are the ones we 

address in this paper: AU12 is a lip corner pull; AU15 is a 

lip corner depress; AU20 is a lip stretch; AU23 is a a lip 

tighten and AU24 represents a lip press; AU25 is a lips 

part; AU26 is a jaw drop while AU27 is a mouth drop. 

4.1. Pre-processing 

Faces are detected in training and testing images, and 

scale normalization is conducted. After that, the face is 

cropped twice such that only the mouth region remains. 

This is done after determining two crop fractions 

statistically from 50 subjects. 

 
Table 1. Eight basic feature vectors used for experimentation. In 

all eight cases a neighborhood of P = 8 was used. The last 

column gives the feature size per region. 

 

 
 

4.2. Feature Vector Extraction and    

 Dimensionality Reduction 

LBP is used for feature vector extraction from a mouth 

image or a difference image. The difference image is the 

difference between an image of a subject possessing a 

certain AU and the subject’s neutral image. We 

experiment with both (8,1) and (8,2) LBP neighborhoods. 

We also experiment using LBP on the whole 

mouth/difference image, LBP on the image divided into 9 

regions, and LBP on the image divided into 36 regions. 

Moreover, experiments are conducted both with and 

without using uniform patterns for dimensionality 

reduction. The eight basic LBP vectors are summarized in 

Table 1. 

Fig. 3 shows a graphical representation of an LBP 

feature vector (        
    , 9 regions) on the average 

template of every class. Note that AU23 and AU14 have 

been merged into one class, since they co-occur in about 

80% of the images that contain either AUs. The graphical 

representation shows a unique signature for every class 

template. As expected, AUs that are similar in appearance, 

e.g., AU12 and AU15 have closer signatures. 

LBP is compared against the basic feature extraction 

technique, image quantization. To ensure fair comparison, 

we performed many experiments (Fig. 4) using various 

parameter settings for both LBP and image quantization in 

order to find the best performance of each. As illustrated 

in Fig. 4, image quantization is performed using both 

mouth images, and difference mouth images. Also, 

quantization is performed in both the spatial and 

frequency domains, obtained by once using fast fourier 

transform (FFT), and another using discrete cosine 

transform (DCT)). Moreover, six different quantization 

window sizes are used; 15*15, 20*20, 25*25, 30*30, 

35*35, 40*40. The mean of a window is used to represent 

it. 

 

 

 

 
Figure 3. LBP features (        

    , 9 regions using 

differences images) for mouth AUs. 



 

 

 

  
 

Figure 4. LBP and quantization experiments for 7-class and 8-

class classifications on raw and difference images. 

 

 

 
 

Figure 5. Templates of mouth AUs. 

 

4.3. Classification 

Two classification methods are used; template matching 

and support vector machines (SVMs). SVMs embed data 

into high dimensional feature spaces such that they are 

separable using simple linear algebra and geometry rules. 

A template for every AU is obtained by averaging the 

feature vectors of images used for training. Direct 

averaging is used for template construction. A graphical 

representation of AU templates is obtained by 

superimposing images of every AU, shown in Fig. 5. For 

classification, a nearest neighbor classifier using 

Euclidean distance is used. We use the LIBSVM Matlab 

library [4]to train an SVM classifier per mouth AU that 

takes as input the LBP feature vectors and their 

corresponding labels. The trained SVM then is used to 

classify unseen LBP feature vectors. 

Classification is done once using the 7 AU classes in 

Fig. 5 and another by adding the eighth neutral class. The 

neutral class is added to show the ability of encoding 

subtle mouth movements. The neutral mouth can be easily 

confused with lip tight or lip press if subtle details are not 

encoded, affecting recognition percentages. 

5. Evaluation 

AU classifiers should be robust to scale (size of the 

image), and to age, ethnicity, and gender of the subjects. 

Scale tolerance is accounted for at early pre-processing 

stages. Age, ethnicity, and gender tolerance are dependent 

on the database used. A database that is well-suited to the 

purpose of this work is the Cohn-Kanade database [13]. 

Fig. 4 depicts the 60 basic experiments undergone to 

investigate various parameters and applications of both 

LBP and quantization. These 60 experiments were 

performed once using 7-class classification, and another 

using 8-class classification; total of 120 experiments. 24 

out of the 60 experiments are LBP experiments. In 12 of 

the 24 experiments an (8,1) neighborhood is used, an (8,2) 

neighborhood is used in the rest. Every 12 experiments are 

divided into 3 groups of 4.  The first group is undergone 

using feature vectors 1,2,5,6 (table 1) on the whole image, 

the second using feature vectors 3,4,7,8 on the image 

divided into 9 regions, and the third using feature vectors 

3,4,7,8 on the image divided into 36 regions. The best 

performing feature vectors are then classified using SVMs 

to make sure that the method is classifier independent. 

5.1. Implementation Details 

A k-fold (k=5) cross-validation and subject 

independency are used for testing. The performance 

measure used is the recognition rate resulting from the 

classification procedure. A confusion matrix is produced; 

the average of 5 matrices of 5 folds. For every AU in this 

confusion matrix, the detected, undetected (false negative) 

and falsely detected (false positive) percentages are 

calculated.    

5.2. Experimental Results 

The detected, undetected, and false positive rates are 

obtained for every experiment. Using difference images 

in both LBP and quantization experiments yielded 

consistently higher (4-15%) recognition rates than using 

the AU image. Regarding LBP, dividing the image into 

regions clearly yields more accurate descriptions than 

applying LBP to the whole image. Dividing the image into 

9 regions and performing LBP on each shows higher 

recognition rates than dividing the image into 36 regions. 

Unnecessary divisions cause details to disappear from the 

regions. Using U2 mapping gave recognition rates that are 

very similar to (+/-1%) the unreduced vector. The reduced 

U2 feature vector however is shorter, and therefore would 

be classified better. The (8,1) neighborhood gave 

recognition rates 3% higher on average than the (8,2) 

neighborhood. The optimal LBP feature vector obtained 



 

 

by the presented experiments is the one that divides 

difference images into 9 regions, performing LBP on 

every region using uniform patterns and an (8,1) 

neighborhood. The detected, undetected, and false positive 

rates of the best LBP feature vector is depicted in Fig. 6. 

Fig. 7 shows the number of labeled images containing 

various mouth AUs in the Cohn-Kanade Database. The 

distribution in Figs. 6 and 7 appear to have the same 

shape. We note that the classes with high recognition rates 

are the ones with a high number of images available for 

training and testing.  The distribution is the same 

regarding quantization.  Therefore, classes will be divided 

into two groups; a group with a sufficient number of 

images (> 55) and another with a limited number of 

images (AU23/24 and AU26). Results are shown in Table 

2. All false positive rates range from 2.3% to 10.5%, LBP 

having an acceptable rate of 5.5%. 

   

 
 
Figure 6. Average rate for correctly detected, undetected, 
and false positives for each feature extraction approach. 
 

 
Figure 7. The number of labeled images available in the 
Cohn-Kanade Database for each of the mouth AUs. 
 

 

Table 2 shows the detection and false positive rates of the 

best performing spatial, FFT, DCT, and LBP feature 

vectors.  The percentages shown are the average of both 7-

class and 8-class classification. Regarding classes with 

sufficient numbers of images, LBP showed the highest 

average detection rate of 80%. We note that LBP detection 

rate of 8-class classification is 82%, whereas that of the 7-

class classification is 78%; giving an average of 80%. This 

indicates that the addition of a class did not confuse the 

classifier further.  Also, using the LBP feature vector that 

gave the highest detection percentages on a simple design 

SVM classifier, a similar 78% detection rate is obtained. 

This indicates that using LBP is not classifier dependent. 

Using a more sophisticated SVM classifier design is 

expected to further raise detection rates. 
 
 
Table 2. Detected or True Positive (TP) and False Positive 
(FP) percentages obtained for classes with sufficient and 
limited numbers of training images. 
 

Classification 
Sufficient Limited 

TP            FP TP            FP 

LBP 80 7 33 5.5 

Spatial 70 8 22 6.5 

DCT 60 9 24 2.3 

FFT 57 1.5 33 10.5 

 
 

6. Conclusion 

Facial expression classification remains a challenging 

task for machines. To the best of our knowledge, 

experimentation with LBP on specific facial features, and 

not on the whole face, with the aim to recognize single 

AUs, and not emotions, is a novel approach. The method 

imple mented in this work is advantageous over existing 

feature extraction methods that are slow, require manual 

initialization, are illumination dependent, or require high 

image resolution.  LBP features are extracted quickly, 

however they result in an average recognition percentage 

of 80% for classes with sufficient image numbers. LBP 

showed a higher detection percentage than image 

quantization in both the spatial and frequency domains. 

The percentage is also robust to two classification 

methods, and is person independent. 

Future work includes extending our work to support 

more AUs and AU combinations using LBP for facial 

feature extraction, as well as incorporating temporal 

information.  We also plan to test the robustness of LBPs 

to pose changes and head motion, which often co-occur 

with facial expressions, as well as its performance with 

spontaneous versus posed expressions and its 

generalization across datasets. 
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