Homework 3 – Due Thursday, September 15, 2016 on Canvas

Please refer to HW guidelines from HW1, course syllabus, and collaboration policy.

Exercises (Do not hand in.) In addition to the exercises in the lecture notes, here some favorites from KT, Chapter 4.

- (Variations on Interval Scheduling): Problems 7 ("El Goog"), 17 ("daily jobs").
- (Other exchange arguments) 12 ("bandwidth"), 13* ("photocopy service").
- (Interval perfect matching) Problem 16

Problems to be handed in, 10 points each, 2-page limit per problem (Don't forget to prove correctness and analyze time/space requirements of your algorithm.)

- 1. (Analysis of *d*-ary heaps) A *d*-ary heap is like a binary heap, described in Chapter 2.5 of Kleinberg Tardos, with the exception that non-leaf nodes have *d* children instead of 2.
 - (a) How would you represent a *d*-ary heap in an array?
 - (b) Implement PARENT(i) that, given the index *i* of a node, returns the index of its parent and CHILD(i, k) that, given the index *i* of a node, returns the index of its *k*th child.
 - (c) What are the minimum and the maximum number of elements in a d-ary heap of height h?
 - (d) Design an efficient implementation of HEAPIFY-UP in a d-ary min-heap, analogous to the procedure on page 61 of KT. Analyze the running time of your algorithm in terms of d and n.
 - (e) Design an efficient implementation of HEAPIFY-DOWN in a d-ary min-heap, analogous to the procedure on page 63 of KT. Analyze the running time of your algorithm in terms of d and n.
 - (f) Suppose we implement a priority queue using a d-ary heap. Give the running times of all operations, described on pages 64–65 of KT, in terms of d and n.
- 2. (Greedy Stays Ahead) Chapter 4, problem 5.
- 3. (Greedy: A Structural Argument) Chapter 4, problem 14.