
CSE 565: Algorithm Design and Analysis Prof. Sofya Raskhodnikova
Pennsylvania State University September 29, 2016

Homework 5 – Due Thursday, October 6, 2016 on Canvas

Please refer to HW guidelines from HW1, course syllabus, and collaboration policy.

Exercises These should not be handed in, but the material they cover may appear on exams:

1. Using the Partition subroutine and the linear time algorithm for finding the median of list of
numbers, design a divide-and-conquer sorting algorithm that runs in O(n log n) time.

2. Show how to multiply the complex numbers a+ bi and c+ di using only three real multiplications.
The algorithm should take a, b, c, and d as input and produce the real component ac− bd and the
imaginary component ad + bc separately.

3. What is the largest k such that if you can multiply 3 × 3 matrices using k multiplications, then
you can multiply n×n matrices in time o(nlog 7), i.e., asymptotically faster than in time Θ(nlog 7)?
What would the running time of this algorithm be?

4. There is a way of multiplying 68× 68 matrices using 132, 464 multiplications, a way of multiplying
70 × 70 matrices using 143, 640 multiplications, and a way of multiplying 72 × 72 matrices using
155, 424 multiplications. Which method yields the best asymptotic running time when used in a
divide-and-conquer matrix-multiplication algorithm? How does it compare to Strassen’s algorithm?

5. Determine an LCS of 1,0,0,1,0,1,0,1 and 0,1,0,1,1,0,1,1,0

6. Write pseudocode for the procedure that can reconstruct an LCS from the table of optimal lengths,
discussed in class, in time O(m + n).

7. Give a memoized version of the LCS algorithm discussed in class.

8. Explain how to modify the LCS algorithm discussed in class, so that it computes the length of a
LCS (but not the subsequence itself) using O(min(m,n)) space. The running time should still be
O(mn).

9. Chapter 6, problem 1.

General hint for designing divide-and-conquer algorithms: When the target running time is
given, think which recurrence would yield this running time. Try to divide your input accordingly and
see if you can combine the results of the recursive calls in the required time.

Problems to be handed in (Don’t forget to prove correctness and analyze time/space requirements
of your algorithm.)

1. (Median 10 points, 2-page limit)

(a) The majority element of an array A[1..n], containing n integers, is the element that appears
more than n/2 times in the array. Design an efficient algorithm that, given an integer array,
outputs its majority element if it exists. Your algorithm should use the Order Statistics
algorithm we covered in class as a subroutine. Briefly describe your algorithm (at most
3 sentences), and state its running time. You do not have to write down the proof of
correctness.

1



(b) Chapter 5, problem 1. Give a divide-and-conquer algorithm for this problem. (Don’t forget
that a recursive algorithm needs an initial call.) Briefly argue correctness: assuming that
the results of recursive calls are correct, your algorithm should perform the “combine” step
correctly. (Do not forget to take care of the base case.) Don’t forget to analyze the running
time and the space complexity of your algorithm.

2. (Divide and conquer, 20 points, 3-page limit)

A linear k-spanner is a directed graph with vertex set V = {1, . . . , n} that contains a directed
path of length at most k from vertex i to vertex j for all 1 ≤ i < j ≤ n. Moreover, a linear
k-spanner contains no edges that go “backwards”, that is, all edges (i, j) ∈ E satisfy i < j.
Intuitively, this graph is a directed path (1, 2), (2, 3), . . . , (n − 1, n) augmented with additional
edges to ensure that each vertex j is reachable from each vertex i by traversing at most k edges
in the graph.

(-) (Do not hand this part in) Using Θ-notation, how many edges are there in a linear
1-spanner on n vertices?

(a) (10 points) Design an efficient algorithm that, given n, constructs a linear 2-spanner on
n vertices with O(n log n) edges. Prove correctness (i.e., that you indeed output a linear
2-spanner and that it has sufficiently few edges).

(b) (10 points) Consider the following algorithm for computing the edge set E of a linear
3-spanner.

On input n,

• If n ≤ 3, output E = {(i, j)| 1 ≤ i < j ≤ n}.
• Else

– designate vertices b
√
nc, b2

√
nc, . . . , b(

√
n− 1)

√
nc as hubs.

– For each pair of hubs h1 < h2, add an edge (h1, h2) to E.

– For each vertex i ∈ {1, ..., n}, let `(i) be the hub immediately before i and r(i) be
the immediately after i. Add (`(i), i) and (i, r(i)) to E.

– For each k from 1 to
√
n, recursively construct a linear 3-spanner for segment of

the graph between hubs k − 1 and k (that is, between nodes (k − 1)
√
n and k

√
n)

and add the resulting edges to E.

• Return E.

i. Prove by induction that the above algorithm correctly constructs a linear 3-spanner.

ii. Let S(n) be the number of edges in E output by the algorithm. Give a recurrence for
S(n). You may assume, for simplicity, that

√
n is always an integer.

iii. Find the size of a linear 3-spanner returned by the algorithm by solving your recurrence.

3∗ (Optional, no collaboration, 2-page limit) Explain how to construct a linear 4-spanner on
n nodes (defined in the previous problem) with as few edges as you can. Only hand in your
solution if the number of edges in your linear 4-spanner is asymptotically smaller than in the
linear 3-spanner returned by the algorithm above. (Don’t forget to prove correctness and analyze
the number of edges).

You might need the following definition. The iterated logarithm of n, written log∗ n (pronounced
”log star”), is the number of times the logarithm function must be iteratively applied before the
result is less than or equal to 1. Formally,

2



log∗ n =

{
0 if n ≤ 1;

1 + log∗(log n) if n > 1.

3


