
8/24/2016

Sofya Raskhodnikova

Algorithm Design and Analysis

LECTURE 2
Analysis of Algorithms

• Stable matching problem

• Asymptotic growth

L1.1

Logistics

• Homework 1 will be posted tomorrow, due next

Thursday

• Reading

– KT Chapter 3

– Reading Quizes on Canvas due Thursday &Sunday

night

• Other stuff for you to do (if you just joined)

– Background Quiz

– Nameplate (from course page)

– Sign up for Piazza for announcements
8/24/2016

Stable Matching Problem

• Unstable pair: man m and woman w are unstable if

– m prefers w to his assigned match, and

– w prefers m to her assigned match

• Unstable pairs have an incentive to elope

• Stable matching: no unstable pairs.

8/24/2016

Zeus Amy ClareBertha

Yancey Bertha ClareAmy

Xavier Amy ClareBertha

1st 2nd 3rd

Men’s Preference Profile

favorite least favorite

Clare Xavier ZeusYancey

Bertha Xavier ZeusYancey

Amy Yancey ZeusXavier

1st 2nd 3rd

Women’s Preference Profile

favorite least favorite

S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L2.3

Stable Matching Problem

• Input: preference lists of n men and n women

• Goal: find a stable matching if one exists

8/24/2016

Zeus Amy ClareBertha

Yancey Bertha ClareAmy

Xavier Amy ClareBertha

1st 2nd 3rd

Men’s Preference Profile

favorite least favorite

Clare Xavier ZeusYancey

Bertha Xavier ZeusYancey

Amy Yancey ZeusXavier

1st 2nd 3rd

Women’s Preference Profile

favorite least favorite

S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L2.4

8/24/2016

Review Questions

• In terms of n, what is the length of the input to

the Stable Matching problem, i.e., the number of

entries in the tables?

• How many bits do they take to store?

(Answer: 2n2 list entries, or 2n2log n bits)

S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L2.5

8/24/2016

Review Questions

• Brute force algorithm: an algorithm that

checks every possible solution.

• In terms of n, what is the running time of the

brute force algorithm for checking whether a

given matching is stable?

• In terms of n, what is the running time of the

brute force algorithm for Stable Matching

Problem? (Assume your algorithm goes over all

possible perfect matchings.)

(Answer: n! × (time to check if a matching is stable) = Θ(n! n2))

S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L2.6

Review question

How many stable matchings are there for this

instance?
A. 0

B. 1

C. 2 or more.

8/24/2016

Wyatt

Victor

1st

B

D

2nd

D

A

3rd

B

A

BZeus

Yancey

Xavier B

A

C

C

D

D

E

A

4th

C

E

5th

C

E

A

E

E

B

D

C

Bertha

Amy

1st

Z

X

2nd

W

Y

3rd

W

V

YErika

Diane

Clare W

V

Y

Y

W

Z

X

Z

4th

X

Z

5th

V

Y

V

W

X

X

Z

V

Men’s preferences Women’s preferences

Review question

1)

2)

8/24/2016

Wyatt

Victor

1st

B

D

2nd

D

A

3rd

B

A

BZeus

Yancey

Xavier B

A

C

C

D

D

E

A

4th

C

E

5th

C

E

A

E

E

B

D

C

Bertha

Amy

1st

Z

X

2nd

W

Y

3rd

W

V

YErika

Diane

Clare W

V

Y

Y

W

Z

X

Z

4th

X

Z

5th

V

Y

V

W

X

X

Z

V

Men’s preferences Women’s preferences

Wyatt

Victor

1st

B

D

2nd

D

A

3rd

B

A

BZeus

Yancey

Xavier B

A

C

C

D

D

E

A

4th

C

E

5th

C

E

A

E

E

B

D

C

Bertha

Amy

1st

Z

X

2nd

W

Y

3rd

W

V

YErika

Diane

Clare W

V

Y

Y

W

Z

X

Z

4th

X

Z

5th

V

Y

V

W

X

X

Z

V

Men’s preferences Women’s preferences

Brief Syllabus

• Reminders

– Worst-case analysis

– Asymptotic notation

– Basic data structures

• Design Paradigms

– Greedy algorithms, divide and conquer, dynamic

programming, network flow, linear programming,

randomization

• P, NP and NP-completeness

8/24/2016
S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L2.9

Useful Functions

and

Asymptotics

8/24/2016
S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L1.10

Permutations and combinations

• Factorial: “𝑛 factorial”

𝑛! = 𝑛 ⋅ 𝑛 − 1 ⋅ … ⋅ 2 ⋅ 1
= number of permutations of {1, … , 𝑛}

• Combinations: “𝑛 choose 𝑘”

= number of ways of choosing an unordered

subset of 𝑘 items in {1, … , 𝑛} without repetition
8/24/2016

S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L2.11

Review Question

• In how many ways can we select two disjoint

subsets of {1, … , 𝑛}, of size 𝑘 and 𝑚, respectively?

• Answer:

8/24/2016
S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L2.12

8/24/2016

Asymptotic notation

f(n) = O(g(n)) means

there exist constants c > 0, n0 > 0 such
that 0  f(n)  cg(n) for all n  n0.

O-notation (upper bounds):

EXAMPLE: 2n2 = O(n3)

functions,
not values

(c = 1, n0 = 2)

S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L1.13

8/24/2016

Asymptotic Notation

• One-sided equality: T(n) = O(f(n)).

– Not transitive:

• f(n) = 5n3; g(n) = 3n2

• f(n) = O(n3) = g(n)

• but f(n)  g(n).

– Alternative notation: T(n)  O(f(n)).

S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L2.14

8/24/2016

Set Definition

O(g(n)) = { f(n) : there exist constants
c > 0, n0 > 0 such
that 0  f(n)  cg(n)
for all n  n0 }

EXAMPLE: 2n2  O(n3)

(Logicians: n.2n2  O(n.n3), but it’s
convenient to be sloppy, as long as we
understand what’s really going on.)

S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L1.15

Examples

• 106 n3+ 2n2 -n +10 = O(n3)

• n½ + log 𝑛 = O(n½)

• 𝑛 (log 𝑛 + 𝑛) = O(n3/2)

• n = O(n2)

8/24/2016
S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L2.16

8/24/2016

-notation (lower bounds)

(g(n)) = { f(n) : there exist constants
c > 0, n0 > 0 such
that 0  cg(n)  f(n)
for all n  n0 }

EXAMPLE: (c = 1, n0 = 16)

O-notation is an upper-bound notation. It
makes no sense to say f(n) is at least O(n2).

𝑛 = Ω(log 𝑛)

S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L2.17

8/24/2016

-notation (lower bounds)

• Be careful: “Any comparison-based sorting algorithm

requires at least O(n log n) comparisons.”

– Meaningless!

– Use  for lower bounds.

S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L2.18

8/24/2016

-notation (tight bounds)

(g(n)) = O(g(n))  (g(n))

EXAMPLE:)(2 22

2

1
nnn 

Polynomials are simple:

ad n
d + ad–1n

d–1 +  + a1n + a0 = (nd)

S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L2.19

8/24/2016

o-notation and -notation

o(g(n)) = { f(n) : for every constant c > 0,
there is a constant n0 > 0
such that 0  f(n) < cg(n)
for all n  n0 }

EXAMPLE: (n0 = 2/c)

O-notation and -notation are like  and .

o-notation and -notation are like < and >.

2n2 = o(n3)

S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L2.20

8/24/2016

Overview of Asymptotic Notation

Notation … means … Think… E.g. Lim f(n)/g(n)

f(n)=O(n) ∃ 𝑐 > 0, 𝑛0 > 0
∀ 𝑛 > 𝑛0:
0 ≤ 𝑓(𝑛) < 𝑐𝑔(𝑛)

Upper

bound

100n2

= O(n3)

If it exists, it

is < ∞

f(n)=(g(n)) ∃c>0, n0>0, ∀n > n0 :

0 ≤ cg(n) < f(n)

Lower

bound

2𝑛

= Ω(𝑛100)
If it exists, it

is > 0

f(n)=(g(n)) both of the above:

f=(g) and f = O(g)

Tight bound log(n!)

= (n log n)

If it exists, it

is > 0 and

<∞

f(n)=o(g(n)) ∀c>0, ∃n0>0, ∀n > n0 :

0 ≤ f(n) < cg(n)

Strict upper

bound

n2 = o(2n) Limit exists,

=0

f(n)=(g(n)) ∀c>0, ∃n0>0, ∀n > n0 :

0 ≤ cg(n) < f(n)

Strict lower

bound

n2

= (log n)

Limit exists,

=∞

S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L2.21

8/24/2016

Common Functions: Asymptotic Bounds

• Polynomials. 𝑎0 + 𝑎1𝑛 +⋯+ 𝑎𝑑𝑛
𝑑 is (𝑛𝑑) if 𝑎𝑑 > 0.

• Polynomial time. Running time is O(𝑛𝑑) for some

constant 𝑑 independent of the input size 𝑛.

• Logarithms. log a 𝑛= (log b 𝑛) for all constants a,b > 0.

For every 𝑥 > 0, log 𝑛 = o(𝑛𝑥).

• Exponentials. For all 𝑟 >1 and all d > 0, 𝑛𝑑 = o(𝑟𝑛).

• Factorial. By Sterling’s formula,

grows faster than every exponential

can avoid specifying the base
log grows slower than every polynomial

Every polynomial grows slower than every exponential

S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L2.22

Exercise: Show that log(n!) = (n log n)

• Upper bound:

• Lower bound:

8/24/2016
S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L2.23

Exercise: Show that log(n!) = (n log n)

• Stirling’s formula:

8/24/2016
S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L2.24

Sort by asymptotic order of growth
a) n log(n)

b) 𝑛

c) log(n)

d) n2

e) 2n

f) n

g) n!

h) n1,000,000

i) n1/log(n)

j) log(n!)

k)

l)

8/24/2016
S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L2.25

Sort by asymptotic order of growth
a) n log(n)

b) 𝑛

c) log(n)

d) n2

e) 2n

f) n

g) n!

h) n1,000,000

i) n1/log(n)

j) log(n!)

k)

l)

L2.16

1. n1/log n

2. log n

3. 𝑛

4. n

5. n log n = (log(n!))

6.

7. 𝑛
2

= Θ (n2)

8.

9. n1,000,000

10.
𝑛
𝑛/2

= Θ(2𝑛 / 𝑛)

11. 2n

12. n!
8/24/2016

S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L2.26

Review question

• True or false?

1. 𝑛2 = 𝑂
𝑛2

2

2. 𝑛2 = 𝜔
𝑛2

2

3. 𝑛2 = Ω
𝑛2

2

4. 𝑛2 = 𝑜 23 log2 𝑛

8/24/2016
S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L2.27

Properties

•Transitivity.

– If f = O(g) and g = O(h) then f = O(h).

– If f = (g) and g = (h) then f = (h).

– Similarly, for -, o- and ω-notation.

•Additivity.

– If f = O(h) and g = O(h) then f + g = O(h).

– If f = (h) and g = (h) then f + g = (h).

– Similarly, for -, o- and ω-notation.

8/24/2016 S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L2.28

Question

• Let 𝑓, 𝑔 be nonnegative functions.

• Consider the statement:

“either 𝑓(𝑛) = 𝑂(𝑔(𝑛)) or 𝑔(𝑛) = 𝑂(𝑓(𝑛))

(or both)”

Is this statement:

1. True for all functions f and 𝑔?

2. True for some, but not all, functions f and 𝑔?

3. False for all functions f and 𝑔?

8/24/2016
S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L2.29

8/24/2016

Conventions for formulas

Convention: A set in a formula represents
an anonymous function in the set.

f(n) = n3 + O(n2)

means

f(n) = n3 + h(n)

for some h(n)  O(n2) .

EXAMPLE:
(right-hand side)

S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L1.30

8/24/2016

Convention for formulas

Convention: A set in a formula represents
an anonymous function in the set.

n2 + O(n) = O(n2)

means

for any f(n)  O(n):

n2 + f(n) = h(n)

for some h(n)  O(n2) .

EXAMPLE:
(left-hand side)

S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L1.31

Review question

• True or false?

1. 2
𝑛
2

= 𝑛2(1 + 𝑜 1)

2. log2 100 𝑛2 = log2 𝑛 + 𝑂(1)

3. 𝑛3 + 𝑂 𝑛 = Ω(𝑛2)

8/24/2016
S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L2.32

