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LECTURE 2
Analysis of Algorithms

• Stable matching problem

• Asymptotic growth
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Logistics

• Homework 1 will be posted tomorrow, due next 

Thursday

• Reading

– KT Chapter 3

– Reading Quizes on Canvas due Thursday &Sunday 

night

• Other stuff for you to do (if you just joined)

– Background Quiz

– Nameplate (from course page)

– Sign up for Piazza for announcements
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Stable Matching Problem

• Unstable pair: man m and woman w are unstable if

– m prefers w to his assigned match, and

– w prefers m to her assigned match

• Unstable pairs have an incentive to elope

• Stable matching: no unstable pairs.
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Zeus Amy ClareBertha

Yancey Bertha ClareAmy

Xavier Amy ClareBertha

1st 2nd 3rd

Men’s Preference Profile

favorite least favorite

Clare Xavier ZeusYancey

Bertha Xavier ZeusYancey

Amy Yancey ZeusXavier

1st 2nd 3rd

Women’s Preference Profile

favorite least favorite
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Stable Matching Problem

• Input: preference lists of n men and n women

• Goal: find a stable matching if one exists 
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Review Questions

• In terms of n, what is the length of the input to 

the Stable Matching problem, i.e., the number of 

entries in the tables?

• How many bits do they take to store?

(Answer: 2n2 list entries, or  2n2log n bits)
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Review Questions

• Brute force algorithm: an algorithm that 

checks every possible solution.

• In terms of n, what is the running time of the 

brute force algorithm for checking whether a 

given matching is stable?

• In terms of n, what is the running time of the 

brute force algorithm for Stable Matching 

Problem? (Assume your algorithm goes over all 

possible perfect matchings.) 

(Answer: n! × (time to check if a matching is stable) = Θ(n! n2) )
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Review question

How many stable matchings are there for this 

instance?
A. 0

B. 1

C. 2 or more.
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Review question

1)

2)
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Brief Syllabus

• Reminders

– Worst-case analysis

– Asymptotic notation

– Basic data structures

• Design Paradigms

– Greedy algorithms, divide and conquer, dynamic 

programming, network flow, linear programming, 

randomization

• P, NP  and NP-completeness
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Useful Functions 

and 

Asymptotics
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Permutations and combinations

• Factorial: “𝑛 factorial”

𝑛! = 𝑛 ⋅ 𝑛 − 1 ⋅ … ⋅ 2 ⋅ 1
= number of permutations of {1, … , 𝑛}

• Combinations: “𝑛 choose 𝑘”

= number of ways of choosing an unordered 

subset of 𝑘 items in {1, … , 𝑛} without repetition
8/24/2016
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Review Question

• In how many ways can we select two disjoint 

subsets of {1, … , 𝑛}, of size 𝑘 and 𝑚, respectively?

• Answer:

8/24/2016
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Asymptotic notation

f(n) = O(g(n)) means

there exist constants c > 0, n0 > 0 such 
that 0  f(n)  cg(n) for all n  n0.

O-notation (upper bounds):

EXAMPLE: 2n2 = O(n3)

functions, 
not values

(c = 1, n0 = 2)
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Asymptotic Notation

• One-sided equality: T(n) = O(f(n)).

– Not transitive:

• f(n) = 5n3;  g(n) = 3n2

• f(n) = O(n3) = g(n)

• but f(n)  g(n).

– Alternative notation:  T(n)  O(f(n)).
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Set Definition

O(g(n)) = { f(n) : there exist constants 
c > 0, n0 > 0 such 
that 0  f(n)  cg(n)
for all n  n0 }

EXAMPLE: 2n2  O(n3)

(Logicians: n.2n2  O(n.n3), but it’s 
convenient to be sloppy, as long as we 
understand what’s really going on.)
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Examples

• 106 n3+ 2n2 -n +10 = O(n3)

• n½ + log 𝑛 = O(n½)

• 𝑛 (log 𝑛 + 𝑛) = O(n3/2)

• n = O(n2)

8/24/2016
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-notation (lower bounds)

(g(n)) = { f(n) : there exist constants 
c > 0, n0 > 0 such 
that 0  cg(n)  f(n)
for all n  n0 }

EXAMPLE: (c = 1, n0 = 16)

O-notation is an upper-bound notation.  It 
makes no sense to say f(n) is at least O(n2).

𝑛 = Ω(log 𝑛)
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-notation (lower bounds)

• Be careful: “Any comparison-based sorting algorithm 

requires at least O(n log n) comparisons.”

– Meaningless!

– Use  for lower bounds.
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-notation (tight bounds)

(g(n)) = O(g(n))   (g(n))

EXAMPLE: )(2 22

2

1
nnn 

Polynomials are simple: 

ad n
d + ad–1n

d–1 +  + a1n + a0 = (nd) 
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o-notation and -notation

o(g(n)) = { f(n) : for every constant c > 0, 
there is a constant n0 > 0
such that 0  f(n) < cg(n)
for all n  n0 }

EXAMPLE: (n0 = 2/c)

O-notation and -notation are like  and .

o-notation and -notation are like < and >.

2n2 = o(n3)
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8/24/2016

Overview of Asymptotic Notation

Notation … means … Think… E.g. Lim f(n)/g(n)

f(n)=O(n) ∃ 𝑐 > 0, 𝑛0 > 0
∀ 𝑛 > 𝑛0:
0 ≤ 𝑓(𝑛) < 𝑐𝑔(𝑛)

Upper 

bound

100n2

= O(n3)

If it exists, it 

is < ∞

f(n)=(g(n)) ∃c>0, n0>0, ∀n > n0 :

0 ≤ cg(n) < f(n)

Lower 

bound

2𝑛

= Ω(𝑛100)
If it exists, it 

is > 0

f(n)=(g(n)) both of the above: 

f=(g) and f = O(g)

Tight bound log(n!) 

= (n log n)

If it exists, it 

is > 0 and 

<∞

f(n)=o(g(n)) ∀c>0, ∃n0>0, ∀n > n0 :

0 ≤ f(n) < cg(n) 

Strict upper 

bound

n2 = o(2n) Limit exists, 

=0

f(n)=(g(n)) ∀c>0, ∃n0>0, ∀n > n0 :

0 ≤ cg(n) < f(n)

Strict lower 

bound

n2

= (log n)

Limit exists, 

=∞
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Common Functions: Asymptotic Bounds

• Polynomials. 𝑎0 + 𝑎1𝑛 +⋯+ 𝑎𝑑𝑛
𝑑 is (𝑛𝑑) if 𝑎𝑑 > 0. 

• Polynomial time. Running time is O(𝑛𝑑) for some 

constant 𝑑 independent of the input size 𝑛.

• Logarithms. log a 𝑛= (log b 𝑛) for all constants a,b > 0.

For every 𝑥 > 0,  log 𝑛 = o(𝑛𝑥).

• Exponentials. For all 𝑟 >1 and all d > 0,  𝑛𝑑 = o(𝑟𝑛).

• Factorial. By Sterling’s formula,

grows faster than every exponential

can avoid specifying the base
log grows slower than every polynomial

Every polynomial grows slower than every exponential
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Exercise: Show that log(n!) = (n log n)

• Upper bound:

• Lower bound:  

8/24/2016
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Exercise: Show that log(n!) = (n log n)

• Stirling’s formula:

8/24/2016
S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L2.24



Sort by asymptotic order of growth
a) n log(n)

b) 𝑛

c) log(n) 

d) n2

e) 2n

f) n

g) n!

h) n1,000,000

i) n1/log(n) 

j) log(n!)

k)

l)

8/24/2016
S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L2.25



Sort by asymptotic order of growth
a) n log(n)

b) 𝑛

c) log(n) 

d) n2

e) 2n

f) n

g) n!

h) n1,000,000

i) n1/log(n) 

j) log(n!)

k)

l)

L2.16

1. n1/log n

2. log n

3. 𝑛

4. n

5. n log n = (log(n!))

6.

7. 𝑛
2

= Θ (n2)

8.

9. n1,000,000

10.
𝑛
𝑛/2

= Θ(2𝑛 / 𝑛)

11. 2n

12. n!
8/24/2016

S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L2.26



Review question

• True or false?

1. 𝑛2 = 𝑂
𝑛2

2

2. 𝑛2 = 𝜔
𝑛2

2

3. 𝑛2 = Ω
𝑛2

2

4. 𝑛2 = 𝑜 23 log2 𝑛

8/24/2016
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Properties

•Transitivity.

– If f = O(g) and g = O(h) then f = O(h).

– If f = (g) and g = (h) then f = (h). 

– Similarly, for -, o- and ω-notation.

•Additivity.

– If f = O(h) and g = O(h) then f + g = O(h). 

– If f = (h) and g = (h) then f + g = (h).

– Similarly, for -, o- and ω-notation.
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Question

• Let 𝑓, 𝑔 be nonnegative functions. 

• Consider the statement:

“either 𝑓(𝑛) = 𝑂(𝑔(𝑛)) or 𝑔(𝑛) = 𝑂(𝑓(𝑛))

(or both)”

Is this statement:

1. True for all functions f and 𝑔?

2. True for some, but not all, functions f and 𝑔?

3. False for all functions f and 𝑔?

8/24/2016
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Conventions for formulas

Convention: A set in a formula represents 
an anonymous function in the set.

f(n) = n3 + O(n2) 

means 

f(n) = n3 + h(n)

for some h(n)  O(n2) .

EXAMPLE:
(right-hand side)

S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L1.30
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Convention for formulas

Convention: A set in a formula represents 
an anonymous function in the set.

n2 + O(n) = O(n2)

means

for any f(n)  O(n):

n2 + f(n) = h(n)

for some h(n)  O(n2) .

EXAMPLE:
(left-hand side)
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Review question

• True or false?

1. 2
𝑛
2

= 𝑛2(1 + 𝑜 1 )

2. log2 100 𝑛2 = log2 𝑛 + 𝑂(1)

3. 𝑛3 + 𝑂 𝑛 = Ω(𝑛2)
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