
9/12/2016
S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne

Sofya Raskhodnikova

Algorithm Design and Analysis

LECTURE 6
Greedy Algorithms

• Interval Scheduling

• Interval Partitioning

• Scheduling to Minimize

Lateness

Optimization problems

• Coming up: 3 design paradigms

– Greedy

– Divide and Conquer

– Dynamic Programming

• Illustrated on optimization problems

– Set of feasible solutions

– Goal: find the “best” solution

according to some objective function

9/12/2016

Design technique #1:

Greedy Algorithms

9/12/2016
S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L6.3

9/12/2016

Greedy Algorithms

• Build up a solution to an optimization problem at

each step shortsightedly choosing the option that

currently seems the best.

– Sometimes good

– Often does not work

• Key to designing greedy algorithms:

find structure that ensures you don’t

leave behind other options

S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L6.4

Interval Scheduling Problem

•Job j starts at sj and finishes at fj.

•Two jobs are compatible if they do not overlap.

•Find: maximum subset of mutually compatible jobs.

0 1 2 3 4 5 6 7 8 9 10 11

f

g

h

e

a

b

c

d

Time

9/12/2016
S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L6.5

9/12/2016

Possible Greedy Strategies

Consider jobs in some natural order. Take next job if it is

compatible with the ones already taken.

• Earliest start time: ascending order of sj.

• Earliest finish time: ascending order of fj.

• Shortest interval: ascending order of (fj – sj).

• Fewest conflicts: For each job j, count the number of

conflicting jobs cj. Schedule in ascending order of cj.

S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L6.6

9/12/2016

Greedy: Counterexamples

for earliest start time

for shortest interval

for fewest conflicts

S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L6.7

Formulating an Algorithm

• Input: arrays of start and finishing times

– s1, s2, …,sn

– f1, f2,…, fn

• Input length?

– 2n = ϴ(n)

9/12/2016
S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L6.8

9/12/2016

•Earliest finish time: ascending order of fj.

• Implementation:

– How do we quickly test if j is compatible with A?

– Store job j* that was added last to A.

– Job j is compatible with A if sj fj*.

Greedy Algorithm

S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne

Sort jobs by finish times so that

f1 f2 ... fn.

A // Set of jobs selected so far

for j = 1 to n

if (job j compatible with A)

A A {j}

return A

L6.9

file:///C:/Users/Sofya/Documents/SVN+CVS-repositories/svn-siis/CSE565/F11/lecture-notes/04demo-interval-scheduling.ppt#1. Interval Scheduling
file:///C:/Users/Sofya/Documents/SVN+CVS-repositories/svn-siis/CSE565/F11/lecture-notes/04demo-interval-scheduling.ppt#1. Interval Scheduling

9/12/2016

Time and space analysis

Sort jobs by finish times so that

f1 f2 ... fn.

A (empty) // Queue of selected jobs

j* 0

for j = 1 to n

if (fj* ≤ sj)

enqueue(j onto A)

j* j

return A

O(n log n)

O(1)

𝑛 × O(1)

S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L6.10

O(n log n) time; O(n) space.

Analysis: Greedy Stays Ahead

Theorem. Greedy algorithm’s solution is optimal.

Proof strategy (by contradiction):

• Suppose greedy is not optimal.

• Consider an optimal solution…

– which one?

– optimal solution that agrees with the greedy solution for
as many initial jobs as possible

• Look at the first place in the list where optimal
solution differs from the greedy solution

– Show a new optimal solution that agrees more w/ greedy

– Contradiction!

9/12/2016
S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne

Analysis: Greedy Stays Ahead

Theorem: Greedy algorithm’s solution is optimal.

Proof (by contradiction): Suppose greedy not optimal.

– Let 𝑖1, 𝑖2, … 𝑖𝑘 denote set of jobs selected by greedy.

– Let 𝑗1, 𝑗2, … 𝑗𝑚 be the optimal solution with

𝑖1 = 𝑗1, 𝑖2 = 𝑗2, … , 𝑖𝑟 = 𝑗𝑟
for the largest possible value of r.

– If 𝑟 < 𝑘, then …?

9/12/2016

j1 j2 jr

i1 i2 ir ir+1

. . .

Greedy:

OPT: jr+1

why not replace job jr+1

with job ir+1?

job ir+1 finishes before jr+1

ir+2

S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne

Analysis: Greedy Stays Ahead

9/12/2016

i1 i2 ir ir+1
Greedy:

job ir+1 finishes before jr+1

solution still
feasible and
optimal, but
contradicts
maximality of r.

j1 j2 jr . . .OPT: ir+1

Theorem: Greedy algorithm’s solution is optimal.

Proof (by contradiction): Suppose greedy not optimal.

– Let 𝑖1, 𝑖2, … 𝑖𝑘 denote set of jobs selected by greedy.

– Let 𝑗1, 𝑗2, … 𝑗𝑚 be the optimal solution with

𝑖1 = 𝑗1, 𝑖2 = 𝑗2, … , 𝑖𝑟 = 𝑗𝑟
for the largest possible value of r.

– If 𝑟 < 𝑘, then …?

S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne

Analysis: Greedy Stays Ahead

Theorem: Greedy algorithm’s solution is optimal.

Proof (by contradiction): Suppose greedy not optimal.

– Let 𝑖1, 𝑖2, … 𝑖𝑘 denote set of jobs selected by greedy.

– Let 𝑗1, 𝑗2, … 𝑗𝑚 be the optimal solution with

𝑖1 = 𝑗1, 𝑖2 = 𝑗2, … , 𝑖𝑟 = 𝑗𝑟
for the largest possible value of r.

– If 𝑟 < 𝑘, then we get contradiction.

9/12/2016

i1 i2 ir ir+1
Greedy:

Could it be
that 𝑟 = 𝑘
but 𝑘 < 𝑚?

j1 j2 jr . . .OPT: ir+1

S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne

Analysis: Greedy Stays Ahead

Theorem: Greedy algorithm’s solution is optimal.

Proof (by contradiction): Suppose greedy not optimal.

– Let 𝑖1, 𝑖2, … 𝑖𝑘 denote set of jobs selected by greedy.

– Let 𝑗1, 𝑗2, … 𝑗𝑚 be the optimal solution with

𝑖1 = 𝑗1, 𝑖2 = 𝑗2, … , 𝑖𝑟 = 𝑗𝑟
for the largest possible value of r.

– If 𝑟 < 𝑘, we get a contradiction by replacing 𝑗𝑟+1 with 𝑖𝑟+1
because we get an optimal solution with larger r.

– If 𝑟 = 𝑘 but 𝑚 > 𝑘, we get a contradiction

because greedy algorithm stopped

before all jobs were considered.

9/12/2016

i1 i2 ir ir+1
Greedy:

job ir+1 finishes before jr+1

j1 j2 jr . . .OPT: ir+1

Alternate Way to See the Proof

• Induction statement

𝑃(𝑘): There is an optimal solution

that agrees with the greedy solution

in the first 𝑘 jobs.

• 𝑃(𝑛) is what we want to prove.

• Base case: 𝑃(0)

• We essentially proved the induction step…

9/12/2016
S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne

Interval Partitioning

Interval Partitioning

• Lecture 𝑗 starts at 𝑠𝑗 and finishes at 𝑓𝑗.

• Input: 𝑠1, … , 𝑠𝑛 and 𝑓1, … , 𝑓𝑛.

• Goal: find minimum number of classrooms to
schedule all lectures so that no two occur at the
same time in the same room.

• E.g.: 10 lectures are scheduled in 4 classrooms.

9/12/2016 Time
9 9:30 10 10:30 11 11:30 12 12:30 1 1:30 2 2:30

h

c

b

a

e

d g

f i

j

3 3:30 4 4:30

1

2

3

4

S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne

Interval Partitioning

• Lecture 𝑗 starts at 𝑠𝑗 and finishes at 𝑓𝑗.

• Input: 𝑠1, … , 𝑠𝑛 and 𝑓1, … , 𝑓𝑛.

• Goal: find minimum number of classrooms to
schedule all lectures so that no two occur at the
same time in the same room.

• E.g.: Same lectures scheduled in 3 classrooms.

9/12/2016 Time
9 9:30 10 10:30 11 11:30 12 12:30 1 1:30 2 2:30

h

c

a e

f

g i

j

3 3:30 4 4:30

d

b

1

2

3

S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne

9/12/2016
S. Raskhosnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne

Lower Bound

• Definition. The depth of a set of open intervals is the maximum

number that contain any given time.

• Key lemma. Number of classrooms needed depth.

• E.g.: Depth of this schedule = 3 this schedule is optimal.

• Q: Is it always sufficient to have number of classrooms = depth?

a, b, c all contain 9:30

9 9:30 10 10:30 11 11:30 12 12:30 1 1:30 2 2:30

h

c

a e

f

g i

j

3 3:30 4 4:30

d

b

1

2

3

9/12/2016
S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne

Greedy Algorithm

Consider lectures in increasing order of start time:

assign lecture to any compatible classroom.

• Implementation. O(𝑛 log 𝑛) time; O(𝑛) space.
– For each classroom, maintain the finish time of the last job added.

– Keep the classrooms in a priority queue

• Using a heap, main loop takes O(𝑛 log d) time

Sort intervals by starting time so that s1 s2 ... sn.

d 0 // Number of allocated classrooms

for j = 1 to n

if (lecture j is compatible with some classroom k)

schedule lecture j in classroom k

else

allocate a new classroom d + 1

schedule lecture j in classroom d + 1

d d + 1

L6.21

9/12/2016
S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne

Analysis: Structural Argument

L6.22

Observation. Greedy algorithm never schedules two

incompatible lectures in the same classroom.

• Theorem. Greedy algorithm is optimal.

• Proof: Let d = number of classrooms allocated by

greedy.

– Classroom 𝑑 is opened because we needed to schedule a

lecture, say 𝑗, that is incompatible with all 𝑑 − 1 last lectures

in other classrooms.

– These 𝑑 lectures each end after 𝑠𝑗.

– Since we sorted by start time, they start no later than 𝑠𝑗.

– Thus, we have d lectures overlapping at time 𝑠𝑗 + .

– Key lemma all schedules use ≥ 𝑑 classrooms. ▪

Duality

• Our first example of “duality”!

• High-level overview of proof of correctness:

– Identify obstacles to scheduling in few classrooms

• Sets of overlapping lectures

– Show that our algorithm’s solution matches some

obstacle

• If our solution uses 𝑑 classrooms,

then there is a set of 𝑑 overlapping lectures

– Conclude that our solution cannot be improved

9/12/2016
S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne

Scheduling to minimize lateness

9/12/2016
S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L6.24

Scheduling to Minimizing Lateness

Minimizing lateness problem.

• Single resource processes one job at a time.

• Job j requires tj units of processing time and is due at time dj.

• If j starts at time sj, it finishes at time fj = sj + tj.

• Lateness: j = max { 0, fj - dj }.

• Goal: schedule all jobs to minimize maximum lateness L = max j.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

d5 = 14d2 = 8 d6 = 15 d1 = 6 d4 = 9d3 = 9

lateness = 0lateness = 2

dj 6

tj 3

1

8

2

2

9

1

3

9

4

4

14

3

5

15

2

6

max lateness = 6

9/12/2016
S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L6.25

Greedy strategies?

9/12/2016
S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L6.26

Greedy template: consider jobs in some order.
• [Shortest processing time first] Consider jobs in ascending

order of processing time tj.

• [Earliest deadline first] Consider jobs in ascending order of

deadline dj.

• [Smallest slack] Consider jobs in ascending order of slack dj - tj.

Minimizing Lateness: Greedy Strategies

9/12/2016
S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L6.27

Greedy template: consider jobs in some order.
• [Shortest processing time first] Consider jobs in ascending order

of processing time tj.

• [Smallest slack] Consider jobs in ascending order of slack dj - tj.

Minimizing Lateness: Greedy Strategies

counterexample

counterexample

dj

tj

100

1

1

10

10

2

dj

tj

2

1

1

10

10

2

9/12/2016
S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L6.28

Minimizing Lateness: Greedy Algorithm

• [Earliest deadline first]

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

d5 = 14d2 = 8 d6 = 15d1 = 6 d4 = 9d3 = 9

max lateness = 1

Sort n jobs by deadline so that d1 d2 … dn

t 0

for j = 1 to n

Assign job j to interval [t, t + tj]

sj t, fj t + tj
t t + tj

output intervals [sj, fj]

9/12/2016
S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L6.29

Minimizing Lateness: No Idle Time

• Observation. There exists an optimal schedule with no

idle time.

• Observation. The greedy schedule has no idle time.

0 1 2 3 4 5 6

d = 4 d = 6

7 8 9 10 11

d = 12

0 1 2 3 4 5 6

d = 4 d = 6

7 8 9 10 11

d = 12

9/12/2016
S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L6.30

Minimizing Lateness: Inversions

• An inversion in schedule S is a pair of jobs i and j such that di < dj

but j scheduled before i.

• Observation. Greedy schedule has no inversions.

• Observation. If a schedule (with no idle time) has an inversion,

it has one with a pair of inverted jobs scheduled consecutively.

ij

inversion

9/12/2016
S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L6.31

Minimizing Lateness: Inversions

• An inversion in schedule S is a pair of jobs i and j such that di < dj

but j scheduled before i.

• Claim. Swapping two adjacent, inverted jobs reduces the number

of inversions by one and does not increase the max lateness.

• Proof: Let be the lateness before the swap, and let ' be the

lateness afterwards.

– 'k = k for all k i, j

– 'i i

– If job j is late:

ij

i j

before swap

after swap

n)(definitio

)d d(

) at time finishes (

n)(definitio

i

jiii

iji

jjj

df

fjdf

df

f'j

fi
inversion

9/12/2016
S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L6.32

Minimizing Lateness: Analysis

Theorem. Greedy schedule S is optimal.

Proof: Define S* to be an optimal schedule that

has the fewest number of inversions.

• Can assume S* has no idle time.

• If S* has no inversions, then S = S*.

• If S* has an inversion, let i-j be an adjacent inversion.

– Swapping i and j does not increase the maximum lateness and

strictly decreases the number of inversions.

– This contradicts the definition of S*. ▪

9/12/2016
S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L6.33

Summary: Greedy Analysis Strategies

• Greedy algorithm stays ahead. Show that after each step of the

greedy algorithm, its solution is at least as good as any other

algorithm's.

• Structural. Discover a simple "structural" bound asserting that

every possible solution must have a certain value. Then show that

your algorithm always achieves this bound.

• Exchange argument. Gradually transform any solution to the

one found by the greedy algorithm without hurting its quality.

9/12/2016
S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L6.34

