Algorithm Design and Analysis

LECTURE 6 Greedy Algorithms

- Interval Scheduling
- Interval Partitioning
- Scheduling to Minimize Lateness

Sofya Raskhodnikova

9/12/2016

S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne

Optimization problems

- Coming up: 3 design paradigms
 - Greedy
 - Divide and Conquer
 - Dynamic Programming
- Illustrated on **optimization** problems
 - Set of feasible solutions
 - Goal: find the "best" solution according to some **objective function**

Design technique #1: Greedy Algorithms

9/12/2016

S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L6.3

Greedy Algorithms

- Build up a solution to an optimization problem at each step shortsightedly choosing the option that currently seems the best.
 - Sometimes good
 - Often does not work
- Key to designing greedy algorithms: find **structure** that ensures you don't leave behind other options

Interval Scheduling Problem

•Job j starts at s_i and finishes at f_i .

- •Two jobs are **compatible** if they do not overlap.
- •Find: maximum subset of mutually compatible jobs.

Possible Greedy Strategies

Consider jobs in some natural order. Take next job if it is compatible with the ones already taken.

- Earliest start time: ascending order of s_i.
- Earliest finish time: ascending order of f_i .
- Shortest interval: ascending order of $(f_j s_j)$.
- **Fewest conflicts:** For each job j, count the number of conflicting jobs c_j . Schedule in ascending order of c_j .

Greedy: Counterexamples

for earliest start time

for shortest interval

for fewest conflicts

Formulating an Algorithm

- Input: arrays of start and finishing times
 - $-s_1, s_2, ..., s_n$ $-f_1, f_2, ..., f_n$

- Input length?
 - $-2n = \Theta(n)$

Greedy Algorithm

•Earliest finish time: ascending order of f_i.

```
Sort jobs by finish times so that

f_1 \leq f_2 \leq \ldots \leq f_n.

A \leftarrow \phi \quad // Set of jobs selected so far

for j = 1 to n

if (job j compatible with A)

A \leftarrow A \cup \{j\}

return A
```

- Implementation:
 - How do we quickly test if j is compatible with A?
 - Store job j^* that was added last to A.
 - Job j is compatible with A if $s_j \ge f_{j*}$.

9/12/2016

L6.9

Time and space analysis

O(n log n) time; O(n) space.

9/12/2016

S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L6.10

Theorem. Greedy algorithm's solution is optimal. **Proof strategy (by contradiction)**:

- Suppose greedy is not optimal.
- Consider an optimal solution...
 - which one?
 - optimal solution that agrees with the greedy solution for as many initial jobs as possible
- Look at the first place in the list where optimal solution differs from the greedy solution
 - Show a new optimal solution that agrees more w/ greedy
 - Contradiction!

Theorem: Greedy algorithm's solution is optimal.

Proof (by contradiction): Suppose greedy not optimal.

- -Let $i_1, i_2, \dots i_k$ denote set of jobs selected by greedy.
- -Let j_1, j_2, \dots, j_m be the optimal solution with $i_1 = j_1, i_2 = j_2, \dots, i_r = j_r$

for the largest possible value of r.

Theorem: Greedy algorithm's solution is optimal.

Proof (by contradiction): Suppose greedy not optimal.

- -Let $i_1, i_2, \dots i_k$ denote set of jobs selected by greedy.
- -Let $j_1, j_2, ..., j_m$ be the optimal solution with $i_1 = j_1, i_2 = j_2, ..., i_r = j_r$

for the largest possible value of r.

solution still

feasible and

optimal, but

contradicts

9/12/2016

S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne

Theorem: Greedy algorithm's solution is optimal.

Proof (by contradiction): Suppose greedy not optimal.

- -Let $i_1, i_2, \dots i_k$ denote set of jobs selected by greedy.
- -Let $j_1, j_2, ..., j_m$ be the optimal solution with $i_1 = j_1, i_2 = j_2, ..., i_r = j_r$

for the largest possible value of r.

- If r < k, then we get contradiction.

9/12/2016

S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne

Theorem: Greedy algorithm's solution is optimal.

Proof (by contradiction): Suppose greedy not optimal.

- -Let $i_1, i_2, \dots i_k$ denote set of jobs selected by greedy.
- Let $j_1, j_2, ..., j_m$ be the optimal solution with $i_1 = j_1, i_2 = j_2, ..., i_r = j_r$

for the largest possible value of r.

- If r < k, we get a contradiction by replacing j_{r+1} with i_{r+1} because we get an optimal solution with larger r.
- If r = k but m > k, we get a contradiction because greedy algorithm stopped before all jobs were considered.

Alternate Way to See the Proof

• Induction statement

P(k): There is an optimal solution that agrees with the greedy solution in the first k jobs.

- P(n) is what we want to prove.
- Base case: P(0)
- We essentially proved the induction step...

Interval Partitioning

Interval Partitioning

- Lecture *j* starts at s_i and finishes at f_j .
- **Input**: $s_1, ..., s_n$ and $f_1, ..., f_n$.

- **Goal**: find minimum number of classrooms to schedule all lectures so that no two occur at the same time in the same room.
- E.g.: 10 lectures are scheduled in 4 classrooms.

Interval Partitioning

- Lecture *j* starts at s_i and finishes at f_j .
- **Input**: $s_1, ..., s_n$ and $f_1, ..., f_n$.
- **Goal**: find minimum number of classrooms to schedule all lectures so that no two occur at the same time in the same room.
- E.g.: Same lectures scheduled in 3 classrooms.

Lower Bound

- **Definition**. The **depth** of a set of open intervals is the maximum number that contain any given time.
- Key lemma. Number of classrooms needed \geq depth.
- **E.g.:** Depth of this schedule = $3 \implies$ this schedule is optimal.

• **Q:** Is it always sufficient to have number of classrooms = depth?

Greedy Algorithm

Consider lectures in increasing order of start time: assign lecture to any compatible classroom.

```
Sort intervals by starting time so that s_1 \le s_2 \le \ldots \le s_n.

d \leftarrow 0 \quad // \text{Number of allocated classrooms}

for j = 1 to n

if (lecture j is compatible with some classroom k)

schedule lecture j in classroom k

else

allocate a new classroom d + 1

schedule lecture j in classroom d + 1

d \leftarrow d + 1
```

- Implementation. $O(n \log n)$ time; O(n) space.
- For each classroom, maintain the finish time of the last job added.
- Keep the classrooms in a priority queue
 - Using a heap, main loop takes $O(n \log d)$ time

9/12/2016

S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L6.21

Analysis: Structural Argument

Observation. Greedy algorithm never schedules two incompatible lectures in the same classroom.

- **Theorem**. Greedy algorithm is optimal.
- **Proof:** Let *d* = number of classrooms allocated by greedy.
 - Classroom *d* is opened because we needed to schedule a lecture, say *j*, that is incompatible with all d 1 last lectures in other classrooms.
 - These *d* lectures each end after s_i .
 - Since we sorted by start time, they start no later than s_i .
 - Thus, we have d lectures overlapping at time $s_i + \varepsilon$.
 - Key lemma \Rightarrow all schedules use $\geq d$ classrooms.

9/12/2016

S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne

Duality

- Our first example of "duality"!
- High-level overview of proof of correctness:
 - Identify obstacles to scheduling in few classrooms
 - Sets of overlapping lectures
 - Show that our algorithm's solution matches some obstacle
 - If our solution uses *d* classrooms, then there is a set of *d* overlapping lectures
 - Conclude that our solution cannot be improved

Scheduling to minimize lateness

Scheduling to Minimizing Lateness

Minimizing lateness problem.

- Single resource processes one job at a time.
- Job j requires t_j units of processing time and is due at time d_j.
- If j starts at time s_j , it finishes at time $f_j = s_j + t_j$.
- Lateness: $\ell_{j} = \max \{ 0, f_{j} d_{j} \}$.
- Goal: schedule all jobs to minimize maximum lateness $L = \max \ell_j$.

	1	2	3	4	5	6
t _j	3	2	1	4	3	2
dj	6	8	9	9	14	15

9/12/2016

S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L6.25

Greedy strategies?

Minimizing Lateness: Greedy Strategies

Greedy template: consider jobs in some order.

- [Shortest processing time first] Consider jobs in ascending order of processing time t_i.
- [Earliest deadline first] Consider jobs in ascending order of deadline d_j.
- [Smallest slack] Consider jobs in ascending order of slack d_i t_i.

Minimizing Lateness: Greedy Strategies

Greedy template: consider jobs in some order.

• [Shortest processing time first] Consider jobs in ascending order of processing time t_i.

counterexample

• [Smallest slack] Consider jobs in ascending order of slack d_j - t_j.

counterexample

Minimizing Lateness: Greedy Algorithm

• [Earliest deadline first]

```
Sort n jobs by deadline so that d_1 \leq d_2 \leq ... \leq d_n
t \leftarrow 0
for j = 1 to n
Assign job j to interval [t, t + t<sub>j</sub>]
s_j \leftarrow t, f_j \leftarrow t + t_j
t \leftarrow t + t_j
output intervals [s<sub>j</sub>, f<sub>j</sub>]
```


9/12/2016

S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L6.29

Minimizing Lateness: No Idle Time

• **Observation.** There exists an optimal schedule with no idle time.

• **Observation.** The greedy schedule has no idle time.

Minimizing Lateness: Inversions

• An inversion in schedule S is a pair of jobs i and j such that $d_i < d_j$ but j scheduled before i.

- **Observation.** Greedy schedule has no inversions.
- **Observation.** If a schedule (with no idle time) has an inversion, it has one with a pair of inverted jobs scheduled consecutively.

Minimizing Lateness: Inversions

- An inversion in schedule S is a pair of jobs i and j such that d_i < d_j but j scheduled before i.
 before swap
 after swap
- **Claim.** Swapping two adjacent, inverted jobs red^{'j} ces the number of inversions by one and does not increase the max lateness.
- **Proof:** Let ℓ be the lateness before the swap, and let ℓ ' be the lateness afterwards. $\ell' = f' - d$. (definition)
 - $-\ell'_{k} = \ell_{k}$ for all $k \neq i, j$
 - $\ \ell'_i \leq \ell_i$
 - If job j is late:

$$\ell'_{j} = f'_{j} - d_{j} \qquad \text{(definition)}$$

$$= f_{i} - d_{j} \qquad (j \text{ finishes at time } f_{i})$$

$$\leq f_{i} - d_{i} \qquad (d_{i} < d_{j})$$

$$\leq \ell_{i} \qquad \text{(definition)}$$

Minimizing Lateness: Analysis

Theorem. Greedy schedule S is optimal.

Proof: Define S* to be an optimal schedule that has the fewest number of inversions.

- Can assume S* has no idle time.
- If S^* has no inversions, then $S = S^*$.
- If S* has an inversion, let i-j be an adjacent inversion.
 - Swapping i and j does not increase the maximum lateness and strictly decreases the number of inversions.
 - This contradicts the definition of S^* .

Summary: Greedy Analysis Strategies

- **Greedy algorithm stays ahead.** Show that after each step of the greedy algorithm, its solution is at least as good as any other algorithm's.
- **Structural.** Discover a simple "structural" bound asserting that every possible solution must have a certain value. Then show that your algorithm always achieves this bound.
- **Exchange argument**. Gradually transform any solution to the one found by the greedy algorithm without hurting its quality.