
Sofya Raskhodnikova

Algorithm Design and Analysis

LECTURE 7
Greedy Graph Algorithms

• Shortest paths

• Minimum Spanning Tree

9/14/2016
S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L7.1

The (Algorithm) Design Process

1. Work out the answer for some examples

2. Look for a general principle

– Does it work on *all* your examples?

3. Write pseudocode

4. Test your algorithm by hand or computer

– Does it work on *all* your examples?

– Python is a great language for testing algorithms

5. Prove your algorithm is always correct

6. Check running time

Be prepared to go back to step 1!

9/14/2016 S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L7.2

Writing algorithms

• Clear and unambiguous

– Test: You should be able to hand it to any student in the class,

and have them convert it into working code.

• Homework pitfalls:

– remember to specify data structures (list, stack, hash table,…)

– For each function invocation, specify clearly what variables

are passed to the function and what the function is returning.

– writing recursive algorithms: don’t confuse the recursive

subroutine with the first call

– label global variables clearly

9/14/2016 S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L7.3

Writing proofs

• State upfront the claim you are proving.

• Purpose

– Determine for yourself that algorithm is correct

– Convince reader

• Who is your audience?

– Yourself

– Your classmates

– Not the TA/grader

• Main goal: Find your own mistakes

9/14/2016 S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L7.4

Homework

• Goals:

– Reinforce and clarify material from lecture

– Develop your skills

• Problem-solving

• Communication

• Make sure you understand the solution

• Use the feedback

• If you don’t understand something, ask!

– Me or the TA or on Piazza

• Do not copy from other sources

9/14/2016 S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L7.5

Shortest Paths

9/14/2016
S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L7.6

Shortest Path Problem

• Input:

– Directed graph G = (V, E).

– Source node s, destination node t.

– for each edge e, length (e) = length of e.

– length of a path = sum of lengths of edges on the path

• Find: shortest directed path from s to t.

Length of path (s,2,3,5,t)
is 9 + 23 + 2 + 16 = 50.

s

3

t

2

6

7

4

5

23

18

2

9

14

15
5

30

20

44

16

11

6

19

6

9/14/2016 S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L7.7

Dijksta’s Algorithm: Overview

• Maintain a set of explored nodes S whose shortest path

distance d(u) from s to u is known.

• Initialize S = { s }, d(s) = 0.

• Repeatedly choose unexplored node 𝑣 which minimizes

𝜋 𝑣 = min
𝑒= 𝑢,𝑣 :𝑢∈𝑆

𝑑 𝑢 + ℓ 𝑒

• add 𝑣 to 𝑆, and set 𝑑(𝑣) = (𝑣).
shortest path to some u in explored
part, followed by a single edge (u, v)

s

v

u

d(u)

S

(e)

9/14/2016 S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L7.8

Dijksta’s Algorithm: Overview

• Maintain a set of explored nodes S whose shortest path

distance d(u) from s to u is known.

• Initialize S = { s }, d(s) = 0.

• Repeatedly choose unexplored node 𝑣 which minimizes

𝜋 𝑣 = min
𝑒= 𝑢,𝑣 :𝑢∈𝑆

𝑑 𝑢 + ℓ 𝑒

• add 𝑣 to 𝑆, and set 𝑑(𝑣) = (𝑣).
shortest path to some u in explored
part, followed by a single edge (u, v)

s

v

u

d(u)

S

(e)Intuition: like BFS, but

with weighted edges

Invariant: d(u) is known

for all vertices in S

9/14/2016 S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L7.9

Correctness Proof of Dijkstra’s
(Greedy Stays Ahead)

Invariant. For each node u  S, d(u) is the length of

the shortest path from s to u.

Proof: (by induction on |S|)

• Base case: |S| = 1; d(s)=0.

• Inductive hypothesis: Assume for |S| = k  1.

– Let v be next node added to S, and let (u,v) be the chosen edge.

– The shortest s-u path plus (u,v) is an s-v path of length (v).

– Consider any s-v path P. We'll see that it's no shorter than (v).

– Let (x,y) be the first edge in P that leaves S,

and let P' be the subpath to x.

– P' + (x,y) has length ≥ d(x)+ (x,y) ≥ (y) ≥ (v)

S

s

y

v

x

P

u

P'

9/14/2016 S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne

inductive hypothesis defn of (y) Dijkstra’s chose v instead of y

L7.10

Implementation

•For unexplored nodes, maintain

𝜋 𝑣 = min
𝑒= 𝑢,𝑣 :𝑢∈𝑆

𝑑 𝑢 + ℓ 𝑒

– Next node to explore = node with minimum (v).

– When exploring v, for each edge e = (v,w), update

𝜋 𝑤 = min{𝜋 𝑤 , 𝜋 𝑣 + ℓ 𝑒 .

•Efficient implementation: Maintain a priority

queue Q of unexplored nodes, prioritized by (v).

9/14/2016 S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L7.11

Implementation: priority queues

• Maintain a set of items with priorities (= “keys”)

– Example: jobs to be performed

• Operations:

– INSERT

– DECREASE-KEY

– EXTRACT-MIN: find and remove item with least key

• Common data structure: heap

– Time: O(log n) per operation

9/14/2016 S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L7.12

Demo of Dijkstra’s Algorithm

Graph with
nonnegative
edge lengths:

A

B D

C E

10

3

1 4 7 9
8

2

2

9/14/2016
S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L7.13

Demo of Dijkstra’s Algorithm

A

B D

C E

10

3

1 4 7 9
8

2

2

Initialize:

A B C D EQ:

0    

S: {}

0



 



9/14/2016
S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne

(v):

L7.14

Demo of Dijkstra’s Algorithm

A

B D

C E

10

3

1 4 7 9
8

2

2A B C D EQ:

0    

S: { A }

0



 


EXTRACT-MIN(Q) is A:

9/14/2016
S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne

(v):

L7.15

Demo of Dijkstra’s Algorithm

A

B D

C E

10

3

1 4 7 9
8

2

2A B C D EQ:

0    

S: { A }

0

10

3 



10 3

Explore edges leaving A:

 

9/14/2016
S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne

(v):

L7.16

Demo of Dijkstra’s Algorithm

A

B D

C E

10

3

1 4 7 9
8

2

2A B C D EQ:

0    

S: { A, C }

0

10

3 



10 3

EXTRACT-MIN(Q) is C:

 

9/14/2016
S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne

(v):

L7.17

Demo of Dijkstra’s Algorithm

A

B D

C E

10

3

1 4 7 9
8

2

2A B C D EQ:

0    

S: { A, C }

0

7

3 5

11

10 3

7 11 5

Explore edges leaving C:

 

9/14/2016
S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne

(v):

L7.18

Demo of Dijkstra’s Algorithm

A

B D

C E

10

3

1 4 7 9
8

2

2A B C D EQ:

0    

S: { A, C, E }

0

7

3 5

11

10 3

7 11 5

EXTRACT-MIN(Q) is E:

 

9/14/2016
S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne

(v):

L7.19

Demo of Dijkstra’s Algorithm

A

B D

C E

10

3

1 4 7 9
8

2

2A B C D EQ:

0    

S: { A, C, E }

0

7

3 5

11

10 3  

7 11 5

7 11

Explore edges leaving E:

9/14/2016
S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne

(v):

L7.20

Demo of Dijkstra’s Algorithm

A

B D

C E

10

3

1 4 7 9
8

2

2A B C D EQ:

0    

S: { A, C, E, B }

0

7

3 5

11

10 3  

7 11 5

7 11

EXTRACT-MIN(Q) is B:

9/14/2016
S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne

(v):

L7.21

Demo of Dijkstra’s Algorithm

A

B D

C E

10

3

1 4 7 9
8

2

2A B C D EQ:

0    

S: { A, C, E, B }

0

7

3 5

9

10 3  

7 11 5

7 11

Explore edges leaving B:

9

9/14/2016
S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne

(v):

L7.22

Demo of Dijkstra’s Algorithm

A

B D

C E

10

3

1 4 7 9
8

2

2A B C D EQ:

0    

S: { A, C, E, B, D }

0

7

3 5

9

10 3  

7 11 5

7 11

9

EXTRACT-MIN(Q) is D:

9/14/2016
S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne

(v):

L7.23

Pseudocode for Dijkstra(G, )

d[s]  0
for each v  V – {s}

do d[v] [v] 
S 
Q  V ⊳ Q is a priority queue maintaining V – S,

keyed on [v]
while Q  

do u  EXTRACT-MIN(Q)
S  S  {u}; d[u]  [u]
for each v  Adjacency-list[u]

do if [v] > [u] + (u, v)
then [v]  d[u] + (u, v)

explore
edges

leaving v
Implicit DECREASE-KEY

9/14/2016
S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L7.24

Analysis of Dijkstra

explore
an edge

n
times

\\ m implicit DECREASE-KEY’s.

while Q  
do u  EXTRACT-MIN(Q)

S  S  {u}
for each v  Adj[u]

do if d[v] > d[u] + (u, v)
then d[v]  d[u] + (u, v)

† Individual ops are amortized bounds

PQ Operation

ExtractMin

DecreaseKey

Binary heap

log n

log n

Fib heap †

log n

1

Array

n

1

Total m log n m + n log nn2

Dijkstra

n

m

d-way Heap

HW

HW

m log m/n n

9/14/2016
S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L7.25

Physical intuition

• System of pipes filling with water

– Vertices are intersections

– Edge length = pipe length

– 𝑑(𝑣) = time at which water reaches 𝑣

• Balls and strings

– Vertices ↦ balls

– Edge 𝑒 ↦ string of length ℓ(𝑒)

– Hold ball 𝑠 up in the air

– 𝑑 𝑣 = (height of 𝑠)-(height of 𝑣)

• Nature uses greedy algorithms
9/14/2016 S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L7.26

Review

• Is Dijsktra’s algorithm correct with

negative edge weights?

Give either

– a proof of correctness, or

– an example of a graph where Dijkstra fails

9/14/2016 S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L7.27

Further reading

• Erickson’s lecture notes:
http://web.engr.illinois.edu/~jeffe/teaching/algorithms/notes/21-sssp.pdf

9/14/2016 S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L7.28

http://web.engr.illinois.edu/~jeffe/teaching/algorithms/notes/21-sssp.pdf

Minimum Spanning Tree

9/14/2016
S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L7.29

9/14/2016
S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne

Minimum spanning tree (MST)

Input: A connected undirected graph G = (V, E)
with weight function w : E  R.
• For now, assume all edge weights are distinct.

Definition: A spanning tree is a tree that
connects all vertices.





Tvu

vuwTw
),(

),()(.

Output: A spanning tree T of minimum weight:

L7.30

9/14/2016
S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne

Example of MST

6 12

5

14

3

8

10

15

9

7

L7.31

9/14/2016
S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne

Example of MST

6 12

5

14

3

8

10

15

9

7

L7.32

Greedy Algorithms for MST

• Kruskal's: Start with 𝑇 = ∅. Consider edges in
ascending order of weights. Insert edge e in T unless
doing so would create a cycle.

• Reverse-Delete: Start with 𝑇 = 𝐸. Consider edges
in descending order of weights. Delete edge e from
T unless doing so would disconnect 𝑇.

• Prim's: Start with some root node s. Grow a tree T
from s outward. At each step, add to 𝑇 the cheapest
edge e with exactly one endpoint in 5.

• Borůvka’s: Start with 𝑇 = ∅. At each round, add
the cheapest edge leaving each connected
component of T.

9/14/2016 S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L7.33

9/14/2016 S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne

Cycles and Cuts

•Cycle: Set of edges of the form (a,b),(b,c),…,(y,z),(z,a).

•Cut: a subset of nodes S. The corresponding cutset D is the

subset of edges with exactly one endpoint in S.

Cycle C = (1,2),(2,3),(3,4),(4,5),(5,6),(6,1)

1
3

8

2

6

7

4

5

Cut S = { 4, 5, 8 }
Cutset D = (5,6), (5,7), (3,4), (3,5),
(7,8)

1
3

8

2

6

7

4

5

S

L7.34

9/14/2016 S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne

Cycle-Cut Intersection

• Claim. A cycle and a cutset intersect in an even

number of edges.

• Proof: A cycle has to leave and enter the cut the

same number of times.

S

V - S

C

L7.35

9/14/2016 S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne

Cut and Cycle Properties

•Cut property. Let S be a subset of nodes. Let e be the

min weight edge with exactly one endpoint in S. Then the

MST contains e.

•Cycle property. Let C be a cycle, and let f be the max

weight edge in C. Then the MST does not contain f.

𝑆

e is in the MST

e

f
𝐶

f is not in the MST

L7.36

9/14/2016 S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne

Proof of Cut Property

Cut property: Let S be a subset of nodes. Let e be the min

weight edge with exactly one endpoint in S. Then the MST

T* contains e.

•Proof: (exchange argument)

– Suppose e does not belong to T*.

– Adding e to T* creates a cycle C in T*.

– Edge e is both in the cycle C and in the cutset D corresponding to

S  there exists another edge, say f, that is in both C and D.

– T' = T*  { e } - { f } is also a spanning tree.

– Since ce < cf, cost(T') < cost(T*). Contradiction. ▪

f

T*

e

S

L7.37

9/14/2016 S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne

Proof of Cycle Property

Cycle property: Let C be a cycle in G. Let f be the max

weight edge in C. Then the MST T* does not contain f.

•Proof: (exchange argument)

– Suppose f belongs to T*.

– Deleting f from T* creates a cut S in T*.

– Edge f is both in the cycle C and in the cutset D corresponding to

S  there exists another edge, say e, that is in both C and D.

– T' = T*  { e } - { f } is also a spanning tree.

– Since ce < cf, cost(T') < cost(T*). Contradiction. ▪

f

T*

e

S

L7.38

Greedy Algorithms for MST

• Kruskal's: Start with 𝑇 = ∅. Consider edges in
ascending order of weights. Insert edge e in T unless
doing so would create a cycle.

• Reverse-Delete: Start with 𝑇 = 𝐸. Consider edges
in descending order of weights. Delete edge e from
T unless doing so would disconnect 𝑇.

• Prim's: Start with some root node s. Grow a tree T
from s outward. At each step, add to 𝑇 the cheapest
edge e with exactly one endpoint in 5.

• Borůvka’s: Start with 𝑇 = ∅. At each round, add
the cheapest edge leaving each connected
component of T.

9/14/2016 S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L7.39

9/14/2016 S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne

Prim's Algorithm: Correctness

•Prim's algorithm. [Jarník 1930, Prim 1959]

– Apply cut property to S.

– When edge weights are

distinct, every edge that is

added must be in the MST

– Thus, Prim’s algorithm

outputs the MST

S

L7.40

9/14/2016 S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne

Correctness of Kruskal

• [Kruskal, 1956]: Consider edges

in ascending order of weight.

– Case 1: If adding e to T creates a

cycle, discard e according to cycle

property.

– Case 2: Otherwise, insert e = (u, v)

into T according to cut property where

S = set of nodes in u's connected

component.

Case 1

e

v

u

Case 2

e
S

L7.41

