Algorithm Design and Analysis

LECTURE 7 Greedy Graph Algorithms

- Shortest paths
- Minimum Spanning Tree

Sofya Raskhodnikova

The (Algorithm) Design Process

- 1. Work out the answer for some examples
- 2. Look for a general principle
 - Does it work on *all* your examples?
- 3. Write pseudocode
- 4. Test your algorithm by hand or computer
 - Does it work on *all* your examples?
 - Python is a great language for testing algorithms
- 5. Prove your algorithm is always correct
- 6. Check running time
- Be prepared to go back to step 1!

Writing algorithms

- Clear and unambiguous
 - Test: You should be able to hand it to any student in the class, and have them convert it into working code.
- Homework pitfalls:
 - remember to specify data structures (list, stack, hash table,...)
 - For each function invocation, specify clearly what variables are passed to the function and what the function is returning.
 - writing recursive algorithms: don't confuse the recursive subroutine with the first call
 - label global variables clearly

Writing proofs

- State upfront the claim you are proving.
- Purpose
 - **Determine for yourself** that algorithm is correct
 - Convince reader
- Who is your audience?
 - Yourself
 - Your classmates
 - Not the TA/grader

• Main goal: Find your own mistakes

Homework

- Goals:
 - Reinforce and clarify material from lecture
 - Develop your skills
 - Problem-solving
 - Communication
- Make sure you understand the solution
- Use the feedback
- If you don't understand something, ask!
 Me or the TA or on Piazza
- Do not copy from other sources

Shortest Paths

Shortest Path Problem

• Input:

- Directed graph G = (V, E).
- Source node s, destination node t.
- for each edge e, length $\ell(e) = \text{length of } e$.
- length of a path = sum of lengths of edges on the path
- Find: shortest directed path from s to t.

9/14/2016 S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L7.7

Dijksta's Algorithm: Overview

- Maintain a set of **explored nodes** S whose shortest path distance d(u) from s to u is known.
- Initialize $S = \{s\}, d(s) = 0$.
- Repeatedly choose unexplored node v which minimizes $\pi(v) = \min_{e=(u,v):u\in S} (d(u) + \ell(e))$
- add v to S, and set $d(v) = \pi(v)$.

shortest path to some u in explored part, followed by a single edge (u, v)

Dijksta's Algorithm: Overview

- Maintain a set of explored nodes S whose shortest path distance d(u) from s to u is known.
 Invariant: d(u) is known
- Initialize $S = \{s\}, d(s) = 0$.
- Repeatedly choose unexplored node v which minimizes $\pi(v) = \min_{e=(u,v): u \in S} (d(u) + \ell(e))$
- add v to S, and set $d(v) = \pi(v)$.

shortest path to some u in explored part, followed by a single edge (u, v)

for all vertices in S

Intuition: like BFS, but with weighted edges

Correctness Proof of Dijkstra's (Greedy Stays Ahead)

Invariant. For each node $u \in S$, d(u) is the length of the shortest path from s to u.

Proof: (by induction on |S|)

- **Base case:** |S| = 1; d(s)=0.
- Inductive hypothesis: Assume for $|S| = k \ge 1$.
 - Let v be next node added to S, and let (u,v) be the chosen edge.
 - The shortest s-u path plus (u,v) is an s-v path of length $\pi(v)$.
 - Consider any s-v path P. We'll see that it's no shorter than $\pi(v)$.
 - -Let (x,y) be the first edge in P that leaves S, and let P' be the subpath to x.
 - -P' + (x,y) has length $\geq d(x) + \ell(x,y) \geq \pi(y) \geq \pi(v)$

inductive hypothesis defn of $\pi(y)$ Dijkstra's chose v instead of y

S

S

Implementation

•For unexplored nodes, maintain $\pi(v) = \min_{e=(u,v): u \in S} (d(u) + \ell(e))$

-Next node to explore = node with minimum $\pi(v)$.

-When exploring v, for each edge e = (v,w), update $\pi(w) = \min{\{\pi(w), \pi(v) + \ell(e)\}}$.

•Efficient implementation: Maintain a priority queue Q of unexplored nodes, prioritized by $\pi(v)$.

Implementation: priority queues

- Maintain a set of items with priorities (= "keys")
 Example: jobs to be performed
- Operations:
 - Insert
 - DECREASE-KEY
 - -Extract-Min: find and remove item with least key
- Common data structure: heap
 Time: O(log n) per operation

Graph with nonnegative edge lengths:

Pseudocode for Dijkstra(G, l)

```
d[s] \leftarrow 0
for each v \in V - \{s\}
     do d[v] \leftarrow \infty; \pi[v] \leftarrow \infty
S \leftarrow \emptyset
                    \triangleright Q is a priority queue maintaining V - S,
O \leftarrow V
                       keyed on \pi[v]
while Q \neq \emptyset
     do u \leftarrow \text{Extract-Min}(Q)
          S \leftarrow S \cup \{u\}; d[u] \leftarrow \pi[u]
          for each v \in Adjacency-list[u]
                                                                       explore
               do if \pi[v] > \pi[u] + \ell(u, v)
                                                                         edges
                        then \pi[v] \leftarrow d[u] + \ell(u, v) leaving v

Implicit DECREASE-KEY
```

Analysis of Dijkstra

n times

while $Q \neq \emptyset$ do $u \leftarrow \text{Extract-Min}(Q)$ $S \leftarrow S \cup \{u\}$ for each $v \in Adj[u]$ explore do if $d[v] > d[u] + \ell(u, v)$ an edge then $d[v] \leftarrow d[u] + \ell(u, v)$

\\ *m* implicit DECREASE-KEY's.

PQ Operation	Dijkstra	Array	Binary heap	d-way Heap	Fib heap [†]
ExtractMin	n	n	log n	HW	log n
DecreaseKey	m	1	log n	HW	1
Total		n²	m log n	m log _{m/n} n	m + n log n

† Individual ops are amortized bounds

9/14/2016

S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L7.25

Physical intuition

- System of pipes filling with water
 - Vertices are intersections
 - Edge length = pipe length
 - d(v) = time at which water reaches v
- Balls and strings
 - Vertices \mapsto balls
 - Edge $e \mapsto$ string of length $\ell(e)$
 - Hold ball s up in the air
 - -d(v) = (height of s) (height of v)
- Nature uses greedy algorithms

9/14/2016 S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L7.26

Review

- Is Dijsktra's algorithm correct with negative edge weights? Give either
 - a proof of correctness, or
 - an example of a graph where Dijkstra fails

Further reading

• Erickson's lecture notes:

http://web.engr.illinois.edu/~jeffe/teaching/algorithms/notes/21-sssp.pdf

Minimum Spanning Tree

Minimum spanning tree (MST)

- **Input:** A connected undirected graph G = (V, E) with weight function $w : E \to \mathbb{R}$.
- For now, assume all edge weights are distinct.

Definition: A *spanning tree* is a tree that connects all vertices.

Output: A *spanning tree T* of minimum weight:

$$w(T) = \sum_{(u,v)\in T} w(u,v).$$

Example of MST

Example of MST

Greedy Algorithms for MST

- **Kruskal's:** Start with $T = \emptyset$. Consider edges in ascending order of weights. Insert edge e in T unless doing so would create a cycle.
- **Reverse-Delete:** Start with T = E. Consider edges in descending order of weights. Delete edge e from T unless doing so would disconnect T.
- **Prim's:** Start with some root node s. Grow a tree T from s outward. At each step, add to T the cheapest edge e with exactly one endpoint in 5.
- **Borůvka's:** Start with $T = \emptyset$. At each round, add the cheapest edge leaving each connected component of T.

Cycles and Cuts

•Cycle: Set of edges of the form $(a,b),(b,c),\ldots,(y,z),(z,a)$.

Cycle C = (1,2),(2,3),(3,4),(4,5),(5,6),(6,1)

•Cut: a subset of nodes S. The corresponding cutset D is the subset of edges with exactly one endpoint in S.

Cycle-Cut Intersection

- Claim. A cycle and a cutset intersect in an even number of edges.
- **Proof:** A cycle has to leave and enter the cut the same number of times.

Cut and Cycle Properties

•Cut property. Let S be a subset of nodes. Let e be the min weight edge with exactly one endpoint in S. Then the MST contains e.

•Cycle property. Let C be a cycle, and let f be the max weight edge in C. Then the MST does not contain f.

Proof of Cut Property

Cut property: Let S be a subset of nodes. Let e be the min weight edge with exactly one endpoint in S. Then the MST T* contains e.

- •**Proof:** (exchange argument)
- Suppose e does not belong to T*.
- Adding e to T* creates a cycle C in T*.

- Edge e is both in the cycle C and in the cutset D corresponding to $S \Rightarrow$ there exists another edge, say f, that is in both C and D.
- $-T' = T^* \cup \{e\} \{f\}$ is also a spanning tree.
- Since $c_e < c_f$, $cost(T') < cost(T^*)$. Contradiction.

Proof of Cycle Property

Cycle property: Let C be a cycle in G. Let f be the max weight edge in C. Then the MST T* does not contain f.

•**Proof:** (exchange argument)

- Suppose f belongs to T*.
- Deleting f from T* creates a cut S in T*.

- Edge f is both in the cycle C and in the cutset D corresponding to $S \implies$ there exists another edge, say e, that is in both C and D.
- $-T' = T^* \cup \{e\} \{f\}$ is also a spanning tree.
- Since $c_e < c_f$, $cost(T') < cost(T^*)$. Contradiction.

Greedy Algorithms for MST

- **Kruskal's:** Start with $T = \emptyset$. Consider edges in ascending order of weights. Insert edge e in T unless doing so would create a cycle.
- **Reverse-Delete:** Start with T = E. Consider edges in descending order of weights. Delete edge e from T unless doing so would disconnect T.
- **Prim's:** Start with some root node s. Grow a tree T from s outward. At each step, add to T the cheapest edge e with exactly one endpoint in 5.
- **Borůvka's:** Start with $T = \emptyset$. At each round, add the cheapest edge leaving each connected component of T.

Prim's Algorithm: Correctness

- •Prim's algorithm. [Jarník 1930, Prim 1959]
- -Apply cut property to S.
- -When edge weights are distinct, every edge that is added must be in the MST
- Thus, Prim's algorithm outputs the MST

Correctness of Kruskal

[Kruskal, 1956]: Consider edges in ascending order of weight.
Case 1: If adding e to T creates a cycle, discard e according to cycle

property.

Case 2: Otherwise, insert e = (u, v)
 into T according to cut property where
 S = set of nodes in u's connected
 component.