Algorithm Design and Analysis

L ECTURE 9

Divide and Conquer

» Merge sort

 Counting Inversions

* Binary Search

» EXponentiation
Solving Recurrences
 Recursion Tree Method
» Master Theorem

Sofya Raskhodnikova

9/21/2016
L9.1

Recursion

* Next couple of weeks: recursion
as an algorithms design technique

» Three important classes of algorithms
— Divide and conquer

- Recursion in design and analysis

— Back tracking

o Dynamic programming Recursion in design
and proof of

correctness, but
time/space analysis is
more “global”

9/21/2016

L9.2

Divide and Conquer

— Break up problem into several parts. DI S e
Veni, vidi, vici.

— Solve each part recursively. - Julius Caesar
— Combine solutions to sub-problems into overall solution.

* Most common usage.

— Break up problem of size n into two equal parts of size n/2.
— Solve two parts recursively.

— Combine two solutions into overall solution in linear time.
» Consequence.

— Brute force: ®(n?).
— Divide & conquer: ® (nlogn).

9/21/2016
L9.3

Divide and Conquer

Divide et impera.

— Break up problem into several parts. Veni. vidi. vict

— Solve each part recursively. - Julius Caesar
— Combine solutions to sub-problems into overall solution.
« Examples

— Mergesort, quicksort, binary search

— Geometric problems: convex hull, nearest neighbors, line
Intersection, algorithms for planar graphs

— Algorithms for processing trees
— Many data structures (binary search trees, heaps, k-d trees,...)

9/21/2016
L9.4

Analyzing Recursive Algorithms

 Correctness almost always uses strong induction

1. Prove correctness of base cases
(typically: n < constant)

2. For arbitrary n:

 Assume that algorithm performs correctly
on all input sizes k <n

 Prove that algorithm is correct on input size n

» Time/space analysis: often use recurrence
— Structure of recurrence reflects algorithm

9/21/2016
L9.5

Mergesort

—Divide array into two halves.
—Recursively sort each half.
—Merge two halves to make sorted whole.

Jon von Neumann (1945)

A L G O R I T H M S divide 0O(1)
A G L O R H I M S T sort 2T(n/2)
A G H I L M O R S T merge O(n)

9/21/2016
L9.7

Merging

«Combine two pre-sorted lists into a sorted whole.

*How to merge efficiently?
— Linear number of comparisons.
—Use temporary array.

I -

A

G

S s
H I-

T

>

*Challenge for the bored: in-place merge [Kronrud, 1969]
T

9/21/2016

using only a constant amount of extra storage

L9.8

file:///C:/Users/Sofya/Documents/SVN+CVS-repositories/svn-siis/CSE565/F11/lecture-notes/05demo-merge.ppt#1. Merging
file:///C:/Users/Sofya/Documents/SVN+CVS-repositories/svn-siis/CSE565/F11/lecture-notes/05demo-merge.ppt#1. Merging

Recurrence for Mergesort

[O@)ifn=1,
T = {2T(n/2) + @) ifn> 1.

*T(n) = worst case y{ming time of Mergesort on
an input of size n.

*Should be T([n/21) + T(Ln/2]) , but it turns out
not to matter asymptotically.

*Usually omit the base case because our algorithms
always run in time ®(1) when n iIs a small constant.

» Several methods to find an upper bound on T(n).

L9.9

Recursion Tree Method

» Technique for guessing solutions to recurrences
— Write out tree of recursive calls

— Each node gets assigned the work done during that
call to the procedure (dividing and combining)

— Total work 1s sum of work at all nodes

 After guessing the answer, can prove by
Induction that it works.

9/21/2016 19.10

Recursion Tree for Mergesort

Solve T(n) = 2T(n/2) + cn, where ¢ > 0 Is constant.

T(n)
_— ~~—
T(n/2) T(n/2)
/ AN /. .
=190 Ty T4y T4 T(n/d)

T(/l) [#leaves = n }

L9.11

Recursion Tree for Mergesort

Solve T(n) = 2T(n/2) + cn, where ¢ > 0 Is constant.

Ccn
T
T(n/2) T(n/2)
B /N /N
=190 Ty T4y T4 T(n/d)

T(/l) [#leaves = n }

L9.12

Recursion Tree for Mergesort

Solve T(n) = 2T(n/2) + cn, where ¢ > 0 Is constant.

cn
/ \
cn/2 cn/2
VAN O\

=190 Ty T4y T4 T(n/d)
/
T(n / 2%)

T(/l) [#leaves = n }

L9.13

Recursion Tree for Mergesort

Solve T(n) = 2T(n/2) + cn, where ¢ > 0 Is constant.

cn
/ \
cn/2 cn/2
VAN O\

h=lgn cn cn/4 cn/4 cn/4
/

T(/l) [#leaves = n }

L9.14

Recursion Tree for Mergesort

Solve T(n) = 2T(n/2) + cn, where ¢ > 0 Is constant.

CN s cn
/ \
cn/2 cn/2 cn
) /N /N

=190 e cnia cnia cenia - cn
/

.
/

O(L) #leaves=n | o(n)

Total = ®(n Ig n)

L9.15

Counting Inversions

L9.16

Counting Inversions

*Music site tries to match your song preferences with others.
— You rank n songs.
— Music site consults database to find people with similar tastes.
Similarity metric: number of inversions between two rankings.
— My rank: 1,2, ..., n.
— Your rank: af, a,, ..., a,.

— Songs i and j inverted if i <}J, but a; > 3.

Songs
Al B C|D]E
1 2 3 4 5
You 1 3 4 2 5
_——
Brute force: check all ®(n?) pairs i and j.

Inversions
3-2,4-2

Me

/21/
9/21/2016 1917

Counting Inversions: Algorithm

*Divide-and-conquer

1 5 4 8 10 2 6 9 12 11 3 7

/21/
9/21/2016 1919

Counting Inversions: Algorithm

*Divide-and-conquer
— Divide: separate list into two pieces.

1 5 4 8 10 2 6 9 12 11 3 7 Divide: ©(1).

HERIDORES BREREE

9/21/2016 L9.20

Counting Inversions: Algorithm

*Divide-and-conquer
— Divide: separate list into two pieces.
— Conquer: recursively count inversions in each half.

1 5 4 8 10 2 6 9 12 11 3 7 Divide: ©(1).
DEODOE OREEEE - oo
5 blue-blue inversions 8 green-green inversions

5-4,5-2,4-2,8-2,10-2 6-3,9-3,9-7,12-3,12-7,12-11,11-3, 11-7

9/21/2016

L9.21

Counting Inversions: Algorithm

*Divide-and-conquer
— Divide: separate list into two pieces.
— Conquer: recursively count inversions in each half.

— Combine: count inversions where &; and g; are in different halves,
and return sum of three quantities.

1 5 4 8 10 2 6 9 12 11 3 7 Divide: ©(1).
DOODDE DEEDEE - oo

5 blue-blue inversions 8 green-green inversions

9 blue-green inversions Combine: 277

5-3, 4-3, 8-6, 8-3, 8-7,10-6, 10-9, 10-3, 10-7
Total =5+ 8 +9 =22,

9/21/2016
L9.22

Counting Inversions: Combine

Combine: count blue-green inversions

— Assume each half is sorted. >
— Count inversions where &; and g; are in different halves.

— Merge two sorted halves into sorted whole.

to maintain sorted invariant

IEDDDE BOREED
6 3 2 2 0 0

13 blue-green inversions: 6 +3+2+2+0+0 Count: O(n)
2 3 7 10 1 14 16 17 18 19 23 25 Merge: ©O(n)

T(n)=2T(n/2) + ® (n). Solution: T(n) = ® (n log n).

9/21/2016 L9 .23

file:///C:/Users/Sofya/Documents/SVN+CVS-repositories/svn-siis/CSE565/F11/lecture-notes/05demo-merge-invert.ppt#1. Merge and Count
file:///C:/Users/Sofya/Documents/SVN+CVS-repositories/svn-siis/CSE565/F11/lecture-notes/05demo-merge-invert.ppt#1. Merge and Count

Implementation

Pre-condition. [Merge-and-Count] A and B are sorted.
Post-condition. [Sort-and-Count] L is sorted.

Sort-and-Count (L) {
if list L has one element
return 0 and the list L

Divide the list into two halves A and B
(rp, A) < Sort-and-Count (A)

(rg, B) <« Sort-and-Count (B)

(r , L) <« Merge-and-Count(A, B)

return r = r, + r; + r and the sorted list L

}

9/21/2016 L9 24

Binary search

Find an element in a sorted array:

1. Divide: Check middle element.

2. Conquer: Recursively search 1 subarray.
3. Combine: Trivial.

Example: Find 9
3 5 7 8 9 12 15

9/21/2016 L9 25

Binary search

Find an element in a sorted array:

1. Divide: Check middle element.

2. Conquer: Recursively search 1 subarray.
3. Combine: Trivial.

Example: Find 9
3 5 7 8 9 12 15

9/21/2016 L9 26

Binary search

Find an element in a sorted array:

1. Divide: Check middle element.

2. Conquer: Recursively search 1 subarray.
3. Combine: Trivial.

Example: Find 9
3 5 7 8 9 12 15

9/21/2016 L9 27

Binary search

Find an element in a sorted array:

1. Divide: Check middle element.

2. Conquer: Recursively search 1 subarray.
3. Combine: Trivial.

Example: Find 9
3 5 7 8 9 12 15

9/21/2016 L9 28

Binary search

Find an element in a sorted array:

1. Divide: Check middle element.

2. Conquer: Recursively search 1 subarray.
3. Combine: Trivial.

Example: Find 9
3 5 7 8 9 12 15

9/21/2016 L9 29

Binary search

Find an element in a sorted array:

1. Divide: Check middle element.

2. Conquer: Recursively search 1 subarray.
3. Combine: Trivial.

Example: Find 9
3 5 7 8 9 12 15

9/21/2016 1930

Recurrence for binary search

T(n)=1T(n/2) + ©(1)

\ - - -
subproblems work dividing

subproblem size and combining

L9.32

Recurrence for binary search

T(n) =1T(n/2) + B(1)

\ - - -
subproblems work dividing

subproblem size and combining

= T(n)=T(n/2) + ¢ =T(n/4) + 2c

=cllogn]| + 0(1)=0(lgn) .

L9.33

Review Question: Exponentiation

Problem: Compute a°, where b € ¥is n bits long.
Question: How many multiplications?

Naive algorithm: ®(b) = ®(2") (exponential

. In the Input length!)
Divide-and-conquer algorithm:

b = abiz x gb’? iIf b is even;
a-bzx ad-lzxa ifbis odd.

T(b) = T(b/2) + ©(1) = T(b) = O(logb) = O(n) .

L9.34

So far: 2 recurrences

» Mergesort; Counting Inversions

T(n) =2 T(n/2) + ®(n) = 0(n log n)
 Binary Search; Exponentiation
T(n)=1T(n/2) + B(1) = 0(log n)

Master Theorem: method for solving recurrences.

L9.35

Master Theorem

L9.36

The master method

The master method applies to recurrences of
the form

T(n) = aT(n/b) + f(n),

wherea > 1,b > 1, and f I1s asymptotically
positive, that is f (n) >0 forall n > n,,.

First step: compare f (n) to n'o%2,

L9.37

|dea of master theorem

Recursion tree:
fn)_
P A
f(n/b) f(n/b) --- f(n/b)
P N

f(n/b2) f(n/b2) -+ f(n/b2)
/

(1)

L9.38

|dea of master theorem

Recursion tree:

f(n) f(n)
T S
f(n/b) f(n/b) --- f(n/b)— af(n/b)
><a
f(n/b?) f(n/b?) --- f(n/b?) —————m azf(n/b?)
/

()

L9.39

|dea of master theorem

Recursion tree:

A () E— f(n)
T
f(n/b) f(n/b) - f(n/b)—af(n/b)
h = log,n /\/‘)\a
f(n/b2) f(n/b2) - f(n/h2) s a2f (n/b2)
/

()

\4

L9.40

|dea of master theorem

Recursion tree:

A f () f(n)
P e
t(nib) F(ib) - f(n/b)——af (n/b)
h = log,n /\/*)\a
f(n/b2) F(/b2) -~ F(/2) e a2f (n/b?)
/
#leaves = a" .

T/]_ ------------------------ = alogbn IogbaT 1

Y () g — nlogba/ n ()

L9.41

|dea of master theorem

A

Recursion tree:

h =log,n

\4

f(n/b2) f(n/b2) - f(n/b2)
/

(1)

() ——

/M

f(n/b) f(n/b) --- f(n/b)—

/\f_)\a

: (CASE 1: The weight increases A

geometrically from the root to the
leaves. The leaves hold a constant

{raction of the total weight. y

____nlogba T(l)
@(nlogba)

L9.42

|dea of master theorem

Recursion tree:

A f(n) f(n)
e e N
f(n/b) f(n/b) --- f(n/b)-——af(n/b)
h=logn ~——<&
f(n/b2) f(n/b2) -+ f(N/h2) a2f (n/h2)
/
 (CASE 2: (k = 0) The weight
______ IS approximately the sameon|
VT each of the log,n levels. e 7(d)

®(n'°9va|g n)

L9.43

|dea of master theorem

Recursion tree:

| f(n) e f(n)
e e
f(n/b) f(n/b) --- f(n/b)— af(n/b)
h=logn <&
f(n/b?) f(n/b?) --- f(n/b?) asf(n/b?)
/
* (CASE 3: The weight decreases
/" |geometrically from the root to the
| 7°(1) |leaves. The root holds a constant {Nn'°%2 7(1)
fraction of the total weight.

O(t(n))

L9.44

Master Theorem: 3 common cases

Compare f(n) with n'ogz;
1. f(n) = O(n'o%2-2) for some constant ¢ > 0.

« f(n) grows polynomially slower than n'o%?
(by an n¢ factor).

Solution: T(n) = ®(n'o9a)

L9.45

Master Theorem: 3 common cases

Compare f(n) with n'ogz;
1. f(n) = O(n'o%a- <) for some constant ¢ > 0.

« f(n) grows polynomially slower than n'o%?
(by an n¢ factor).

Solution: T(n) = ®(n'o9a)
2. f(n) = ®(n'%2|gkn) for some constant k > 0.

e f(n) and n'°%2 grow at similar rates.
Solution: T(n) = ®(n'e%a [gk+in)

L9.46

Master Theorem: 3 common cases

Compare f(n) with n'ogz;
3. f(n) = Q(n'o%a+s) for some constant € > 0.

« f(n) grows polynomially faster than n'cda
(by an n® factor),

and f(n) satisfies the reqularity condition that
af(n/b) <cf(n) for some constant c < 1.

Solution: T(n) = O(f(n)).

L9.47

Examples

Ex. T(n) =4T(n/2) +n
a=4,b=2=nlo%a=n2 f(n) =n.
Case 1: f(n) = O(n*—¢) fore = 1.
- T(n) = ©(n?).

L9.48

Examples

Ex. T(n) =4T(n/2) +n
a=4,b=2=nlo%a=n2 f(n) =n.
Case 1: f(n) = O(n?—¢) for e = 1.
- T(n) = ©(n?).

Ex. T(n) =4T(n/2) + n?
a=4,b=2=nlgwa=n? f(n) =n2
Cast 2: f(n) = ©(n?lg®n), that is, k = 0.
- T(n) = ©(n?lgn).

L9.49

Examples

Ex. T(n) =4T(n/2) + n3
a=4,b=2=nloga=n? f(n) =nd
Case 3:f(n)=Q((n?*¢) fore =1
and 4(n/2)? < cn®(reg. cond.) for ¢ = 1/2.
- T(n) = O(n3d).

L9.50

Examples

Ex. T(n) =4T(n/2) + n3
a=4,b=2=nloga=n? f(n) =nd
Case 3:f(n)=Q(n?*¢) fore =1
and 4(n/2)? < cn®(reg. cond.) for ¢ = 1/2.
- T(n) = O(n3d).

Ex. T(n) =4T(n/2) + n4/lgn
a=4,b=2=nl%a=n2 f(n) =n?lgn.
Master method does not apply. In particular,
for every constant € > 0, we have n¢ =w(lgn).

L9.51

Notes on Master Theorem

» Master Thm was generalized by Akra and Bazzi

to cover many maore recurrences:
k

T(n)= f(n +Zu T(bin+ h;i(n))

where hla (”) T ()(l(jﬂ' i))

e SEe the wikipedia article on Akra-Bazzi method and pointers
from there.

9/21/2016
L9.52

Integer multiplication

L9.53

Arithmetic on Large Integers

« Addition: Given n-bit integers a, b (in binary), compute
c=a+b

« Multiplication: Given n-bit
Integers a, b, compute c=ab
» Nalive (grade-school) algorithm:

9/21/2016

— O(n) bit operations.

— Write a,b in binary

— Compute n intermediate
products

— Do n additions
— Total work: ®(n?)

a 1a. ., ... dg

X
b, b, ... b,
n bits
n bits 0
n bits 00 ---0

2n bit output

L9.54

Multiplying large integers

» Divide and Conquer (warmup):
— Write a=A, 2"+ A,
b =B, 2"? + B,
—Wewantab =A B, 2"+ (AB, + B,A,) 2"? + A B,
— Multiply n/2 —bit integers recursively
— T(n) =4T(n/2) + B(n)
— Alas! this is still ®(n?) (Master Theorem, Case 1)

9/21/2016 L9 55

