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Algorithm Design and Analysis

LECTURE 9
Divide and Conquer

• Merge sort

• Counting Inversions

• Binary Search

• Exponentiation

Solving Recurrences

• Recursion Tree Method

• Master Theorem
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Recursion

• Next couple of weeks: recursion 

as an algorithms design technique

• Three important classes of algorithms

– Divide and conquer

– Back tracking

– Dynamic programming

9/21/2016

Recursion in design and analysis

Recursion in design 

and proof of 

correctness, but 

time/space analysis is 

more “global”
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Divide and Conquer

– Break up problem into several parts.

– Solve each part recursively.

– Combine solutions to sub-problems into overall solution.

• Most common usage.

– Break up problem of size n into two equal parts of size n/2.

– Solve two parts recursively.

– Combine two solutions into overall solution in linear time.

• Consequence. 

– Brute force: (𝑛2).

– Divide & conquer:  (𝑛 log 𝑛).

Divide et impera.

Veni, vidi, vici.

- Julius Caesar
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Divide and Conquer

– Break up problem into several parts.

– Solve each part recursively.

– Combine solutions to sub-problems into overall solution.

• Examples

– Mergesort, quicksort, binary search

– Geometric problems: convex hull, nearest neighbors, line 

intersection, algorithms for planar graphs

– Algorithms for processing trees

– Many data structures (binary search trees, heaps, k-d trees,…)

Divide et impera.

Veni, vidi, vici.

- Julius Caesar
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Analyzing Recursive Algorithms

• Correctness almost always uses strong induction

1. Prove correctness of base cases 

(typically: 𝑛 ≤ 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡)

2. For arbitrary 𝑛:

• Assume that algorithm performs correctly 

on all input sizes 𝑘 < 𝑛

• Prove that algorithm is correct on input size 𝑛

• Time/space analysis: often use recurrence

– Structure of recurrence reflects algorithm

9/21/2016
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Mergesort

– Divide array into two halves.

– Recursively sort each half.

– Merge two halves to make sorted whole.

merge

sort

divide

A L G O R I T H M S

A L G O R I T H M S

A G L O R H I M S T

A G H I L M O R S T

Jon von Neumann (1945)

O(n)

2T(n/2)

O(1)
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Merging

•Combine two pre-sorted lists into a sorted whole.

•How to merge efficiently?

– Linear number of comparisons.

– Use temporary array.

•Challenge for the bored:  in-place merge  [Kronrud, 1969]

using only a constant amount of extra storage

A G L O R H I M S T

A G H I
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Recurrence for Mergesort

•T(𝑛)  = worst case running time of Mergesort on 

an input of size n.

•Should be T( n/2 ) + T( n/2 ) , but it turns out 

not to matter asymptotically.

•Usually omit the base case because our algorithms 

always run in time (1) when n is a small constant.

• Several methods to find an upper bound on T(n).

T(n) =
(1) if n = 1;

2T(n/2) + (n) if n > 1.
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Recursion Tree Method

• Technique for guessing solutions to recurrences

– Write out tree of recursive calls

– Each node gets assigned the work done during that 

call to the procedure (dividing and combining)

– Total work is sum of work at all nodes

• After guessing the answer, can prove by 

induction that it works.
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Recursion Tree for Mergesort

Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.

T(n)

T(n/4) T(n/4) T(n/4) T(n/4)

T(n/2) T(n/2)

T(1)

T(n / 2k)

h = lg n

#leaves = n
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Recursion Tree for Mergesort

Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.

T(n/4) T(n/4) T(n/4) T(n/4)

T(n/2) T(n/2)

T(1)

T(n / 2k)

cn

h = lg n

#leaves = n
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Recursion Tree for Mergesort

Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.

T(n/4) T(n/4) T(n/4) T(n/4)

T(1)

T(n / 2k)

cn

cn/2 cn/2

h = lg n

#leaves = n
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Recursion Tree for Mergesort

Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.

T(1)

T(n / 2k)

cn

cn/2 cn/2

cn/4 cn/4 cn/4 cn/4h = lg n

#leaves = n
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Recursion Tree for Mergesort

Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.

cn

cn/4 cn/4 cn/4 cn/4

cn/2 cn/2

(1)

h = lg n

cn

cn

cn

#leaves = n (n)

Total = (n lg n)

…T(n / 2k)
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Counting inversions

9/21/2016
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•Music site tries to match your song preferences with others.

– You rank n songs.

– Music site consults database to find people with similar tastes.

•Similarity metric: number of inversions between two rankings.

– My rank:  1, 2, …, n.

– Your rank:  a1, a2, …, an.

– Songs i and j inverted if i < j, but ai > aj.

•Brute force: check all (n2) pairs i and j.

Counting Inversions

You

Me

1 43 2 5

1 32 4 5

A B C D E

Songs

Inversions

3-2, 4-2

S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L9.17



9/21/2016

Counting Inversions: Algorithm

•Divide-and-conquer

4 8 10 21 5 12 11 3 76 9
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Counting Inversions: Algorithm

•Divide-and-conquer

– Divide:  separate list into two pieces.

4 8 10 21 5 12 11 3 76 9

4 8 10 21 5 12 11 3 76 9

Divide: (1).
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Counting Inversions: Algorithm

•Divide-and-conquer

– Divide:  separate list into two pieces.

– Conquer: recursively count inversions in each half.

4 8 10 21 5 12 11 3 76 9

4 8 10 21 5 12 11 3 76 9

5 blue-blue inversions 8 green-green inversions

Divide: (1).

Conquer:  2T(n / 2)

5-4, 5-2, 4-2, 8-2, 10-2 6-3, 9-3, 9-7, 12-3, 12-7, 12-11, 11-3, 11-7
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Counting Inversions: Algorithm

•Divide-and-conquer

– Divide:  separate list into two pieces.

– Conquer: recursively count inversions in each half.

– Combine: count inversions where ai and aj are in different halves, 

and return sum of three quantities.

4 8 10 21 5 12 11 3 76 9

4 8 10 21 5 12 11 3 76 9

5 blue-blue inversions 8 green-green inversions

Divide: (1).

Conquer:  2T(n / 2)

Combine:  ???9 blue-green inversions

5-3, 4-3, 8-6, 8-3, 8-7, 10-6, 10-9, 10-3, 10-7

Total = 5 + 8 + 9 = 22.
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16 17 23 252 11

6 3 2 2 0 0

Counting Inversions:  Combine

Combine:  count blue-green inversions 

– Assume each half is sorted.

– Count inversions where ai and aj are in different halves. 

– Merge two sorted halves into sorted whole. 

to maintain sorted invariant

13 blue-green inversions:  6 + 3 + 2 + 2 + 0 + 0 Count: (n)

Merge:  (n)

10 14 18 193 7

7 10 11 142 3 18 19 23 2516 17

T(n) = 2T(n/2) +  (n). Solution: T(n) =  (n log n).

S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L9.23
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Implementation

•Pre-condition. [Merge-and-Count] A and B are sorted.

•Post-condition.  [Sort-and-Count] L is sorted.

Sort-and-Count(L) {

if list L has one element

return 0 and the list L

Divide the list into two halves A and B

(rA, A)  Sort-and-Count(A)

(rB, B)  Sort-and-Count(B)

(rB, L)  Merge-and-Count(A, B)

return r = rA + rB + r and the sorted list L

}
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Binary search

Example: Find 9

3 5 7 8 9 12 15

Find an element in a sorted array:

1. Divide: Check middle element.

2. Conquer: Recursively search 1 subarray.

3. Combine: Trivial.
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Binary search

Example: Find 9

3 5 7 8 9 12 15

Find an element in a sorted array:

1. Divide: Check middle element.

2. Conquer: Recursively search 1 subarray.

3. Combine: Trivial.
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Binary search

Example: Find 9

3 5 7 8 9 12 15

Find an element in a sorted array:

1. Divide: Check middle element.

2. Conquer: Recursively search 1 subarray.

3. Combine: Trivial.
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Binary search

Example: Find 9

3 5 7 8 9 12 15

Find an element in a sorted array:

1. Divide: Check middle element.

2. Conquer: Recursively search 1 subarray.

3. Combine: Trivial.
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Binary search

Example: Find 9

3 5 7 8 9 12 15

Find an element in a sorted array:

1. Divide: Check middle element.

2. Conquer: Recursively search 1 subarray.

3. Combine: Trivial.
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Binary search

Find an element in a sorted array:

1. Divide: Check middle element.

2. Conquer: Recursively search 1 subarray.

3. Combine: Trivial.

Example: Find 9

3 5 7 8 9 12 15
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Recurrence for binary search

T(n) = 1 T(n/2) + (1)

# subproblems

subproblem size

work dividing 
and combining
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Recurrence for binary search

T(n) = 1 T(n/2) + (1)

# subproblems

subproblem size

work dividing 
and combining

 T(n) = T(n/2) + c = T(n/4) + 2c

= c log 𝑛 + O(1)= (lg n) . 
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Review Question: Exponentiation

Problem: Compute a b, where 𝑏 ∈ℕ is n bits long.

Question: How many multiplications?

a b =
a b/2 × a b/2 if b is even;

a (b–1)/2 × a (b–1)/2 × a if b is odd.

Divide-and-conquer algorithm:

T(b) = T(b/2) + (1)   T(b) = (log b) = (n) . 

Naive algorithm: (b) = (2n)   (exponential 

in the input length!)

Naive algorithm:

S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L9.34



9/21/2016

So far: 2 recurrences

• Mergesort; Counting Inversions

T(n) = 2 T(n/2) + (n) = (n log n)

• Binary Search; Exponentiation

T(n) = 1 T(n/2) + (1) = (log n)

Master Theorem: method for solving recurrences.
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Master Theorem

9/21/2016
S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L9.36



9/21/2016

The master method

The master method applies to recurrences of 

the form

T(n) = a T(n/b) + f (n) , 

where a  1, b > 1, and f is asymptotically 
positive, that is f (n) >0 for all n > n0. 

First step: compare f (n) to nlogba.
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f (n/b)

Idea of master theorem

f (n/b) f (n/b)

T (1)

Recursion tree:

…

f (n)
a

f (n/b2)f (n/b2) f (n/b2)…

a
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f (n/b)

Idea of master theorem

f (n/b) f (n/b)

T (1)

Recursion tree:

…

f (n)
a

f (n/b2)f (n/b2) f (n/b2)…

a

f (n)

a f (n/b)

a2 f (n/b2)

…
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f (n/b)

Idea of master theorem

f (n/b) f (n/b)

T (1)

Recursion tree:

…

f (n)
a

f (n/b2)f (n/b2) f (n/b2)…

ah = logbn

f (n)

a f (n/b)

a2 f (n/b2)

…
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nlogbaT (1)

f (n/b)

Idea of master theorem

f (n/b) f (n/b)

T (1)

Recursion tree:

…

f (n)
a

f (n/b2)f (n/b2) f (n/b2)…

ah = logbn

f (n)

a f (n/b)

a2 f (n/b2)

#leaves = ah

= alogbn

= nlogba

…
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f (n/b)

Idea of master theorem

f (n/b) f (n/b)

T (1)

Recursion tree:

…

f (n)
a

f (n/b2)f (n/b2) f (n/b2)…

ah = logbn

f (n)

a f (n/b)

a2 f (n/b2)

CASE 1: The weight increases 
geometrically from the root to the 
leaves. The leaves hold a constant 
fraction of the total weight.

(nlogba)

…

nlogbaT (1)
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f (n/b)

Idea of master theorem

f (n/b) f (n/b)

T (1)

Recursion tree:

…

f (n)
a

f (n/b2)f (n/b2) f (n/b2)…

ah = logbn

f (n)

a f (n/b)

a2 f (n/b2)

CASE 2: (k = 0) The weight 
is approximately the same on 
each of the logbn levels.

(nlogbalg n)

…

nlogbaT (1)
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f (n/b)

Idea of master theorem

f (n/b) f (n/b)

T (1)

Recursion tree:

…

f (n)
a

f (n/b2)f (n/b2) f (n/b2)…

ah = logbn

f (n)

a f (n/b)

a2 f (n/b2)

…CASE 3: The weight decreases 
geometrically from the root to the 
leaves. The root holds a constant 
fraction of the total weight.

nlogbaT (1)

( f (n))
S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L9.44
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Master Theorem: 3 common cases

Compare f (n) with nlogba:

1. f (n) = O(nlogba – e) for some constant e > 0.

• f (n) grows polynomially slower than nlogba

(by an ne factor).

Solution: T(n) = (nlogba) .
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Master Theorem: 3 common cases

Compare f (n) with nlogba:

1. f (n) = O(nlogba – e) for some constant e > 0.

• f (n) grows polynomially slower than nlogba

(by an ne factor).

Solution: T(n) = (nlogba) .

2. f (n) = (nlogba lgkn) for some constant k  0.

• f (n) and nlogba grow at similar rates.

Solution: T(n) = (nlogba lgk+1n) .
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Master Theorem: 3 common cases

Compare f (n) with nlogba:

3. f (n) = W(nlogba + e) for some constant e > 0.

• f (n) grows polynomially faster than nlogba

(by an ne factor),

and f (n) satisfies the regularity condition that 
a f (n/b)  c f (n) for some constant c < 1.

Solution: T(n) = ( f (n)) .
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Examples

EX. T(n) = 4T(n/2) + n
a = 4, b = 2  nlogba = n2; f (n) = n.
CASE 1: f (n) = O(n2 – e) for e = 1.
 T(n) = (n2).

S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L9.48
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Examples

EX. T(n) = 4T(n/2) + n
a = 4, b = 2  nlogba = n2; f (n) = n.
CASE 1: f (n) = O(n2 – e) for e = 1.
 T(n) = (n2).

EX. T(n) = 4T(n/2) + n2

a = 4, b = 2  nlogba = n2; f (n) = n2.
CASE 2: f (n) = (n2lg0n), that is, k = 0.

 T(n) = (n2lg n).
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Examples

EX. T(n) = 4T(n/2) + n3

a = 4, b = 2  nlogba = n2; f (n) = n3.
CASE 3: f (n) = W(n2 + e) for e = 1

and 4(n/2)3  cn3 (reg. cond.) for c = 1/2.
 T(n) = (n3).

S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L9.50
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Examples

EX. T(n) = 4T(n/2) + n3

a = 4, b = 2  nlogba = n2; f (n) = n3.
CASE 3: f (n) = W(n2 + e) for e = 1

and 4(n/2)3  cn3 (reg. cond.) for c = 1/2.
 T(n) = (n3).

EX. T(n) = 4T(n/2) + n2/lgn
a = 4, b = 2  nlogba = n2; f (n) = n2/lgn.
Master method does not apply.  In particular, 
for every constant e > 0, we have ne = w(lgn).
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Notes on Master Theorem

• Master Thm was generalized by Akra and Bazzi

to cover many more recurrences:

where

• See the wikipedia article on Akra–Bazzi method and pointers 

from there.

9/21/2016
S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L9.52



Integer multiplication
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Arithmetic on Large Integers

• Addition: Given n-bit integers a, b (in binary), compute 

c=a+b

– O(𝑛) bit operations.

• Multiplication: Given n-bit 

integers a, b, compute c=ab

• Naïve (grade-school) algorithm:

– Write a,b in binary

– Compute n intermediate 

products

– Do n additions

– Total work: (n2)

an-1 an-2 … a0

bn-1 bn-2 … b0

n bits

n bits

n bits

2n bit output

0

0 0    0

×
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Multiplying large integers

• Divide and Conquer (warmup):

– Write a = A1 2n/2 + A0

b = B1 2n/2 + B0

– We want ab = A1B1 2n + (A1B0 + B1A0) 2
n/2 + A0B0

– Multiply n/2 –bit integers recursively

– T(n) = 4T(n/2) + (n)

– Alas! this is still (n2) (Master Theorem, Case 1) 
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