Algorithm Design and Analysis

L ECTURE 10

Divide and Conquer

 Closest Pair of Points

* Integer Multiplication

« Matrix Multiplication

* Median and Order
Statistics

Sofya Raskhodnikova

L10.1

Review questions

 Find the solution to the recurrence using MT-:
T(n)=8T(n/2)+cn.

 Draw the recursion tree for this recurrence.
a. What is its height?

b. What Is the number of leaves in the tree?

9/26/2016 110.2

Review questions

 Find the solution to the recurrence using MT-:
T(n)=8T(n/2)+cn.
(Answer: ©(n3).)
 Draw the recursion tree for this recurrence.
a. What is its height?
(Answer: h=log n.)
b. What is the number of leaves in the tree?
(Answer: 8 = 809N =plog8=p3)

9/26/2016 1103

Review guestions: recursion tree

Solve T(n)=8T(n/2)+cn:

0 1 — cn
B
c(n/2) C(N/2) s 4cn
c(nfd) c(n/4) c(n/d) (n/4) 1ecn
/
/
o) Total = cn(1+4+4%+43+ . +n?)

= ®(n3) geometric series

/26/
9/26/2016 L10.4

Reminder: geometric series

1_ Xn-l-l
1—X
5 1

+--.="— forlx <1
1-X

2

1+ X+ X +---+ X" = for x = 1

14+ X4+ X

L10.5

Divide and Conquer

— Break up problem into several parts.
— Solve each part recursively.
— Combine solutions to sub-problems into overall solution.

Divide et impera.
Veni, vidi, vici.
- Julius Caesar

9/26/2016
L10.6

Closest Pair of Points

L10.7

Closest Pair of Points

Given n points in the plane, find a pair with smallest
Euclidean distance between them.

» Fundamental geometric primitive.

— Graphics, computer vision, geographic information systems,
molecular modeling, air traffic control.

— Special case of nearest neighbor, Euclidean MST, Voronoi.

fast closest pair inspired fast algorithms for these problems

 Brute force:
Check all pairs of points p and q with ®(n?) comparisons.
« 1-D version: O(n log n) is easy if points are on a line.

« Assumption: No two points have same X coordinate.
r

to make presentation cleaner
9/26/2016 110.8

Closest Pair of Points: First Attempt

 Divide. Sub-divide region into 4 quadrants.

L10.9

Closest Pair of Points: First Attempt

 Divide. Sub-divide region into 4 quadrants.
» Obstacle. Impossible to ensure n/4 points in each piece.

L10.10

Closest Pair of Points

 Algorithm.

— Divide: draw vertical line L, so that roughly n/2 points on each side.

9/26/2016

L10.11

Closest Pair of Points

 Algorithm.

— Divide: draw vertical line L, so that roughly n/2 points on each side.
— Conquer: find closest pair in each side recursively.

9/26/2016

L10.12

Closest Pair of Points

 Algorithm.

— Divide: draw vertical line L, so that roughly n/2 points on each side.

— Conquer: find closest pair in each side recursively.

seems like ®(n?)

— Combine: find closest pair with one point in each side; return best of 3

solutions.

9/26/2016

1L10.13

Closest Pair of Points

 Find closest pair with one point in each side, assuming that distance < o.

. L .
- s / . |

9/26/2016

L10.14

Closest Pair of Points

 Find closest pair with one point in each side, assuming that distance < o.
— Observation: only need to consider points within o of line L.

9/26/2016

L10.15

Closest Pair of Points

 Find closest pair with one point in each side, assuming that distance < o.
— Observation: only need to consider points within o of line L.
— Sort points in 25-strip by their y coordinate.

9/26/2016

L10.16

Closest Pair of Points

 Find closest pair with one point in each side, assuming that distance < o.
— Observation: only need to consider points within o of line L.

— Sort points in 25-strip by their y coordinate.
. Theorem: Only need to check distances of those
within 11 positions in sorted list!

9/26/2016

L10.17

Closest Pair of Points

Definition. Let s; be the point in the 25-strip,
with the it" smallest y-coordinate.

Claim. If |i—j| = 12, then the distance O —|
between s; and s; Is at least d. (o1)
Proof:
— No two points lie in same 6/2-by-6/2 box “ 5/2
because otherwise min distance would by < 8. 2 rows
— Two points at least 2 rows apart (29) © 6/2
- > . v
have distance > 2(5/2). .0 © -
Fact. Still true if we replace 12 with 7. o
25)
00
9/26/2016 8 6

1L10.18

Closest Pair Algorithm

Closest-Pair(p,, .., P,) {
Compute separation line L such that half the points
are on one side and half on the other side. O(n log n)
8, = Closest-Pair (left half)
8, = Closest-Pair (right half) 2T(n/ 2)
0 = min(d,;, 9,)
Delete all points further than 8 from separation line L CKH)
Sort remaining points by y-coordinate. (D(nlog ﬂ)

9/26/2016

Scan points in y-order and compare distance between
each point and next 11 neighbors. If any of these an)
distances is less than §, update 6.

return 9.

L10.19

Closest Pair of Points: Analysis

. Running time. T(n) < 2T(n/2) + O(nlogn) = T(n) = O(nlog”n)

by case 2 of Mater Theorem
« Q. Can we achieve O(n log n)?
« A. Yes. Don't sort points in strip from scratch each time.

— Sort entire point set by x-coordinate only once

— Each recursive call takes as input a set of points sorted by

X coordinates and returns the same points sorted by y coordinate (together
with the closest pair)

— Create new y-sorted list by merging two outputs from recursive calls
TotalTime(n) =O(nlog(n)) +T (n)

T(n) < 2T(n/2) + O(n) = T(n) = O(nlogn)

9/26/2016
L10.20

Divide and Conquer in Low-Dimensional Geometry

» Powerful technique for low-dimensional geometric problems
— Intuition: points in different parts of the plane don’t interfere too much

— Example: convex hull in O(n log (n)) time a la MergeSort

1. Convex-Hull(left-half) T(n/2)
2. Convex-Hull(right-half) T(n/2)
3. Merge (see Cormen et al., Chap 33) O(n) >

9/26/2016 L10.21

Integer multiplication

L10.22

Arithmetic on Large Integers

« Addition: Given n-bit integers a, b (in binary), compute
c=a+b

« Multiplication: Given n-bit
Integers a, b, compute c=ab
» Nalive (grade-school) algorithm:

9/26/2016

— O(n) bit operations.

— Write a,b in binary

— Compute n intermediate
products

— Do n additions
— Total work: ®(n?)

a 1a. ., ... dg

X
b, b, ... b,
n bits
n bits 0
n bits 00 ---0

2n bit output

1L.10.23

Multiplying large integers

» Divide and Conquer (warmup):
— Write a=A, 2"+ A,
b =B, 2"? + B,
—Wewantab =A B, 2"+ (AB, + B,A,) 2"? + A B,
— Multiply n/2 —bit integers recursively
— T(n) =4T(n/2) + B(n)
— Alas! this is still ®(n?) (Master Theorem, Case 1)

9/26/2016 L10.24

Multiplying large integers

» Divide and Conquer (Karatsuba’s algorithm):
— Write a=A, 2"+ A,
b =B, 2" + B,
— Wewantab=AB, 2"+ (A,B, + B/A,) 22 + A B,
— Multiply n/2 —bit integers recursively

— Karatsuba’s idea:
(AgtAy) (By + By) = AgBy + AB, + (AgB; + BiA)
— We can get away with 3 multiplications! (in yellow)
X=AB; Y=ABy, Z=(As+A)(By+By)
— Now we use ab = A;B; 2" + (A,B, + B,A,) 2V + A B,
= X 20+ (Zxy) 2y

9/26/2016 L10.25

Implementation of Multiplication

MuLTIPLY (N, X, V)
\\ x and y are n-bit integers
\\ Assume n is a power of 2 for simplicity

If n < 2 then use grade-school algorithm else
X, < X div 2" -y, <y div2h2;
X, < X mod 2" . Yo <y mod 22

A « MuLTIPLY(n/2 | X4, Y4)
C « MuLTIPLY(N/2 | X, V)
B « MuLTIPLY(N/2 | X +Xy, Yi+Yo)
Output A 2"+ (B-A-C)2"?+C

N o O bk oD

9/26/2016 L10.26

Integer Multiplication: Run Time

 The resulting recurrence
T(n) =3T(n/2) + ®(n)

 Master Theorem, Case 1:
T(n) — @ (n|ng3) - @(n1.59...)

 Algorithm based on Fast Fourier Transform:
®(n logn loglogn) (more on it later in the course).

« Fiirer’s Algorithm (2007): n - logn - 29(cg” 1)

9/26/2016 L10.27

Matrix multiplication

1L10.28

Matrix multiplication

Input: = [a;], B = [bu] } B
OUtpUt: [CIJ] Ax B Lj=1,2,...,n.

Ci1 Cpp - Cin | |81 & -+ &gy | [by by - by,

Co1 Co2 =+ Con | |82 @ -+ Apn | [Dpy bpp -+ bop

_Cnl Ch2 ** Cpn _anl dnp - Ay _bnl bn2 bnn

N
=)i By
k=1

9/26/2016 L10.29

Standard algorithm

fori< 1ton
do forj<«1ton
do ¢;; <- 0
fork < 1ton
do c;; < Cj + ax by

Running time = ©(n®)

1L10.30

Divide-and-conquer algorithm

IDEA:
nxn matrix = 2x2 matrix of (n/2)x(n/2) submatrices:

Lcll CI2J . LAI AIZJ v {Bll BIZJ
C21 C22 - A21 A22 BZI B22
c = A X B

7 recursive
(A11 X Bll) + (A12 X le)

(A1) (AxBa) | 8lmults of (n/2)x(n/2) submatrices

(A xByy) + (AnxBy) 4 adds of (n/2)x(n/2) submatrices
22 (AQI = BIZ) + (Azz A Bzz)
_/

9/26/2016 11031

Analysis of D&C algorithm

T(n) =8T(n/2) + ©(n?)

Y |
submatrices work adding

R matri
submatrix size submatrices

nlogbd = nlogz8 = nd = Case 1 = T(n) = O(N3).

No better than the ordinary algorithm.

1L10.32

Strassen’s idea

» Multiply 2x2 matrices with only 7 recursive mults.

N -

w

(63}

[ep}

ZZZJ?ZKZ

\l

AX(By, —By,)
(A; +AL)xBy,
(Ay + Ay,)¥By,
A,X(By —By;)
(A + Ap)x(By + By)
(A, — Ay,)X(B,, + By)
(A, —Ay)X(By +Bpy)

Ch, = M;+M,—-M,+M,
C, = M/ +M,
Ch = M;+M,
C, = M;+M,—-M,-M,

9/26/2016

7/ mults, 18 adds/subs.

Note: No reliance on
commutativity of
multiplication!

L10.33

Pictorial Explanation

M1 M2 M3 M4 M5 M6

o v 4
S e e

* The left column represents 2x2 multiplication. Naive matrix multiplication requires
one multiplication for each "1" of the left column.

Each of the other columns represents a single one of the 7 multiplications in the
algorithm, and the sum of the columns gives the full matrix multiplication on the left.

Source: wikipedia.
9/26/2016

L10.34

Strassen’s algorithm

1. Divide: Partition A and B into (n/2) x (n/2)
submatrices. Form terms to be multiplied

using + and — .

2. Conquer: Perform 7 multiplications of (n/2) x
(n/2) submatrices recursively.

3. Combine: Form product matrix C using + and
—on (n/2) x (n/2) submatrices.

T(n) =7T(n/2) + ©(n?)

/26/
9/26/2016 110.35

Analysis of Strassen
T(n) =7T(n/2) + ©(n?)
nlogbad = nlogz2’ ~ n28l — Case 1 = T(n) = O(n'97),

*Number 2.81 may not seem much smaller than 3.
But the difference Is In the exponent.

*The impact on running time Iis significant.
*Strassen’s algorithm beats the ordinary algorithm
on today’s machines for n > 32 or so.

Coppersmith-Winograd, 1987 : O(n2376),
Currently best, 2014: O(n23728-),

/26/
9/26/2016 L10.36

Median and Order Statistics

L10.37

Order statistics

Select the ith smallest of n elements (the
element with rank 1).

| = 1: minimum;
° | = N: maximum;
o i = (n+1)/2] or| (n+1)/2 |: median.

Naive algorithm: Sort and index ith element.

Worst-case running time = ®@(n lg n) + ©(1)
= 0(n lg n),

using merge sort or heapsort (not quicksort).

1.10.38

Divide and conquer

Order Statistics In an n-element array:

1. Divide: Partition the array into two subarrays
around a pivot x such that elements in lower
subarray < x < elements in upper subarray.

< X X > X
2. Conquer: Recurse on one subarray.
3. Combine: Trivial.
Key: Linear-time partitioning subroutine.

9/26/2016
L10.39

Partitioning subroutine

PArTITION(A, p,) = A[p..d]

x<Alpl opivot=A[p] [Running time
:‘<_'p 1t = O(n) for n
or |« p+11toq

do if A[j] < x elements.

then 1« 1+1
exchange All] <> Al]
exchange A[p] <> All]
return |

Invariant: | x <X > X ? l

p | J G

L.10.40

Example of partitioning

0 10‘13 5 | 8 3‘2 11'

)

L10.41

Example of partitioning

0 10‘13 5 | 8 3‘2 11'

]

1L10.42

Example of partitioning

0 10‘13 5 | 8 3‘2 11'

| —)

1L10.43

Example of partitioning

10

13

11

13

10

11

L10.44

Example of partitioning

10

13

11

13

10

)

11

L10.45

Example of partitioning

10

13

11

13

10

11

L10.46

Example of partitioning

10113 | 5 3 11
5 |13 |10 3 11
5 10 13 11

L10.47

Example of partitioning

10113 | 5 3|2 |11
5 |13 |10 3|2 |11
5 | 3 |10 13| 2 | 11

1.10.48

Example of partitioning

1013 | 5 3|2 |11
5 |13 |10 3|2 |11
5 | 3 |10 13| 2 | 11
5| 3 13|10 | 11

1L10.49

Example of partitioning

1013 | 5 3|2 |11
5 |13 |10 3|2 |11
5 | 3 |10 13| 2 | 11
5|3 | 2 13|10 | 11

—)

L10.50

Example of partitioning

1013 | 5 3|2 |11
5 |13 |10 3|2 |11
5 | 3 |10 13| 2 | 11
5|3 | 2 13110 | 11

—)

L10.51

Example of partitioning

9/26/2016

1013 | 5 3|2 |11
5 |13 |10 3|2 |11
5 | 3 |10 13| 2 | 11
5|3 | 2 13110 | 11
5|3 |6 1310 | 11

1L10.52

Divide-and-conquer algorithm

SELECT(A, p, g, 1) > Ith smallest of A[p..(q]
If p=q then return A[p]
I < pivot o Later: how to choose the pivot

K«—r—p+1 > K = rank(A[r])
If 1 =k then return A[r]
if 1<Kk

then return SELect(A, p,r—1,1)
else return SELeECT(A, r +1,q,1—Kk)

k

| < Alr] | > Alr] |

p r G

L10.53

Example

Select the 1 = 7th smallest:

6 11013 | 5 | 8| 3| 2 |11 | =7
NIVOt
Partition:
2 1 513|618 |13|1011 k=4
g _J
"

Select the 7 — 4 = 3rd smallest recursively.

9/26/2016
L10.54

Choosing the pivot

L10.55

Choosing the pivot

9/26/2016

1.

000000

Ivide the n elements into groups of 5.

L10.56

Choosing the pivot

1. Divide the n elements into groups of 5. Find lesser
the median of each 5-element group. I

greater

9/26/2016 L1057

Choosing the pivot

(s.(s (3 (s (s
X

§ oo %

1. Divide the n elements into groups of 5. Find lesser
the median of each 5-element group.

2. Recursively SeLecT the median x of the [n/5.]
group medians to be the pivot. greater

/26/
9/26/2016 L1058

Analysis

(s.(s (5 (s (s
X

§ oo %

At least half the group medians are < x, which lesser
is at least| | n/5 /2] =[n/10 | group medians. I

greater

/26/
9/26/2016 L1059

Analysis

(Assume all elements are distinct.)

(GGG

At least half the group medians are < x, which lesser
is at least| [n/5//2]=[n/10 | group medians. I

- Therefore, at least 3| n/10 | elements are < x.
greater

9/26/2016 L10.60

Analysis

(Assume all elements are distinct.)

b (GGG

At least half the group medians are < x, which lesser
is at least| [n/5//2]=[n/10 | group medians. I

» Therefore, at least 3|.n/10] elements are < x.
» Similarly, at least 3| n/10 elements are > x. greater

9/26/2016 L10.61

Deve

T(n)

O(n) <

loping the recurrence

SELECT(I, Nn)
" 1. Divide the n elements into groups of 5. Find
_the median of each 5-element group.
- 2. Recursively SeLEcT the median x of the [n/5 |

T(n/5) =
O(n)

T(7n/10) <

group medians to be the pivot.
3. Partition around the pivot x. Let k = rank(x).
(4. if i =kthen return x
elseif 1<Kk
then recursively SELEcT the ith
smallest element in the lower part

-

9/26/2016

else recursively SeLecT the (I—k)th
N smallest element in the upper part

L10.62

Solving the recurrence

T(Nn) :T(1 nj+T(l nj+cn

5 10
T(n) =cn
9 (9Y
Recursion Tree: T(n)<cn[1+—+|—| +...
10 (10
:cni:O(n)
9
1- =
10

T(n)=6(n)

L10.63

Conclusion

* In practice, this algorithm runs slowly,
because the constant in front of n is large.

* There Is a randomized algorithm that runs
In expected linear time.

 The randomized algorithm is far more
practical.

Exercise: Why not divide into groups of 37?

9/26/2016

L10.64

