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Algorithm Design and Analysis

LECTURE 10
Divide and Conquer

• Closest Pair of Points

• Integer Multiplication

• Matrix Multiplication

• Median and Order 

Statistics
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Review questions

• Find the solution to the recurrence using MT: 

T(n)=8T(n/2)+cn. 

• Draw the recursion tree for this recurrence.

a. What is its height?

b. What is the number of leaves in the tree?
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Review questions

• Find the solution to the recurrence using MT: 

T(n)=8T(n/2)+cn. 

(Answer: (n3).)

• Draw the recursion tree for this recurrence.

a. What is its height?

(Answer: h=log n.)

b. What is the number of leaves in the tree?

(Answer: 8h = 8log n = nlog 8= n3.)
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Review questions: recursion tree

Solve T(n)=8T(n/2)+cn:

c(n/4) c(n/4) c(n/4) (n/4)

c(n/2)

(1)

…

Total  = cn(1+4+42+43+…+n2)

= (n3)

cn

c(n/2)

geometric series

8
cn

8 8
4cn

16cn
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Reminder: geometric series
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Divide and Conquer

– Break up problem into several parts.

– Solve each part recursively.

– Combine solutions to sub-problems into overall solution.

Divide et impera.

Veni, vidi, vici.

- Julius Caesar
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Closest Pair of Points
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Closest Pair of Points

Given n points in the plane, find a pair with smallest 

Euclidean distance between them.

• Fundamental geometric primitive.

– Graphics, computer vision, geographic information systems, 

molecular modeling, air traffic control.

– Special case of nearest neighbor, Euclidean MST, Voronoi.

• Brute force:

Check all pairs of points p and q with (n2) comparisons.

• 1-D version:  O(n log n) is easy if points are on a line.

• Assumption: No two points have same x coordinate.

to make presentation cleaner

fast closest pair inspired fast algorithms for these problems
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Closest Pair of Points:  First Attempt

• Divide.  Sub-divide region into 4 quadrants.

L
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Closest Pair of Points:  First Attempt

• Divide.  Sub-divide region into 4 quadrants.

• Obstacle.  Impossible to ensure 𝑛/4 points in each piece.

L
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Closest Pair of Points

• Algorithm.

– Divide:  draw vertical line L, so that roughly 𝑛/2 points on each side.

L
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Closest Pair of Points

• Algorithm.

– Divide:  draw vertical line L, so that roughly 𝑛/2 points on each side.

– Conquer:  find closest pair in each side recursively.

12

21

L
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Closest Pair of Points

• Algorithm.

– Divide:  draw vertical line L, so that roughly 𝑛/2 points on each side.

– Conquer:  find closest pair in each side recursively.

– Combine:  find closest pair with one point in each side; return best of 3 

solutions.

seems like (n2) 

12

21
8

L
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Closest Pair of Points
• Find closest pair with one point in each side, assuming that distance < .

12

21

 = min(12, 21)

L
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Closest Pair of Points
• Find closest pair with one point in each side, assuming that distance < .

– Observation:  only need to consider points within  of line L.

12

21



L

 = min(12, 21)
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Closest Pair of Points
• Find closest pair with one point in each side, assuming that distance < .

– Observation:  only need to consider points within  of line L.

– Sort points in 2-strip by their y coordinate.
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 = min(12, 21)
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Closest Pair of Points
• Find closest pair with one point in each side, assuming that distance < .

– Observation:  only need to consider points within  of line L.

– Sort points in 2-strip by their y coordinate.

 Theorem: Only need to check distances of those 

within 11 positions in sorted list!
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L

 = min(12, 21)

S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L10.17



9/26/2016

Closest Pair of Points

Definition. Let si be the point in the 2-strip, 

with the ith smallest y-coordinate.

Claim. If |i – j|  12, then the distance 

between si and sj is at least .

Proof:

– No two points lie in same /2-by-/2 box 

because otherwise min distance would by < .

– Two points at least 2 rows apart

have distance  2(/2).   ▪

Fact.  Still true if we replace 12 with 7.


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Closest Pair Algorithm

O(n log n)

2T(n / 2)

O(n)

O(n log n)

O(n)

Closest-Pair(p1, …, pn) {

Compute separation line L such that half the points

are on one side and half on the other side.

1 = Closest-Pair(left half)

2 = Closest-Pair(right half)

 = min(1, 2)

Delete all points further than  from separation line L

Sort remaining points by y-coordinate.

Scan points in y-order and compare distance between

each point and next 11 neighbors. If any of these

distances is less than , update .

return .

}
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Closest Pair of Points:  Analysis

• Running time.

by case 2 of Mater Theorem

• Q.  Can we achieve O(n log n)?

• A.  Yes. Don't sort points in strip from scratch each time.

– Sort entire point set by x-coordinate only once

– Each recursive call takes as input a set of points sorted by 

x coordinates and returns the same points sorted by y coordinate (together 

with the closest pair)

– Create new y-sorted list by merging two outputs from recursive calls

  

 

T(n)  2T n /2   O(n)  T(n) = O(n log n)

  

 

T(n)  2T n /2   O(n log n)  T(n)  =  O(n log2 n)

)())log(()( nTnnOnTotalTime =
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Divide and Conquer in Low-Dimensional Geometry

• Powerful technique for low-dimensional geometric problems

– Intuition: points in different parts of the plane don’t interfere too much

– Example: convex hull in O(n log (n)) time a la MergeSort

1. Convex-Hull(left-half)

2. Convex-Hull(right-half)

3. Merge (see Cormen et al., Chap 33)

T(n/2)

T(n/2)

Θ(n)
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Integer multiplication
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Arithmetic on Large Integers

• Addition: Given n-bit integers a, b (in binary), compute 

c=a+b

– O(𝑛) bit operations.

• Multiplication: Given n-bit 

integers a, b, compute c=ab

• Naïve (grade-school) algorithm:

– Write a,b in binary

– Compute n intermediate 

products

– Do n additions

– Total work: (n2)

an-1 an-2 … a0

bn-1 bn-2 … b0

n bits

n bits

n bits

2n bit output

0

0 0    0

×
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Multiplying large integers

• Divide and Conquer (warmup):

– Write a = A1 2n/2 + A0

b = B1 2n/2 + B0

– We want ab = A1B1 2n + (A1B0 + B1A0) 2
n/2 + A0B0

– Multiply n/2 –bit integers recursively

– T(n) = 4T(n/2) + (n)

– Alas! this is still (n2) (Master Theorem, Case 1) 
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• Divide and Conquer (Karatsuba’s algorithm):

– Write a = A1 2n/2 + A0

b = B1 2n/2 + B0

– We want ab = A1B1 2n + (A1B0 + B1A0) 2
n/2 + A0B0

– Multiply n/2 –bit integers recursively

– T(n) = 4T(n/2) + (n)

– Alas! this is still (n2) . 
(Exercise: write out the recursion tree.)

Multiplying large integers

– Karatsuba’s idea:
(A0+A1) (B0 + B1) = A0B0 + A1B1 + (A0B1 + B1A0)

– We can get away with 3 multiplications! (in yellow)

x = A1B1 y = A0B0 z = (A0+A1)(B0+B1)

– Now we use ab = A1B1 2n + (A1B0 + B1A0) 2n/2 + A0B0

=   x 2n + (z–x–y) 2n/2 +   y
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Implementation of Multiplication

MULTIPLY (n, x, y)

\\ x and y are n-bit integers

\\ Assume n is a power of 2 for simplicity

1. If 𝑛 < 2 then use grade-school algorithm else

2. x1 ← x div 2n/2 ;  y1 ← y div 2n/2 ;

3. x0 ← x mod 2n/2 ;  y0 ← y mod 2n/2 .

4. A ← MULTIPLY(n/2 , x1, y1)

5. C ← MULTIPLY(n/2 , x0, y0)

6. B ← MULTIPLY(n/2 , x1+x0 ,  y1+y0)

7. Output A 2n + (B-A-C)2n/2 + C
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Integer Multiplication: Run Time

• The resulting recurrence

T(n) = 3T(n/2) + (n)

• Master Theorem, Case 1:

T(n) =  (nlog23) = (n1.59…)

• Algorithm based on Fast Fourier Transform: 

(𝑛 log 𝑛 log log 𝑛) (more on it later in the course).

• Fürer’s Algorithm (2007): 𝑛 ⋅ log 𝑛 ⋅ 2Θ(log* n)
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Matrix multiplication
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Matrix multiplication
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Input: A = [aij], B = [bij].

Output: C = [cij] = A× B.
i, j = 1, 2,… , n.
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Standard algorithm

for i  1 to n

do for j  1 to n

do cij  0

for k  1 to n

do cij  cij + aik× bkj

Running time = (n3)
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Divide-and-conquer algorithm

n×n matrix = 2×2 matrix of (n/2)×n/2) submatrices:
IDEA:

C = A × B

8 mults of (n/2)×n/2) submatrices 

4 adds of (n/2)×n/2) submatrices^

recursive

  

 

C11 = A11  B11    A12  B21 
C12 = A11  B12    A12  B22 
C21 = A21  B11    A22  B21 
C22 = A21  B12    A22  B22 

  

 

C11 C12

C21 C22

 

 
 

 

 
  =  

A11 A12

A21 A22

 

 
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 
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B11 B12

B21 B22
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 
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 

 
 
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Analysis of D&C algorithm

nlogba = nlog28 = n3  CASE 1  T(n) = (n3). 

No better than the ordinary algorithm.

# submatrices

submatrix size

work adding 
submatrices

T(n) = 8 T(n/2) + (n2)
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7 mults, 18 adds/subs.

Note: No reliance on 

commutativity of 

multiplication!

Strassen’s idea

• Multiply 2×2 matrices with only 7 recursive mults. 
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Pictorial Explanation
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. 

Source: wikipedia.

• The left column represents 2×2 multiplication. Naïve matrix multiplication requires 

one multiplication for each "1" of the left column.

• Each of the other columns represents a single one of the 7 multiplications in the 

algorithm, and the sum of the columns gives the full matrix multiplication on the left.
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Strassen’s algorithm

1. Divide: Partition A and B into (n/2) x (n/2)
submatrices.  Form terms to be multiplied 
using + and – .

2. Conquer: Perform 7 multiplications of (n/2) x 
(n/2) submatrices recursively.

3. Combine: Form product matrix C using + and 
– on (n/2) x (n/2) submatrices.

T(n) = 7 T(n/2) + (n2)
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Analysis of Strassen

T(n) = 7 T(n/2) + (n2)

nlogba = nlog27  n2.81  CASE 1  T(n) = (nlg 7).

Coppersmith-Winograd, 1987 : O(n2.376).

•Number 2.81 may not seem much smaller than 3.

•But the difference is in the exponent. 

•The impact on running time is significant.

•Strassen’s algorithm beats the ordinary algorithm 

on today’s machines for n  32 or so.

Currently best, 2014:                       O(n2.3728).
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Median and Order Statistics
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Order statistics

Select the ith smallest of n elements (the 
element with rank i).

• i = 1: minimum;

• i = n: maximum;

• i = (n+1)/2 or (n+1)/2: median.

Naive algorithm: Sort and index ith element.

Worst-case running time = (n lg n) + (1)

= (n lg n),

using merge sort or heapsort (not quicksort).
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Divide and conquer

Order Statistics in an n-element array:

1. Divide: Partition the array into two subarrays 
around a pivot x such that elements in lower 
subarray  x  elements in upper subarray.

2. Conquer: Recurse on one subarray.

3. Combine: Trivial.

 x x  x

Key: Linear-time partitioning subroutine.
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x

Running time
= O(n) for n
elements.

Partitioning subroutine

PARTITION(A, p, q) ⊳ A[p . . q] 
x  A[p] ⊳ pivot = A[p]
i  p
for j  p + 1 to q

do if A[ j]  x
then i  i + 1

exchange A[i]  A[ j]
exchange A[p]  A[i]
return i

 x  x ?

p i qj

Invariant:

S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L10.40



9/26/2016

Example of partitioning

i j

6 10 13 5 8 3 2 11
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Example of partitioning

i j

6 10 13 5 8 3 2 11
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Example of partitioning

i j

6 10 13 5 8 3 2 11
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Example of partitioning

6 10 13 5 8 3 2 11

i j

6 5 13 10 8 3 2 11
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Example of partitioning

6 10 13 5 8 3 2 11

i j

6 5 13 10 8 3 2 11
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Example of partitioning

6 10 13 5 8 3 2 11

i j

6 5 13 10 8 3 2 11
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Example of partitioning

6 10 13 5 8 3 2 11

i j

6 5 3 10 8 13 2 11

6 5 13 10 8 3 2 11
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Example of partitioning

6 10 13 5 8 3 2 11

i j

6 5 3 10 8 13 2 11

6 5 13 10 8 3 2 11
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Example of partitioning

6 10 13 5 8 3 2 11

6 5 3 10 8 13 2 11

6 5 13 10 8 3 2 11

i j

6 5 3 2 8 13 10 11
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Example of partitioning

6 10 13 5 8 3 2 11

6 5 3 10 8 13 2 11

6 5 13 10 8 3 2 11

i j

6 5 3 2 8 13 10 11
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Example of partitioning

6 10 13 5 8 3 2 11

6 5 3 10 8 13 2 11

6 5 13 10 8 3 2 11

i j

6 5 3 2 8 13 10 11
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Example of partitioning

6 10 13 5 8 3 2 11

6 5 3 10 8 13 2 11

6 5 13 10 8 3 2 11

6 5 3 2 8 13 10 11

i

2 5 3 6 8 13 10 11
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Divide-and-conquer algorithm

SELECT(A, p, q, i)               ⊳ ith smallest of A[p . . q] 
if p = q  then return A[p]
r  pivot  ⊳ Later: how to choose the pivot
k  r – p + 1 ⊳ k = rank(A[r])
if  i = k  then return A[r]
if  i < k  

then return SELECT(A, p, r – 1, i )
else return SELECT(A, r + 1, q, i – k )

 A[r]  A[r]

rp q

k
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Example

pivot

i = 76 10 13 5 8 3 2 11

k = 4

Select the 7 – 4 = 3rd smallest recursively.

Select the i = 7th smallest:

2 5 3 6 8 13 10 11

Partition:
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Choosing the pivot
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Choosing the pivot

1. Divide the n elements into groups of 5.
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Choosing the pivot

lesser

greater

1. Divide the n elements into groups of 5.  Find 
the median of each 5-element group.
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Choosing the pivot

lesser

greater

1. Divide the n elements into groups of 5.  Find 
the median of each 5-element group.

2. Recursively SELECT the median x of the n/5
group medians to be the pivot.

x
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Analysis

lesser

greater

x

At least half the group medians are  x, which 
is at least  n/5 /2 = n/10 group medians. 
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Analysis

lesser

greater

x

At least half the group medians are  x, which 
is at least  n/5 /2 = n/10 group medians.

• Therefore, at least 3 n/10 elements are  x.

(Assume all elements are distinct.)
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Analysis

lesser

greater

x

At least half the group medians are  x, which 
is at least  n/5 /2 = n/10 group medians.

• Therefore, at least 3 n/10 elements are  x.

• Similarly, at least 3 n/10 elements are  x.

(Assume all elements are distinct.)
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Developing the recurrence

if  i = k then return x
elseif  i < k 

then recursively SELECT the ith 
smallest element in the lower part

else recursively SELECT the (i–k)th 
smallest element in the upper part

SELECT(i, n)
1. Divide the n elements into groups of 5.  Find 

the median of each 5-element group.

2. Recursively SELECT the median x of the n/5
group medians to be the pivot.

3. Partition around the pivot x.  Let k = rank(x).

4.

T(n)

(n)

T(n/5)

(n)

T(7n/10)
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Solving the recurrence

cnnTnTnT 
















=

10

7

5

1
)(

T(n)=(n)

)(

10

9
1

1

...
10

9

10

9
1)(

2

nOcn

cnnT

=



=

























T(n) ≥cn

Recursion Tree:
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Conclusion

• In practice, this algorithm runs slowly, 
because the constant in front of n is large.

• There is a randomized algorithm that runs 
in expected linear time. 

• The randomized algorithm is far more 
practical.

Exercise: Why not divide into groups of 3?
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