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LECTURE 14
Divide and Conquer

• Fast Fourier Transform



5.6 Convolution and FFT
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Fast Fourier Transform:  Applications

Applications.

 Optics, acoustics, quantum physics, telecommunications, control 

systems, signal processing, speech recognition, data compression, 

image processing.

 DVD, JPEG, MP3, MRI, CAT scan.

 Numerical solutions to Poisson's equation.

The FFT is one of the truly great computational 
developments of this [20th] century. It has changed the 
face of science and engineering so much that it is not an 
exaggeration to say that life as we know it would be very 
different without the FFT.   -Charles van Loan
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Fast Fourier Transform:  Brief History

Gauss (1805, 1866).  Analyzed periodic motion of asteroid Ceres.

Runge-König (1924).  Laid theoretical groundwork.

Danielson-Lanczos (1942).  Efficient algorithm.

Cooley-Tukey (1965).  Monitoring nuclear tests in Soviet Union and 

tracking submarines.  Rediscovered and popularized FFT.

Importance not fully realized until advent of digital computers.
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Polynomials:  Coefficient Representation

Polynomial.  [coefficient representation]

Add:  O(n) arithmetic operations.

Evaluate:  O(n) using Horner's method.

Multiply (convolve): O(n2) using brute force.

  



A(x) a0 a1xa2x2   an1x
n1



B(x) b0 b1xb2x2   bn1x
n1

  



A(x) B(x) (a0 b0)(a1b1)x  (an1bn1)xn1



A(x) a0 (x(a1 x(a2   x(an2  x(an1)) ))

  



A(x) B(x) ci xi

i0

2n2

 ,  where ci  a j bi j

j0

i
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Polynomials:  Point-Value Representation

Fundamental theorem of algebra.  [Gauss, PhD thesis]  A degree n 

polynomial with complex coefficients has n complex roots.

Corollary.  A degree n-1 polynomial A(x) is uniquely specified by its 

evaluation at n distinct values of x.

x

y

xj

yj = A(xj)
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Polynomials:  Point-Value Representation

Polynomial.  [point-value representation]

Add: O(n) arithmetic operations.

Multiply:  O(n), but need 2n-1 points.

Evaluate:  O(n2) using Lagrange's formula.

  



A(x) :  (x0 , y0), , (xn-1, yn1)  

B(x) :  (x0 , z0), , (xn-1, zn1)

  



A(x) B(x) :   (x0, y0  z0), , (xn-1, yn1 zn1)

  



A(x) yk

(x x j )
jk



(xk  x j )
jk

k0

n1



  



A(x)  B(x) :   (x0, y0 z0), , (x2n-1, y2n1 z2n1)
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Converting Between Two Polynomial Representations

Tradeoff.  Fast evaluation or fast multiplication. We want both!

Goal.  Make all ops fast by efficiently converting between two 

representations.

Coefficient

Representation

O(n2)

Multiply

O(n)

Evaluate

Point-value O(n) O(n2)



a0, a1, , an-1   



(x0, y0), , (xn1, yn1)

coefficient
representation

point-value
representation
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Converting Between Two Polynomial Representations:  Brute Force

Coefficient to point-value.  Given a polynomial a0 + a1 x + ... + an-1 xn-1, 

evaluate it at n distinct points x0, ... , xn-1.

Point-value to coefficient.  Given n distinct points x0, ..., xn-1 and values 

y0, ..., yn-1, find unique polynomial a0 + a1 x + ... + an-1 xn-1 that has given 

values at given points.

  



y0

y1

y2

yn1 























   

1 x0 x0
2 x0

n1

1 x1 x1
2 x1

n1

1 x2 x2
2 x2

n1

1 xn1 xn1
2 xn1

n1  























a0

a1

a2

 an1























Vandermonde matrix is invertible iff xi distinct

O(n3) for Gaussian elimination

O(n2) for matrix-vector multiply
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Coefficient to Point-Value Representation:  Intuition

Coefficient to point-value.  Given a polynomial a0 + a1 x + ... + an-1 xn-1, 

evaluate it at n distinct points x0, ... , xn-1.

Divide.  Break polynomial up into even and odd powers.

 A(x)       =  a0 + a1x + a2x
2 + a3x

3 + a4x
4  + a5x

5  + a6x
6  + a7x

7.

 Aeven(x)  =  a0 + a2x + a4x2 + a6x3.

 Aodd (x)  =  a1 + a3x + a5x
2 + a7x

3.

 A(-x) = Aeven(x
2) + x Aodd(x

2).

 A(-x) = Aeven(x
2) - x Aodd(x

2).

Intuition.  Choose two points to be 1.

 A(-1) = Aeven(1) + 1 Aodd(1). 

 A(-1) = Aeven(1) - 1 Aodd(1). Can evaluate polynomial of degree  n
at 2 points by evaluating two polynomials 
of degree  ½n at 1 point.
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Coefficient to Point-Value Representation:  Intuition

Coefficient to point-value.  Given a polynomial a0 + a1 x + ... + an-1 xn-1, 

evaluate it at n distinct points x0, ... , xn-1.

Divide.  Break polynomial up into even and odd powers.

 A(x)       =  a0 + a1x + a2x
2 + a3x

3 + a4x
4  + a5x

5  + a6x
6  + a7x

7.

 Aeven(x)  =  a0 + a2x + a4x2 + a6x3.

 Aodd (x)  =  a1 + a3x + a5x
2 + a7x

3.

 A(-x) = Aeven(x
2) + x Aodd(x

2).

 A(-x) = Aeven(x
2) - x Aodd(x

2).

Intuition.  Choose four points to be 1, i.

 A(-1) = Aeven(-1) + 1 Aodd( 1). 

 A(-1) = Aeven(-1) - 1 Aodd(-1).

 A(-i) = Aeven(-1) + i Aodd(-1). 

 A(-i) = Aeven(-1) - i Aodd(-1).

Can evaluate polynomial of degree  n
at 4 points by evaluating two polynomials 
of degree  ½n at 2 points.
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Discrete Fourier Transform

Coefficient to point-value.  Given a polynomial a0 + a1 x + ... + an-1 xn-1, 

evaluate it at n distinct points x0, ... , xn-1.

Key idea:  choose xk = k  where  is principal nth root of unity.

Discrete Fourier transform


y0

y1

y2

y3

yn1

























  

1 1 1 1 1

1 1 2 3 n1

1 2 4 6 2(n1)

1 3 6 9 3(n1)

1 n1 2(n1) 3(n1) (n1)(n1)

























a0

a1

a2

a3

an1

























Fourier matrix Fn
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Roots of Unity

Def.  An nth root of unity is a complex number x such that xn = 1.

Fact.  The nth roots of unity are: 0, 1, …, n-1 where  = e 2 i / n.

Pf.  (k)n = (e 2 i k / n) n = (e  i ) 2k =  (-1) 2k =  1.

Fact.  The ½nth roots of unity are: 0, 1, …, n/2-1 where  = e 4 i / n.

Fact.  2 =  and  (2)k = k.

0 = 0 = 1

1

2 = 1 = i

3

4 = 2 = -1

5

6 = 3 = -i

7

n = 8



14

Fast Fourier Transform

Goal.  Evaluate a degree n-1 polynomial A(x) = a0 + ... + an-1 xn-1 at its nth

roots of unity: 0, 1, …, n-1.

Divide.  Break polynomial up into even and odd powers.

 Aeven(x)  =  a0 + a2x + a4x
2 + … + an/2-2 x

(n-1)/2.

 Aodd (x)  =  a1 + a3x + a5x2 + … + an/2-1 x(n-1)/2.

 A(x)   = Aeven(x
2) + x Aodd(x

2).

Conquer.  Evaluate degree Aeven(x) and Aodd(x) at the ½nth roots of 

unity: 0, 1, …, n/2-1.

Combine.  

 A(k+n) = Aeven(
k) + k Aodd(

k),   0  k < n/2

 A(k+n) = Aeven(
k) - k Aodd(

k),   0  k < n/2

k+n = -k

k  =  (k)2   =  (k+n)2
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fft(n, a0,a1,…,an-1) {

if (n == 1) return a0

(e0,e1,…,en/2-1)  FFT(n/2, a0,a2,a4,…,an-2)

(d0,d1,…,dn/2-1)  FFT(n/2, a1,a3,a5,…,an-1)

for k = 0 to n/2 - 1 {

k  e2ik/n

yk+n/2  ek + k dk

yk+n/2  ek - k dk

}

return (y0,y1,…,yn-1)

}

FFT Algorithm

assumes n is a power of 2
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FFT Summary

Theorem.  FFT algorithm evaluates a degree n-1 polynomial at each of 

the nth roots of unity in O(n log n) steps.

Running time.  T(2n) =  2T(n) + O(n)   T(n)  = O(n log n).

assumes n is a power of 2



a0, a1, , an-1   



(0, y0), , (n1, yn1)

O(n log n)

coefficient
representation

point-value
representation
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Recursion Tree

a0, a1, a2, a3, a4, a5, a6, a7

a1, a3, a5, a7a0, a2, a4, a6

a3, a7a1, a5a0, a4 a2, a6

a0 a4 a2 a6 a1 a5 a3 a7

"bit-reversed" order

000 100 010 110 001 101 011 111

perfect shuffle
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Point-Value to Coefficient Representation:  Inverse DFT

Goal.  Given the values y0, ... , yn-1 of a degree n-1 polynomial at the n 

points 0, 1, …, n-1, find unique polynomial a0 + a1 x + ... + an-1 xn-1 that 

has given values at given points.

Inverse DFT


a0

a1

a2

a3

an1

























  

1 1 1 1 1

1 1 2 3 n1

1 2 4 6 2(n1)

1 3 6 9 3(n1)

1 n1 2(n1) 3(n1) (n1)(n1)

























  1

 

y0

y1

y2

y3

yn1

























Fourier matrix inverse (Fn)-1
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Claim.  Inverse of Fourier matrix is given by following formula.

Consequence.  To compute inverse FFT, apply same algorithm but use

-1 = e -2 i / n as principal nth root of unity (and divide by n).



Gn 
1

n
 

1 1 1 1 1

1 1 2 3 (n1)

1 2 4 6 2(n1)

1 3 6 9 3(n1)

1 (n1) 2(n1) 3(n1) (n1)(n1)

























Inverse FFT
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Inverse FFT:  Proof of Correctness

Claim.  Fn and Gn are inverses.

Pf.  

Summation lemma.  Let  be a principal nth root of unity. Then

Pf.

 If k is a multiple of n then k = 1   sums to n.

 Each nth root of unity k is a root of xn - 1 = (x - 1) (1 + x + x2 + ... + xn-1).

 if k  1 we have:  1 + k + k(2) + . . . + k(n-1) = 0   sums to 0.  ▪



 k j

j0

n1

 
n if k  0 mod n

0 otherwise







Fn Gn k k    
1

n
k j  j k 

j0

n1

      
1

n
(k k ) j

j0

n1

     
 1 if k  k 

 0 otherwise





summation lemma
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Inverse FFT:  Algorithm

ifft(n, a0,a1,…,an-1) {

if (n == 1) return a0

(e0,e1,…,en/2-1)  FFT(n/2, a0,a2,a4,…,an-2)

(d0,d1,…,dn/2-1)  FFT(n/2, a1,a3,a5,…,an-1)

for k = 0 to n/2 - 1 {

k  e-2ik/n

yk+n/2  (ek + k dk) / n

yk+n/2   (ek - k dk) / n

}

return (y0,y1,…,yn-1)

}
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Inverse FFT Summary

Theorem.  Inverse FFT algorithm interpolates a degree n-1 polynomial 

given values at each of the nth roots of unity in O(n log n) steps.

assumes n is a power of 2



a0, a1, , an-1   



(0, y0), , (n1, yn1)

O(n log n)

coefficient
representation

O(n log n) point-value
representation
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Polynomial Multiplication

Theorem.  Can multiply two degree n-1 polynomials in O(n log n) steps.

  



a0, a1, , an-1

b0, b1, , bn-1
  



c0, c1, , c2n-2

  



A(x0 ), , A(x2n-1)

B(x0 ), , B(x2n-1)   



C(x0), C(x1), , C(x2n-1)
O(n)

point-value multiplication

O(n log n)FFT inverse FFT O(n log n)

coefficient
representation coefficient

representation
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FFT in Practice

Fastest Fourier transform in the West.  [Frigo and Johnson]

 Optimized C library.

 Features:  DFT, DCT, real, complex, any size, any dimension.

 Won 1999 Wilkinson Prize for Numerical Software.

 Portable, competitive with vendor-tuned code.

Implementation details.

 Instead of executing predetermined algorithm, it evaluates your 

hardware and uses a special-purpose compiler to generate an 

optimized algorithm catered to "shape" of the problem.

 Core algorithm is nonrecursive version of Cooley-Tukey radix 2 FFT.

 O(n log n), even for prime sizes.

Reference:  http://www.fftw.org



25

Integer Multiplication

Integer multiplication.  Given two n bit integers a = an-1 … a1a0 and

b = bn-1 … b1b0, compute their product c = a  b.

Convolution algorithm.

 Form two polynomials.

 Note:  a = A(2), b = B(2).

 Compute C(x) = A(x)  B(x).

 Evaluate C(2) = a  b.

 Running time:  O(n log n) complex arithmetic steps.

Theory.  [Schönhage-Strassen 1971] O(n log n log log n) bit operations.

[Martin Fϋrer (Penn State) 2007] O(n log n 2log* n) bit operations.

Practice.  [GNU Multiple Precision Arithmetic Library] GMP proclaims 

to be "the fastest bignum library on the planet." It uses brute force, 

Karatsuba, and FFT, depending on the size of n.

  



A(x) a0 a1xa2x2   an1x
n1

  



B(x) b0 b1xb2x2  bn1x
n1


