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LECTURES 16
Dynamic Programming

• Shortest Paths: Bellman-Ford

• Detecting negative cycles

Network Flow

•Duality of Max Flow and

Min Cut
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Belman-Ford: Efficient Implementation

10/19/2016

Bellman-Ford-Shortest-Path(G, s, t) {

foreach node v  V {

M[v]  

successor[v]  

}

M[t] = 0

for i = 1 to n-1 {

foreach node w  V {

if (M[w] has been updated in previous iteration) {

foreach node v such that (v, w)  E {

if (M[v] > M[w] + cvw) {

M[v]  M[w] + cvw
successor[v]  w

}

}

}

If no M[w] value changed in iteration i, stop.

}

}
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Example of Bellman-Ford
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The demonstration is for a sligtly different version of the algorithm (see 

CLRS) that computes distances from the sourse node rather than distances 

to the destination node.
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Example of Bellman-Ford
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Initialization.

S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L16.4



10/19/2016

Example of Bellman-Ford
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Example of Bellman-Ford
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Example of Bellman-Ford

A

B

E

C D

–1

4

1
2

–3

2

5

3



0 

 

1

2

3
4

5

7

8

6

S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L16.8



10/19/2016

-1

Example of Bellman-Ford
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End of pass 2 (and 3 and 4).
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Distance Vector Protocol
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Distance Vector Protocol

Communication network.

 Nodes  routers.

 Edges  direct communication link.

 Cost of edge  delay on link.

Dijkstra's algorithm.  Requires global information of network.

Bellman-Ford.  Uses only local knowledge of neighboring nodes.

Synchronization.  We don't expect routers to run in lockstep. The 

order in which each foreach loop executes is not important. Moreover, 

algorithm still converges even if updates are asynchronous.

naturally nonnegative, but Bellman-Ford used anyway!
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Distance Vector Protocol

Distance vector protocol.

 Each router maintains a vector of shortest path lengths to every 

other node (distances) and the first hop on each path (directions).

 Algorithm:  each router performs n separate computations, one for 

each potential destination node.

 "Routing by rumor."

Ex.  RIP, Xerox XNS RIP, Novell's IPX RIP, Cisco's IGRP, DEC's DNA 

Phase IV, AppleTalk's RTMP.

Caveat.  Edge costs may change during algorithm (or fail completely).

tv 1s 1

1

deleted

"counting to infinity"

2 1
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Path Vector Protocols

Link state routing.

 Each router also stores the entire path.

 Based on Dijkstra's algorithm.

 Avoids "counting-to-infinity" problem and related difficulties.

 Requires significantly more storage.

Ex.  Border Gateway Protocol (BGP), Open Shortest Path First (OSPF).

not just the distance and first hop
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Detecting negative cycles in a graph
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S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L16.28



Detecting Negative Cycles

Bellman-Ford is guaranteed to work if there are no 

negative-cost cycles.

How can we tell if a negative-cost cycle exists?

• We could pick a destination vertex 𝑡 and check whether 

cost estimates in Bellman-Ford converge

• What is wrong with it?

– What if the cycle isn’t on any path to 𝑡?

10/19/2016
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Detecting Negative Cycles

Theorem. Can detect a negative cost cycle in O(mn) time.

• Add new node 𝑡 and connect all nodes to 𝑡 with 0-cost edge.

• Check if OPT(𝑛, 𝑣) = OPT(𝑛 − 1, 𝑣) for all nodes 𝑣.

– if yes, then no negative cycles

– if no, then extract cycle from shortest path from 𝑣 to 𝑡
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Detecting Negative Cycles
Lemma. If OPT(𝑛, 𝑣) = OPT(𝑛 − 1, 𝑣) for all 𝑣, then no negative 

cycles are connected to 𝑡.

Proof. If OPT(𝑛, 𝑣)=OPT(𝑛 − 1, 𝑣) for all 𝑣, then distance estimates 

won’t change again even with many executions of the for loop. So 

there are no negative cost cycles on any path from 𝑣 to 𝑡, for all 𝑣.

Lemma. If OPT(𝑛, 𝑣) < OPT(𝑛 − 1, 𝑣) for some node 𝑣, then some 

path from 𝑣 to 𝑡 contains a cycle W of negative cost. 

Proof. (by contradiction)

– Since OPT(𝑛, 𝑣) < OPT(𝑛 − 1, 𝑣),  current path P from 𝑣 to 𝑡 has n edges.

– By pigeonhole principle, P must contain a directed cycle W.

– Deleting W yields a v-t path with < n edges   W has negative cost.

v t

W

c(W) < 0
10/19/2016
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Detecting Negative Cycles:  Application

Currency conversion.  Given n currencies and exchange rates between 

pairs of currencies, is there an arbitrage opportunity?

Remark.  Fastest algorithm very valuable!

Question.  What should we use as edge costs?

F$

£ ¥DM

1/7

3/10
2/3 2

170 56

3/50
4/3

8

IBM

1/10000

800
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Detecting Negative Cycles:  Summary

Bellman-Ford.  O(mn) time, O(m + n) space.

 Run Bellman-Ford for n iterations (instead of n-1).

 Upon termination, Bellman-Ford successor variables trace a negative 

cycle if one exists.

 See p. 304 for improved version and early termination rule.
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Network Flow and 

Linear Programming
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Soviet Rail Network, 1955

Reference:  On the history of the transportation and maximum flow problems.
Alexander Schrijver in Math Programming, 91: 3, 2002.
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Maximum Flow and Minimum Cut

Max flow and min cut.

 Two very rich algorithmic problems.

 Cornerstone problems in combinatorial optimization.

 Beautiful mathematical duality.

Nontrivial applications / reductions.

 Data mining.

 Open-pit mining. 

 Project selection.

 Airline scheduling.

 Bipartite matching.

 Baseball elimination.

 Image segmentation.

 Network connectivity.

 Network reliability.

 Distributed computing.

 Egalitarian stable matching.

 Security of statistical data.

 Network intrusion detection.

 Multi-camera scene reconstruction.

 Many many more . . .
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Flow network.

 Abstraction for material flowing through the edges.

 G = (V, E) = directed graph, no parallel edges.

 Two distinguished nodes:  s = source, t = sink.

 c(e) = capacity of edge e.

Minimum Cut Problem
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Def.  An s-t cut is a partition (A, B) of V with s  A and t  B.

Def. The capacity of a cut (A, B) is:

Cuts
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Capacity = 10 + 5 + 15
= 30
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
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Cuts

Def.  An s-t cut is a partition (A, B) of V with s  A and t  B.

Def. The capacity of a cut (A, B) is:
  



cap(A, B)    c(e)
e out of A



Capacity = 9 + 15 + 8 + 30
= 62

we don’t 
count edges 

into A
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Min s-t cut problem.  Find an s-t cut of minimum capacity.

Minimum Cut Problem
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Capacity = 10 + 8 + 10
= 28
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Def.  An s-t flow is a function that satisfies:

 For each e  E: (capacity)

 For each v  V – {s, t}: (conservation)

Def.  The value of a flow f is:       
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Def.  An s-t flow is a function that satisfies:

 For each e  E: (capacity)

 For each v  V – {s, t}: (conservation)

Def.  The value of a flow f is:       
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Max flow problem.  Find s-t flow of maximum value.

Maximum Flow Problem
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Flow value lemma. Let f be any flow, and let (A, B) be any s-t cut.  Then 

the net flow sent across the cut is equal to the amount leaving s.

Flows and Cuts
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Flow value lemma.  Let f be any flow, and let (A, B) be any s-t cut.  Then 

the net flow sent across the cut is equal to the amount leaving s.

Flows and Cuts
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Flow value lemma. Let f be any flow, and let (A, B) be any s-t cut.  Then 

the net flow sent across the cut is equal to the amount leaving s.

Flows and Cuts

10

6

6

11

1 10

3 8 8

0

0

0

11

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4 0



f (e)
e out of A

 - f (e)
e in to A

    v( f )

Value = 10 - 4 + 8 - 0 + 10
= 24

4

A

L16.46



Flows and Cuts

Flow value lemma. Let f be any flow, and let (A, B) be any s-t cut.  Then

Proof.   

  



f (e)
e out of A

 - f (e) v( f )
e in to A

 .



v( f )  f (e)
e out of s




v A

 f (e)
e out of v

  - f (e)
e in to v












 f (e)
e out of A

  - f (e).
e in to A



by flow conservation, all terms
except v = s are 0
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Question

Two problems

• Min Cut

• Max Flow

•How do they relate?
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Flows and Cuts

Weak duality. Let f be any flow, and let (A, B) be any s-t cut.  Then the 

value of the flow is at most the capacity of the cut.

Cut capacity = 30    Flow value  30 
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Big Optimization Idea #1: 
Look for structural 
constraints, e.g.

max flow  min-cut
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Weak duality. Let f be any flow.  Then, for any s-t cut (A, B),

v(f)  cap(A, B).

Proof.

▪

Flows and Cuts
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e out of A
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Certificate of Optimality

Corollary.  Let f be any flow, and let (A, B) be any cut.

If v(f) = cap(A, B), then f is a max flow and (A, B) is a min cut.

Value of flow = 28
Cut capacity  = 28    Flow value  28
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Review Questions

True/False

Let G be an arbitrary flow network, with a source s, and sink t, 
and  a positive integer capacity ce on every edge e. 

1) If f is a maximum s-t flow in G, then f saturates every edge 
out of s with flow (i.e., for all edges e out of s, we have f(e) = ce).

2) Let (A,B) be a minimum s-t cut with respect to these 
capacities . If we add 1 to every capacity, then (A,B) is still a 
minimum s-t cut with respect to the new capacities.
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