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LECTURES 17
Network Flow

•Duality of Max Flow and

Min Cut

•Algorithms: 

•Ford-Fulkerson

•Capacity Scaling
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Flow network.

 Abstraction for material flowing through the edges.

 G = (V, E) = directed graph, no parallel edges.

 Two distinguished nodes:  s = source, t = sink.

 c(e) = capacity of edge e.

Minimum Cut Problem
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Def.  An s-t cut is a partition (A, B) of V with s  A and t  B.

Def. The capacity of a cut (A, B) is:

Cuts
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Capacity = 10 + 5 + 15
= 30

A

  



cap(A, B)    c(e)
e out of A


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Def.  An s-t cut is a partition (A, B) of V with s  A and t  B.

Def. The capacity of a cut (A, B) is:
  



cap(A, B)    c(e)
e out of A



Capacity = 9 + 15 + 8 + 30
= 62

we don’t 
count edges 

into A



Min s-t cut problem.  Find an s-t cut of minimum capacity.

Minimum Cut Problem
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Capacity = 10 + 8 + 10
= 28



Def.  An s-t flow is a function that satisfies:

 For each e  E: (capacity)

 For each v  V – {s, t}: (conservation)

Def.  The value of a flow f is:       

Flows
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

f (e)
e in to v

  f (e)
e out of v


  



0  f (e)  c(e)
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

v( f )    f (e)  
e out of s

 .
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Max flow problem.  Find s-t flow of maximum value.

Maximum Flow Problem
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Flow value lemma. Let f be any flow, and let (A, B) be any s-t cut.  Then 

the net flow sent across the cut is equal to the amount leaving s.

Flows and Cuts
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f (e)
e out of A

  f (e)
e in to A

    v( f )
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Weak duality. Let f be any flow.  Then, for any s-t cut (A, B),

v(f)  cap(A, B).

Proof.

▪

Flows and Cuts



v( f )  f (e)
e out of A

  f (e)
e in to A



 f (e)
e out of A



 c(e)
e out of A
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Review Questions

True/False

Let G be an arbitrary flow network, with a source s, and sink t, 
and  a positive integer capacity ce on every edge e. 

1) If f is a maximum s-t flow in G, then f saturates every edge 
out of s with flow (i.e., for all edges e out of s, we have f(e) = ce).

2) Let (A,B) be a minimum s-t cut with respect to these 
capacities . If we add 1 to every capacity, then (A,B) is still a 
minimum s-t cut with respect to the new capacities.



Towards a Max Flow Algorithm

Greedy algorithm.

 Start with f(e) = 0 for all edges e  E.

 Find an s-t path P where each edge has f(e) < c(e).

 Augment flow along path P.

 Repeat until you get stuck.
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Towards a Max Flow Algorithm

Greedy algorithm.

 Start with f(e) = 0 for all edges e  E.

 Find an s-t path P where each edge has f(e) < c(e).

 Augment flow along path P.

 Repeat until you get stuck.
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Towards a Max Flow Algorithm

Greedy algorithm.

 Start with f(e) = 0 for all edge e  E.

 Find an s-t path P where each edge has f(e) < c(e).

 Augment flow along path P.

 Repeat until you get stuck.
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across middle edge?



Residual Graph

Original edge:  e = (u, v)   E.

 Flow f(e), capacity c(e).

Residual edge.

 "Undo" flow sent.

 e = (u, v) and eR = (v, u).

 Residual capacity:

Residual graph:  Gf = (V, Ef ).

 Residual edges with positive residual capacity.

 Ef = {e : f(e) < c(e)}   {eR : c(e) > 0}.
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c f (e) 
c(e) f (e) if  e E
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Ford-Fulkerson Algorithm
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Augmenting Path Algorithm

Ford-Fulkerson(G, s, t, c) {

foreach e  E,  f(e)  0

Gf  residual graph

while (there exists augmenting path P) {

f  Augment(f, c, P)

update Gf
}

return f

}

Augment(f, c, P) {

b  bottleneck-capacity(P) 

foreach e  P {

if (e  E) f(e)  f(e) + b

else f(𝒆𝑹)  f(𝒆𝑹) - b

}

return f

}

forward edge

reverse edge

Min residual capacity of an edge in P



Ford-Fulkerson: Analysis

Ford-Fulkerson summary: 

• While you can, 

• Greedily push flow

• Update residual graph

Lemma 1 (Feasibility): Ford-Fulkerson outputs a valid flow.

Proof: Check capacity and conservation conditions. (Details in KT)

Still to do:

• Optimality: Does it output a maximum flow? 

• Running time (in particular, termination!)



Max-Flow Min-Cut Theorem

Augmenting path theorem. Flow f is a max flow iff there are no 

augmenting paths. 

Max-flow min-cut theorem.  [Ford-Fulkerson 1956]  The value of the 

max flow is equal to the value of the min cut.

Proof strategy.  We prove both simultaneously by showing that TFAE:

(i) There exists a cut (A, B) such that v(f) = cap(A, B).

(ii) Flow f is a max flow.

(iii) There is no augmenting path relative to f.

(i)   (ii)  This was the corollary to weak duality lemma.

(ii)   (iii)  We show contrapositive.

 Let f be a flow. If there exists an augmenting path, then we can 

improve f by sending flow along path.



Proof of Max-Flow Min-Cut Theorem



v( f )  f (e)
e out of A

  f (e)
e in to A



 c(e)
e out of A



 cap(A,B)
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(iii)   (i)

 Let f be a flow with no augmenting paths.

 Let A be set of vertices reachable from s in residual graph.

 By definition of A, source s  A.

 By definition of f, sink t  A.

 Observation: No edges of the residual graph go from A to B.

 Claim 1: If e goes from A to B, 

then f(e) =c(e).

Proof: Otherwise there would be 

residual capacity, and the residual 

graph would have an edge A to B.

 Claim 2: If e goes from B to A, 

then f(e)=0.

Proof: Otherwise residual edge 

would go from A to B.



Ford-Fulkerson: Analysis

Ford-Fulkerson summary: 

• While you can, 

• Greedily push flow

• Update residual graph

Lemma 1 (Feasibility): Ford-Fulkerson outputs a valid flow.

Augmenting path theorem. Flow f is a max flow iff there are no 

augmenting paths. 

Optimality: If Ford-Fulkerson terminates then the output is a max flow.

Still to do:

• Running time (in particular, termination!)


