Algorithm Design and Analysis

LECTURES 20
Maximum Flow Applications
Edge-disjoint paths
Image segmentation
Project selection
Extensions to Max Flow

Sofya Raskhodnikova

10/26/2016

S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne L20.1

Exercise

We have been considering flows in graphs where the source has only outgoing edges and the sink has only incoming edges.

- Suppose the source also has incoming edges. How should we define max flow in such a graph?
- Can we reduce this variant of the problem to the one we solved before?

(When the sink has outgoing edges, the solution is ``symmetric''.)

7.6 Disjoint Paths Application of Max Flow With C=1

10/26/2016

Two problems

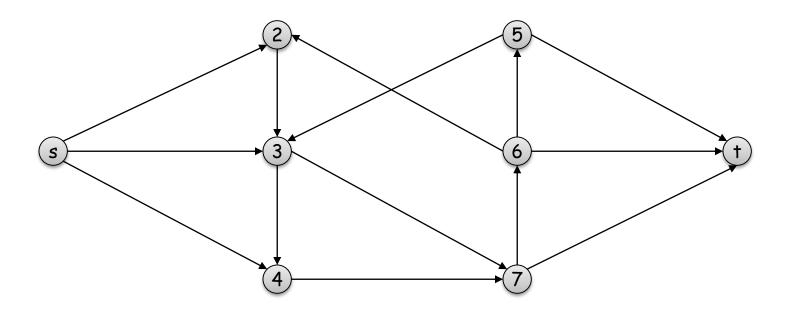
Given a network:

• Find edge-disjoint paths

• Find how many edges must be deleted to disconnect the graph

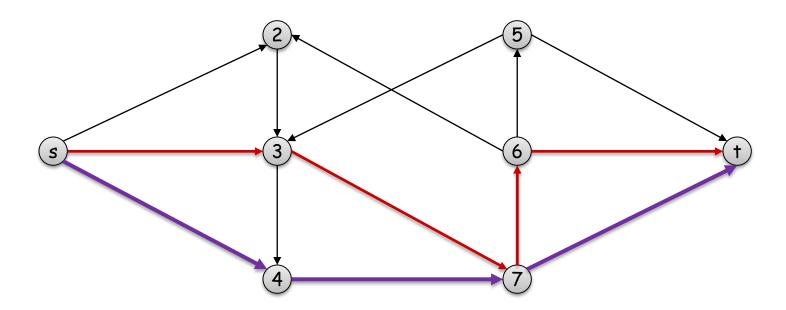
Edge Disjoint Paths

- **Disjoint paths problem.** Given a digraph G = (V, E) and two nodes s and t, find the max number of edge-disjoint s-t paths.
 - Two paths are edge-disjoint if they have no edge in common.
 - In networks: how many packets can I send in parallel?



Edge Disjoint Paths

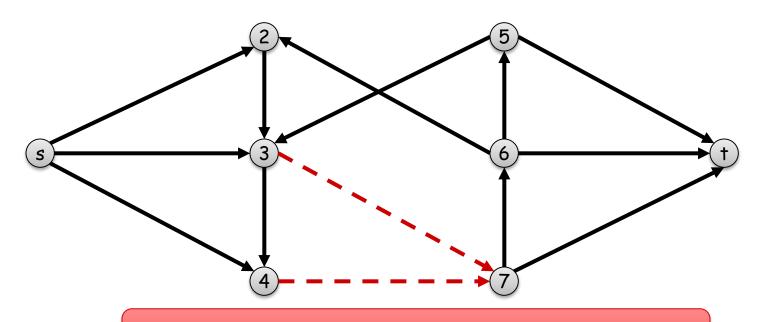
- **Disjoint paths problem.** Given a digraph G = (V, E) and two nodes s and t, find the max number of edge-disjoint s-t paths.
 - Two paths are edge-disjoint if they have no edge in common.
 - In networks: how many packets can I send in parallel?



Network Connectivity

- Network connectivity problem. Given a digraph G = (V, E) and two nodes s and t, find min number of edges whose removal disconnects t from s.
 - A set of edges $F \subseteq E$ disconnects t from s if each s-t paths uses at least one edge in F.

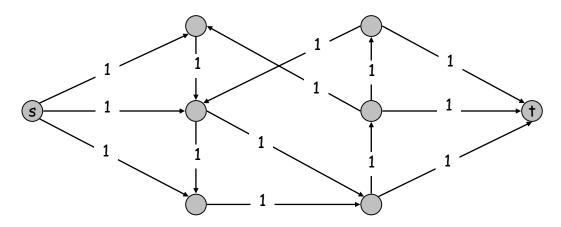
(That is, removing F would make t unreachable from s.)



s. RaskhHawwaisaiterelated to eedge ndisjoint pathshith, K. Wayne

Edge Disjoint Paths

Max flow formulation: assign unit capacity to every edge.

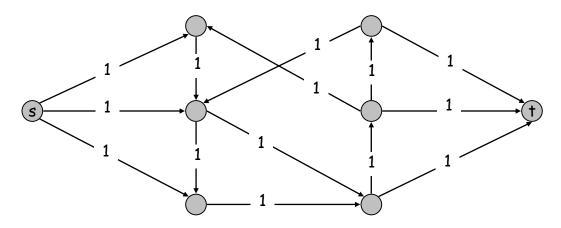


Theorem. Max number edge-disjoint s-t paths equals max flow value. Proof. \leq

- Suppose there are k edge-disjoint paths P_1, \ldots, P_k .
- Set f(e) = 1 if e participates in some path P_i ; else set f(e) = 0.
- Since paths are edge-disjoint, f is a flow of value k.

Edge-Disjoint Paths

Max flow formulation: assign unit capacity to every edge.



Theorem. Max number edge-disjoint s-t paths equals max flow value. Proof. \geq

- Suppose max flow value is k.
- Integrality theorem \Rightarrow there exists 0-1 flow f of value k.
- Consider edge (s, u) with f(s, u) = 1.
 - by conservation, there exists an edge (u, v) with f(u, v) = 1
 - continue until reach t, always choosing a new edge
- Produces k (not necessarily simple) edge-disjoint paths.

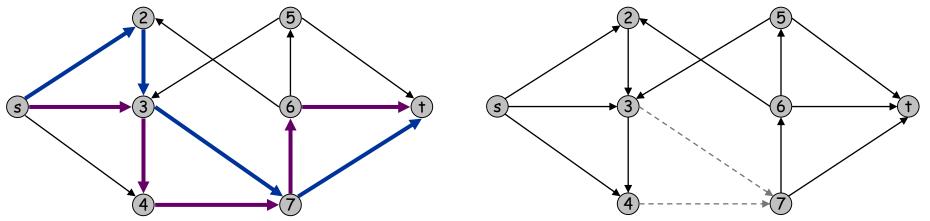
can eliminate cycles to get simple paths if desired

Edge-Disjoint Paths and Network Connectivity

Theorem. [Menger 1927] The max number of edge-disjoint s-t paths is equal to the min number of edges whose removal disconnects t from s.

Proof. \leq

- Suppose the removal of $\mathsf{F} \subseteq \mathsf{E}$ disconnects t from s, and $|\mathsf{F}|$ = k.
- All s-t paths use at least one edge of F. Hence, the number of edgedisjoint paths is at most k.

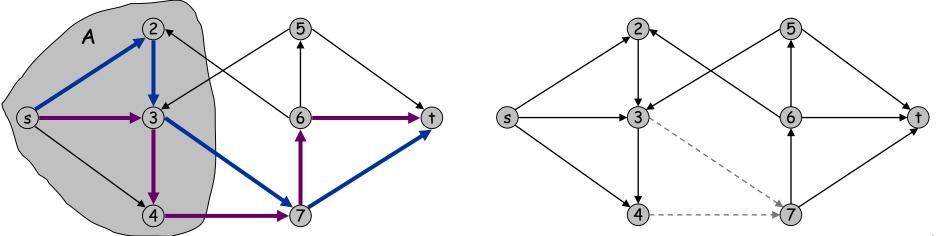


Edge-Disjoint Paths and Network Connectivity

Theorem. [Menger 1927] The max number of edge-disjoint s-t paths is equal to the min number of edges whose removal disconnects t from s.

Pf. \geq

- Suppose max number of edge-disjoint paths is k.
- Then max flow value is k.
- Max-flow min-cut \Rightarrow cut (A, B) of capacity k.
- Let F be set of edges going from A to B.
- IF = k and disconnects t from s.



In-class exercise

- Getting ambulances to accidents.
 - Inputs: T, d_1, \ldots, d_n and s_1, \ldots, s_k and driving times $t_{i,j}$ for all i, j
 - Accident *i* needs d_i ambulances $(i \in \{1, ..., n\})$
 - Ambulance station *j* has s_j ambulances $(j \in \{1, ..., k\})$
 - Ambulance needs to be within *T* minutes' drive of accident
 - Give an algorithm to determine if there is a way to assign enough nearby ambulances to each accident
- Pose as a flow problem
 - What is the graph?
 - What are the capacities?
 - How do you solve the original problem once you know the maximum flow?
 - What is the running time of the resulting algorithm?
- Variation: What if T is not given? Can we find the smallest T for which the problem is feasible?

10/26/2016