Algorithm Design and Analysis

LECTURE 22 Maximum Flow Applications •Image segmentation Project selection **Extensions to Max Flow**

Sofya Raskhodnikova

11/07/2016

S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne

Review

1)We saw Menger's theorem in the last lecture.

- Try to recall the statement of Menger's theorem for directed graphs.
- Does a similar statement hold if the graph is undirected?

7.10 Image Segmentation

S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne

•Image segmentation.

- ≻Central problem in image processing.
- ≻Divide image into coherent regions.

•Ex: Pictures of people standing against a nature background. Identify each person as a coherent object, distinct from the background.

Foreground / background segmentation.

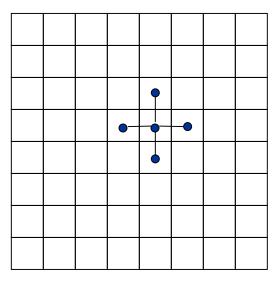
• Want to label each pixel in picture as belonging to foreground or background.

Inputs:

- V = set of pixels, E = pairs of neighboring pixels.
- $a_i \ge 0$ is likelihood pixel i in foreground.
- $b_i \ge 0$ is likelihood pixel i in background.
- p_{ij} : separation penalty for labeling one of i and j as foreground, and the other as background.

Goals.

- Accuracy: if $a_i > b_i$ in isolation, prefer to label i in foreground.
- Smoothness: if many neighbors of i are labeled foreground, we should be inclined to label i as foreground.
- Find partition (A, B) that maximizes: $\sum_{i \in A} a_i + \sum_{j \in B} b_j \sum_{\substack{i,j \in E}} p_{ij}$ foreground background $i \in A$ $j \in B$ $(i,j) \in E$ $|A \cap \{i,j\}| = 1$



Let's try to formulate as min cut problem. Obstacles:

- Maximization.
- No source or sink.
- Undirected graph.

Turn into minimization problem.

• Maximizing
$$\sum_{i \in A} a_i + \sum_{j \in B} b_j - \sum_{\substack{(i,j) \in E \\ |A \cap \{i,j\}|=1}} p_{ij}$$

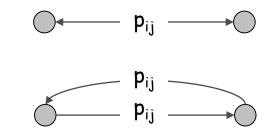
is equivalent to minimizing
$$\underbrace{\left(\sum_{i \in V} a_i + \sum_{j \in V} b_j\right)}_{a \text{ constant}} - \sum_{i \in A} a_i - \sum_{j \in B} b_j + \sum_{\substack{(i,j) \in E \\ |A \cap \{i,j\}| = 1}} p_{ij}$$

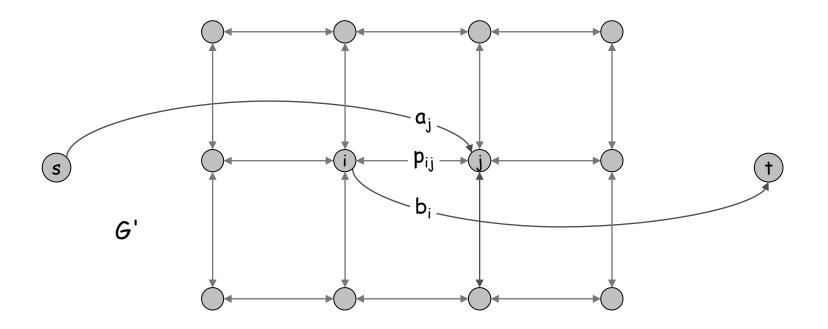
or alternatively

$$\sum_{j \in B} a_j + \sum_{i \in A} b_i + \sum_{\substack{(i,j) \in E \\ |A \cap \{i,j\}| = 1}} p_{ij}$$

Formulate as min cut problem.

- G' = (V', E').
- Add source to correspond to foreground; add sink to correspond to background
- Use two anti-parallel edges instead of undirected edge.





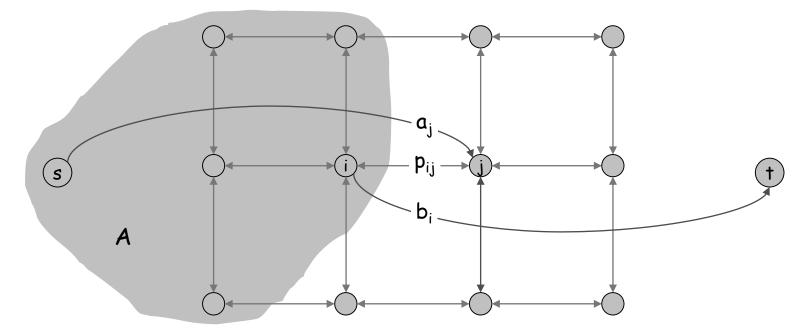
Consider a cut (A, B) in G'.

• A = foreground.

$$cap(A,B) = \sum_{j \in B} a_j + \sum_{i \in A} b_i + \sum_{\substack{(i,j) \in E \\ i \in A, j \in B}} p_{ij}$$

if i and j on different sides, p_{ij} counted exactly once

• Precisely the quantity we want to minimize.



Exercises

1)Write out the reduction as an algorithm (in pseudocode) that uses a min-cut subroutine.

- 2)Prove that the problem of finding a maximumweight independent set in **bipartite** graphs can be reduced to minimum cut.
 - Doesn't follow directly from this application, but uses a similar idea

10/26/2016 S. Raskhodnikova; based on slides by E. Demaine, C. Leiserson, A. Smith, K. Wayne

7.11 Project Selection

Project Selection

Projects with prerequisites.

can be positive or negative

- Set P of possible projects. Project v has associated revenue \dot{p}_v .
 - some projects generate money: create interactive e-commerce interface, redesign web page
 - others cost money: upgrade computers, get site license
- Set of prerequisites E. If (v, w) ∈ E, can't do project v and unless also do project w.
 - (P,E) is a DAG
- A subset of projects $A \subseteq P$ is feasible if the prerequisite of every project in A also belongs to A.

Project selection. Choose a feasible subset of projects to maximize revenue.

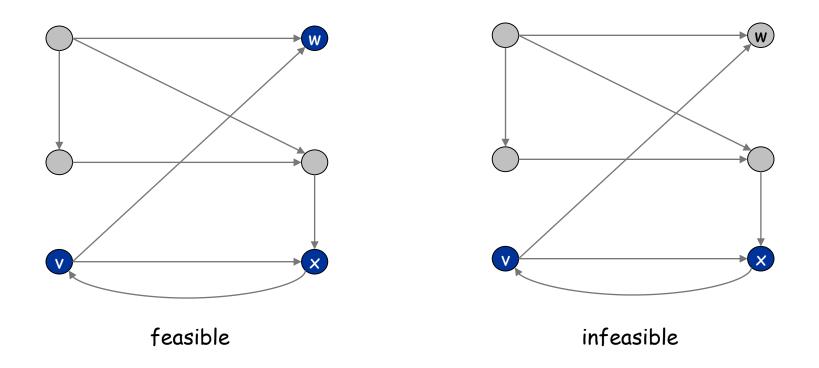
Project Selection: Prerequisite Graph

Prerequisite graph.

Include an edge from v to w if w is a prerequisite to v.

 $(v, w) \in E \implies v \text{ requires } w$

- {v, w, x} is feasible subset of projects.
- {v, x} is infeasible subset of projects.



Project Selection: Min Cut Formulation

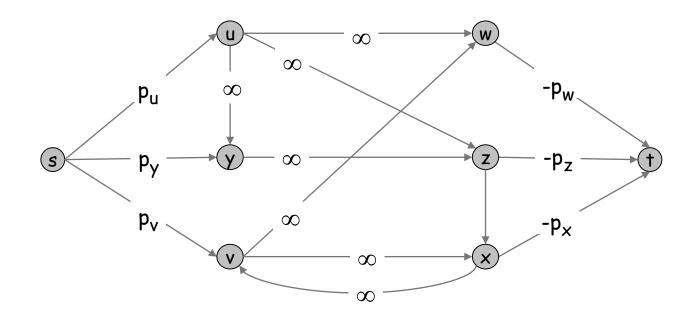
Min cut formulation.

- Add source s, sink t
- Assign capacity ___ to all prerequisite edges.
- Add edge (s, v) with capacity _____ if _____.
- Add edge (v, t) with capacity ____ if ____.

Project Selection: Min Cut Formulation

Min cut formulation.

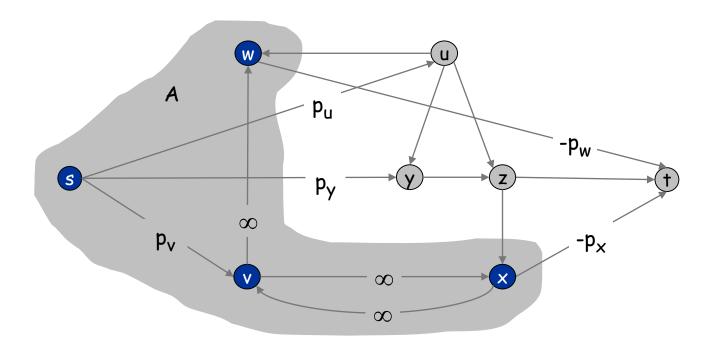
- Assign capacity ∞ to all prerequisite edges.
- Add source s, sink t
- Add edge (s, v) with capacity p_v if $p_v > 0$.
- Add edge (v, t) with capacity $-p_v$ if $p_v < 0$.
- For notational convenience, define $p_s = p_t = 0$.



Project Selection: Min Cut Formulation

Claim. (A, B) is min cut iff $A - \{s\}$ is optimal set of projects.

- Infinite capacity edges ensure $A \{s\}$ is feasible.
- Max revenue because: $cap(A, B) = \sum_{v \in B: p_v > 0} p_v + \sum_{v \in A: p_v < 0} (-p_v)$ $= \sum_{\substack{v : p_v > 0 \\ v : p_v > 0}} p_v - \sum_{v \in A} p_v$ constant



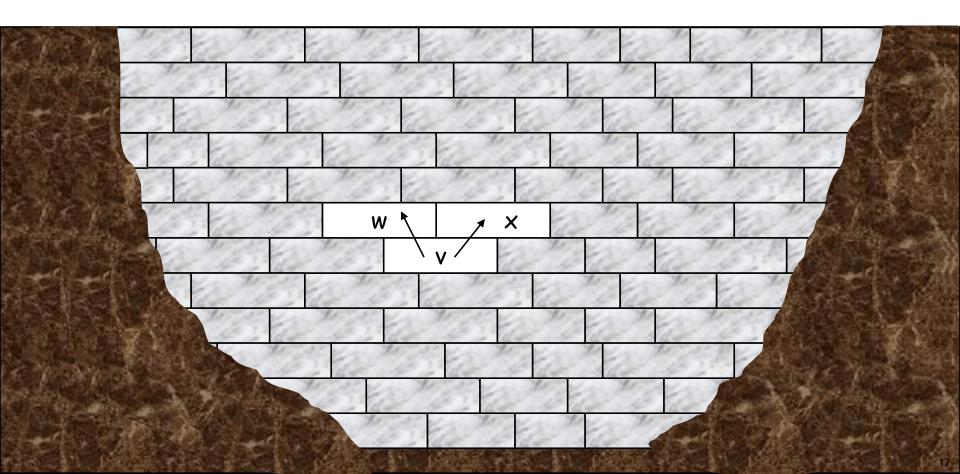
Exercise

• Write out the reduction as an algorithm in pseudocode that uses a min-cut subroutine.

Application: Open Pit Mining

Open-pit mining. (studied since early 1960s)

- Blocks of earth are extracted from surface to retrieve ore.
- Each block v has net value p_v = value of ore processing cost.
- Can't remove block v before w or x.



7.7 Circulations

Circulation with demands.

- Directed graph G = (V, E).
- Edge capacities c(e), $e \in E$.
- Node supply and demands d(v), $v \in V.$

demand if d(v) > 0; supply if d(v) < 0; transshipment if d(v) = 0

Def. A circulation is a function that satisfies:

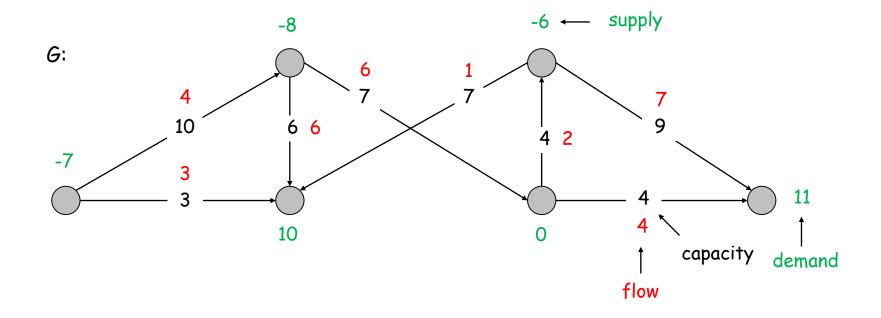
• For each $e \in E$: • For each $v \in V$: • For each $v \in V$: • $\sum_{e \text{ in to } v} f(e) - \sum_{e \text{ out of } v} f(e) = d(v)$ (conservation)

Circulation problem: given (V, E, c, d), does there exist a circulation?

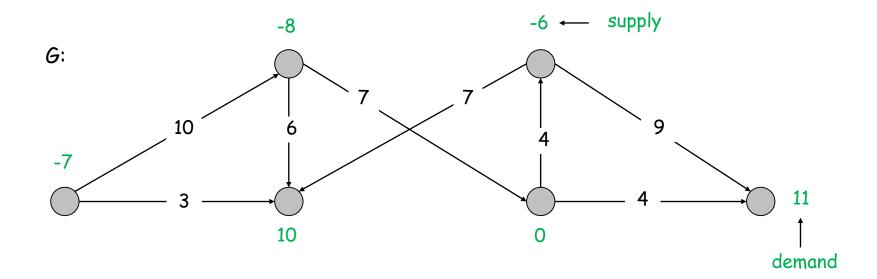
Necessary condition: sum of supplies = sum of demands.

$$\sum_{v:d(v)>0} d(v) = \sum_{v:d(v)<0} -d(v) =: D$$

Proof. Sum conservation constraints for every demand node v.



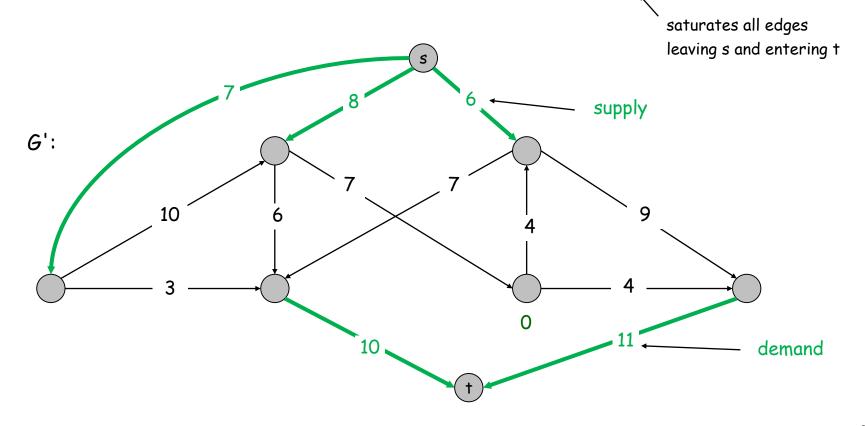
Max flow formulation.



Max flow formulation.

- Add new source s and sink t.
- For each v with d(v) < 0, add edge (s, v) with capacity -d(v).
- For each v with d(v) > 0, add edge (v, t) with capacity d(v).

Claim: G has circulation iff G' has max flow of value D.



Integrality theorem. If all capacities and demands are integers, and there exists a circulation, then there exists one that is integer-valued.

Proof. Follows from max flow formulation and integrality theorem for max flow.

Characterization. Given (V, E, c, d), there does not exist a circulation iff there exists a node partition (A, B) such that $\Sigma_{v \in B} d_v > cap(A, B)$

Proof idea. Look at min cut in G'.

Effective demand by nodes in B exceeds max capacity of edges going from A to B

Circulation with Demands and Lower Bounds

Feasible circulation.

- Directed graph G = (V, E).
- Edge capacities c(e) and lower bounds ℓ (e), $e \in E.$

e in to v

. Node supply and demands $d(v), v \in V.$

Def. A circulation is a function that satisfies:

• For each $e \in E$: • For each $v \in V$: • $\sum f(e) - \sum f(e) = d(v)$ (conservation)

e out of v

Circulation problem with lower bounds. Given (V, E, ℓ , c, d), does there exist a circulation?

Circulation with Demands and Lower Bounds

Idea. Model lower bounds with demands.

- . Send $\ell(e)$ units of flow along edge e.
- Update demands of both endpoints.

Theorem. There exists a circulation in G iff there exists a circulation in G'. If all demands, capacities, and lower bounds in G are integers, then there is a circulation in G that is integer-valued.

Proof sketch. f(e) is a circulation in G if and only if $f'(e) = f(e) - \ell(e)$ is a circulation in G'.

Census Tabulation (Exercise 7.39)

Feasible matrix rounding.

- Given a p-by-q matrix $D = \{d_{ij}\}$ of real numbers.
- Row i sum = a_i , column j sum b_j .
- Round each d_{ij} , a_i , b_j up or down to integer so that sum of rounded elements in each row (column) equals row (column) sum.
- Original application: publishing US Census data.

Goal. Find a feasible rounding, if one exists.

3.14	6.8	7.3	17.24
9.6	2.4	0.7	12.7
3.6	1.2	6.5	11.3
16.34	10.4	14.5	

original matrix

3	7	7	17
10	2	1	13
3	1	7	11
16	10	15	

feasible rounding

Census Tabulation

Feasible matrix rounding.

- Given a p-by-q matrix $D = \{d_{ij}\}$ of real numbers.
- Row i sum = a_i , column j sum b_j .
- Round each d_{ij} , a_i , b_j up or down to integer so that sum of rounded elements in each row (column) equals row (column) sum.
- Original application: publishing US Census data.

Goal. Find a feasible rounding, if one exists. Remark. "Threshold rounding" can fail.

0.35	0.35	0.35	1.05
0.55	0.55	0.55	1.65
0.9	0.9	0.9	

original matrix

0	0	1	1
1	1	0	2
1	1	1	

feasible rounding

Census Tabulation

Theorem. Feasible matrix rounding always exists.

Proof. Formulate as a circulation problem with lower bounds.

- Original data provides circulation (all demands = 0).
- . Integrality theorem \Rightarrow integral solution \Rightarrow feasible rounding. •

