Algorithm Design and Analysis

LECTURE 25

Linear programming

- Definitions
- Duality

(Based on Erickson, Chapter 26)

Sofya Raskhodnikova

Review questions

- 1. Maximaze 2x + y in the feasible region on the figure.
- 2. Is every optimal solution to a LP also a vertex of the feasible region?

3. What is the OPT of the following LP? Given a graph G = (V, E) with edge lengths $\ell_{u,v}$ LP: maximize $\sum_{v} d_{v}$

s.t.
$$d_v - d_u \le \ell_{u,v} \ \forall \ (u,v) \in E$$

 $d_s = 0$

Duality of linear programs

- For every linear program Π , there is another linear program Π^* that is perfect for it
 - $ightharpoonup \Pi^*$ is "the" dual program of Π
 - The dual is not unique
 - \triangleright The dual of Π^* is Π
- If we put Π in canonical form as a max. problem

$$\max \vec{c} \cdot \vec{x}$$

s.t. $Ax \le \vec{b}$ and $x \ge 0$

n variablesm constraints

Primal

Dual

then we can write Π^* as a minimization problem

$$\min \vec{b} \cdot \vec{y}$$

s.t. $A^{\mathsf{T}} y \ge \vec{c}$ and $y \ge 0$

m variablesn constraints

Examples: compute duals

1.
$$\max 4x + 3y$$

s.t. $\binom{7}{1} \binom{2}{3} \binom{x}{y} \le \binom{9}{4}$
and $x, y \ge 0$

2. Given G = (V, E) with edge lengths $\ell_{u,v}$

LP: maximize d_t

s.t.
$$d_v - d_u \le \ell_{u,v} \ \forall \ (u,v) \in E$$

 $d_s = 0$

Examples: compute duals

1. $\max 4x + 3y$ s.t. $\binom{7}{1} \binom{2}{3} \binom{x}{y} \le \binom{9}{4}$ and $x, y \ge 0$

2. What is the OPT of the following LP?

Given a graph G = (V, E) with edge lengths $\ell_{u,v}$

LP: maximize $\sum_{v} d_{v}$

s.t.
$$d_v - d_u \le \ell_{u,v} \ \forall \ (u,v) \in E$$

 $d_s = 0$

Shortest path LP

There is another formulation of shortest paths as an LP minimization problem using an indicator variable $x_{u\to v}$ for each edge $u\to v$.

$$\begin{split} & \text{minimize} & \sum_{u \to v} \ell_{u \to v} \cdot x_{u \to v} \\ & \text{subject to} & \sum_{u} x_{u \to s} - \sum_{w} x_{s \to w} = 1 \\ & \sum_{u} x_{u \to t} - \sum_{w} x_{t \to w} = -1 \\ & \sum_{u} x_{u \to v} - \sum_{w} x_{v \to w} = 0 \quad \text{for every vertex } v \neq s, t \\ & x_{u \to v} \geq 0 \quad \text{for every edge } u \to v \end{split}$$

• Think of this as routing one unit of flow from *s* to *t* at minimum cost

Duality: Intuition

- We want an upper bound on OPT
 - Combine the inequalities we have?
 - For any feasible (x, y), and for all coefficients $w, z \ge 0$:

$$w(7x + 2y) + z(1x + 3y)$$

= $(7w + z)x + (2w + 3z)y$
 $\leq 9w + 4z$

- Suppose we can find w, z such that $(7w + z) \ge 4$ and $(2w + 3z) \ge 3$
 - Then 9w + 4z is an upper bound $\frac{1}{100}$ the value of the objective
 - How tight can we make this bound?
 - ➤ New LP! It's the dual!

min 9z + 4ws.t. $\begin{pmatrix} 7 & 1 \\ 2 & 3 \end{pmatrix} \begin{pmatrix} w \\ z \end{pmatrix} \ge \begin{pmatrix} 4 \\ 3 \end{pmatrix}$ and $z, w \ge 0$

Duality Theorems

```
\begin{array}{c}
n \text{ variables} \\
m + n \text{ constraints} \\
s.t. \quad A\vec{x} \leq \vec{b} \text{ and } \vec{x} \geq 0
\end{array}
```

- Weak duality: If \vec{x} is feasible for Π and \vec{y} is feasible for Π^* then $\vec{c} \cdot \vec{x} \leq \vec{y} A \vec{x} \leq \vec{y} \cdot \vec{b}$
 - > Proof on board

• **Strong Duality**: A feasible point \vec{x} for Π is optimal *if and only if* $\exists \vec{y}$ feasible for Π^* such that $\vec{c} \cdot \vec{x} = \vec{y} A \vec{x} = \vec{y} \cdot \vec{b}$