
11/3/10

Sofya Raskhodnikova

Algorithm Design and Analysis

LECTURE 26
Computational

Intractability

• Polynomial Time Reductions

S. Raskhodnikova; based on slides by A. Smith and K. Wayne L26.1

What algorithms are (im)possible?

Algorithm design patterns. Examples.

 Greedy. O(n log n) interval scheduling.

 Divide-and-conquer. O(n log n) sorting.

 Dynamic programming. O(n2) edit distance.

 Augmenting paths. Max flow.

 Simplex method Linear programming

 Reductions. Maximum matcing

 … (lots more out there)

New goal: understand what is hard to compute.

 NP-completeness. O(nk) algorithm unlikely.

 PSPACE-completeness. O(nk) certification algorithm unlikely.

 Undecidability. No algorithm possible.

2

Intractability: Central ideas we’ll cover

• Poly-time as “feasible”
• most natural problems either are easy

(say n3) or have no known poly-time algorithms

• P = problems that are easy to answer
• e.g. minimum cut

• NP = {problems whose answers are
easy to verify given hint}

• e.g. graph 3-coloring

• Reductions: X is no harder than Y

• NP-completeness
• many natural problems are easy

if and only if P=NP

3

Polynomial-Time Reductions

11/3/10
S. Raskhodnikova; based on slides by A. Smith and K. Wayne L26.4

Classify Problems According to Computational Requirements

Q. Which problems will we be able to solve in practice?

A working definition. [Cobham 1964, Edmonds 1965, Rabin 1966]

Those with polynomial-time algorithms.

Yes Probably no

Shortest path Longest path

Min cut Max cut

2-SAT 3-SAT

Matching 3D-matching

Primality testing Factoring

Planar 4-color Planar 3-color

Bipartite vertex cover Vertex cover

5

Classify Problems

Desiderata. Classify problems according to those that can be solved in

polynomial-time and those that cannot.

Provably requires exponential-time.

 Given a Turing machine, does it halt in at most k steps?

 Given a board position in an n-by-n generalization of chess, can black

guarantee a win?

Frustrating news. Huge number of fundamental problems have defied

classification for decades.

This lecture. Show that these fundamental problems are

"computationally equivalent" and appear to be different

manifestations of one really hard problem.

6

Polynomial-Time Reduction

Desiderata'. Suppose we could solve X in polynomial-time. What else

could we solve in polynomial time?

Reduction. Problem X poly-time reduces to problem Y if arbitrary

instances of problem X can be solved using:

 Polynomial number of standard computational steps, plus

 Polynomial number of calls to oracle that solves problem Y.

Notation. X  p,Cook Y (or X  P Y).
Later in the lecture. X  p,Karp Y.

Remarks.
 We pay for time to write down instances sent to black box 

instances of Y must be of polynomial size.

don't confuse with reduces from

computational model supplemented by special piece
of hardware that solves instances of Y in a single step

7

Polynomial-Time Reduction

Purpose. Classify problems according to relative difficulty.

Design algorithms. If X  P Y and Y can be solved in polynomial-time,

then X can also be solved in polynomial time.

Establish intractability. If X  P Y and X cannot be solved in

polynomial-time, then Y cannot be solved in polynomial time.

Establish equivalence. If X  P Y and Y  P X, we use notation X  P Y.

up to cost of reduction

8

Simplifying Assumption: Decision Problems

Search problem. Find some structure.

Example. Find a minimum cut.

Decision problem.

 X is a set of strings.

 Instance: string s.

 If x ∈ X, x is a YES instance; if x X is a NO instance.

 Algorithm A solves problem X: A(s) = yes iff s  X.

Example. Does there exist a cut of size  k?

Self-reducibility. Search problem  P, Cook decision version.

 Applies to all (NP-complete) problems in Chapter 8 of KT.

 Justifies our focus on decision problems.

9

Polynomial Transformation

Def. Problem X poly-time reduces (Cook) to problem Y if arbitrary

instances of problem X can be solved using:

 Polynomial number of standard computational steps, plus

 Polynomial number of calls to oracle that solves problem Y.

Def. Problem X poly-time transforms (Karp) to problem Y if given any

input x to X, we can construct an input y such that

x is a yes instance of X iff

y is a yes instance of Y.

Note. Poly-time transformation is poly-time reduction with just one

call to oracle for Y, exactly at the end of the algorithm for X.

Open question. Are these two concepts the same?

we require |y| to be of size polynomial in |x|

Caution: KT abuses notation  p and blurs distinction

10

Basic reduction strategies

• Reduction by simple equivalence.

• Reduction from special case to general case.

• Reduction by encoding with gadgets.

Basic reduction strategies

11/3/10
S. Raskhodnikova; based on slides by A. Smith and K. Wayne L26.11

Independent Set

Given an undirected graph G, an independent set in G is a set of

nodes, which includes at most one endpoint of every edge.

INDEPENDENT SET = { 𝐺, 𝑘 ∣ 𝐺 is an undirected graph which has an

independent set with 𝑘 nodes}

• Is there an independent set of size  6?

– Yes.

• Is there an independent set of size  7?

– No.

independent set

11/3/10
S. Raskhodnikova; based on slides by A. Smith and K. Wayne L26.12

Vertex Cover

Given an undirected graph G, a vertex cover in G is a set of nodes,

which includes at least one endpoint of every edge.

VERTEX COVER= { 𝐺, 𝑘 ∣ 𝐺 is an undirected graph which has a vertex cover

with 𝑘 nodes}

• Is there vertex cover of size  4?

– Yes.

• Is there a vertex cover of size  3?

– No.

vertex cover

11/3/10
S. Raskhodnikova; based on slides by A. Smith and K. Wayne L26.13

Independent Set and Vertex Cover

Claim. S is an independent set iff V  S is a vertex cover.

• 

– Let S be any independent set.

– Consider an arbitrary edge (u, v).

– S is independent  u  S or v  S  u  V  S or v  V  S.

– Thus, V  S covers (u, v).

• 

– Let V  S be any vertex cover.

– Consider two nodes u  S and v  S.

– Then (u, v)  E since V  S is a vertex cover.

– Thus, no two nodes in S are joined by an edge  S independent set. ▪

11/3/10
S. Raskhodnikova; based on slides by A. Smith and K. Wayne L26.14

INDEPENDENT SET reduces to VERTEX COVER

Theorem. INDEPENDENT-SET ≤𝑝 VERTEX-COVER.

Proof. “On input 𝐺, 𝑘 , where 𝐺 is an undirected graph and 𝑘 is an

integer,

1. Output 𝐺, 𝑛 − 𝑘 , where 𝑛 is the number of nodes in 𝐺.”

Correctness:

• G has an independent set of size 𝑘 iff it has a vertex cover of size

𝑛 − 𝑘.

• Reduction runs in linear time.

11/3/10
S. Raskhodnikova; based on slides by A. Smith and K. Wayne L26.15

Basic reduction strategies

• Reduction by simple equivalence.

• Reduction from special case to general case.

• Reduction by encoding with gadgets.

Reduction: special case to general case

11/3/10
S. Raskhodnikova; based on slides by A. Smith and K. Wayne L26.16

Set Cover

Given a set U, called a universe, and a collection of its subsets

𝑆1, 𝑆2, … , 𝑆𝑚, a set cover of U is a subcollection of subsets whose

union is U.

• SET COVER={ 𝑈, 𝑆1, 𝑆2, … , 𝑆𝑚; 𝑘 ∣

U has a set cover of size 𝑘}

• Sample application.

– m available pieces of software.

– Set U of n capabilities that we would like our system to have.

– The 𝑖th piece of software provides the set Si  U of capabilities.

– Goal: achieve all 𝑛 capabilities using fewest pieces of software.

U = { 1, 2, 3, 4, 5, 6, 7 }

k = 2

S1 = {3, 7} S4 = {2, 4}

S2 = {3, 4, 5, 6} S5 = {5}

S3 = {1} S6 = {1, 2, 6, 7}

11/3/10
S. Raskhodnikova; based on slides by A. Smith and K. Wayne L26.17

VERTEX COVER reduces to SET COVER
Theorem. VERTEX-COVER  P SET-COVER.
Proof. “On input 𝐺, 𝑘 , where 𝐺 = (𝑉, 𝐸) is an undirected graph
and 𝑘 is an integer,

1. Output 𝑈, 𝑆1, 𝑆2, … , 𝑆𝑚; 𝑘 , where U=E and

Sv = {e  E : e incident to v }”

Correctness:

• G has a vertex cover of size k iff U has a set cover of size k.

• Reduction runs in linear time.

SET COVER

U = { 1, 2, 3, 4, 5, 6, 7 }
k = 2
Sa = {3, 7} Sb = {2, 4}
Sc = {3, 4, 5, 6} Sd = {5}
Se = {1} Sf= {1, 2, 6, 7}

a

d

b

e

f c

VERTEX COVER

k = 2
e1

e2 e3

e5

e4

e6

e7

11/3/10
S. Raskhodnikova; based on slides by A. Smith and K. Wayne L26.18

Basic reduction strategies

• Reduction by simple equivalence.

• Reduction from special case to general case.

• Reduction by encoding with gadgets.

Reduction by encoding with gadgets

11/3/10
S. Raskhodnikova; based on slides by A. Smith and K. Wayne L26.19

• Boolean variables: variables that can take on values T/F (or 1/0)

• Boolean operations: ∨, ∧, and ¬

• Boolean formula: expression with Boolean variables and ops

SAT = {〈Φ〉 ∣ Φ is a satisfiable Boolean formula}

• Literal: A Boolean variable or its negation.

• Clause: OR of literals.

• Conjunctive normal form (CNF): AND of clauses.

3SAT = {〈Φ〉 ∣ Φ is a satisfiable Boolean CNF formula, where each clause

contains exactly 3 literals}

Satisfiability



C j  x1  x2  x3



xi or xi



  C1C2  C3 C4

each corresponds to a different variable

Ex:

Yes: x1 = true, x2 = true x3 = false.



x1  x2  x3   x1  x2  x3   x2  x3   x1  x2  x3 

11/3/10
S. Raskhodnikova; based on slides by A. Smith and K. Wayne L26.20

3SAT reduces to INDEPENDENT SET

Theorem. 3-SAT  P INDEPENDENT-SET.
Proof. “On input Φ , where Φ is a 3CNF formula,

1. Construct graph G from Φ

– G contains 3 vertices for each clause, one for each literal.

– Connect 3 literals in a clause in a triangle.

– Connect literal to each of its negations.

2. Output 𝐺, 𝑘 , where 𝑘 is the number of clauses in Φ.”



x2



  x1  x2  x3   x1  x2  x3   x1  x2  x4 



x3



x1



x1



x2



x4



x1



x2



x3

k = 3

G

11/3/10
S. Raskhodnikova; based on slides by A. Smith and K. Wayne L26.21

Correctness. Let k = # of clauses and ℓ= # of literals in .

 is satisfiable iff G contains an independent set of size k.

•  Given satisfying assignment, select one true literal from each

triangle. This is an independent set of size k.

•  Let S be an independent set of size k.

– S must contain exactly one vertex in each triangle.

– Set these literals to true, and other literals in a consistent way.

– Truth assignment is consistent and all clauses are satisfied.

Run time. O(𝑘 + ℓ2), i.e. polynomial in the input size.

3SAT reduces to INDEPENDENT SET

11/3/10
S. Raskhodnikova; based on slides by A. Smith and K. Wayne L26.22

Summary

• Basic reduction strategies.

– Simple equivalence: INDEPENDENT-SET  P VERTEX-COVER.

– Special case to general case: VERTEX-COVER  P SET-COVER.

– Encoding with gadgets: 3-SAT  P INDEPENDENT-SET.

• Transitivity.If X  P Y and Y  P Z, then X  P Z.

• Proof idea. Compose the two algorithms.

• Ex: 3-SAT  P INDEPENDENT-SET  P VERTEX-COVER  P SET-COVER.

11/3/10
S. Raskhodnikova; based on slides by A. Smith and K. Wayne L26.23

