
Testing Lipschitz Functions on Hypergrid Domains∗

Pranjal Awasthi†

Carnegie Mellon University
Madhav Jha‡

Pennsylvania State University

Marco Molinaro§

Carnegie Mellon University
Sofya Raskhodnikova‡

Pennsylvania State University

Abstract

A function f(x1, ..., xd), where each input is an integer from 1 to n and output is a real number, is
Lipschitz if changing one of the inputs by 1 changes the output by at most 1. In other words, Lipschitz
functions are not very sensitive to small changes in the input.

Our main result is an efficient tester for the Lipschitz property of functions f : [n]d → δZ, where
δ ∈ (0, 1] and δZ is the set of integer multiples of δ. A property tester is given an oracle access to
a function f and a proximity parameter ε, and it has to distinguish, with high probability, functions
that have the property from functions that differ on at least an ε fraction of values from every function
with the property. The Lipschitz property was first studied by Jha and Raskhodnikova (FOCS’11) who
motivated it by applications to data privacy and program verification. They presented efficient testers for
the Lipschitz property of functions on the domains {0, 1}d and [n]. Our tester for functions on the more
general domain [n]d runs in time O(d1.5n log n) for constant ε and δ.

The main tool in the analysis of our tester is a smoothing procedure that makes a function Lipschitz
by modifying it at a few points. Its analysis is already nontrivial for the 1-dimensional version, which
we call Bubble Smooth, in analogy to Bubble Sort. In one step, Bubble Smooth modifies two values
that violate the Lipschitz property, namely, differ by more than 1, by transferring δ units from the larger
to the smaller. We define a transfer graph to keep track of the transfers, and use it to show that the `1
distance between f and BubbleSmooth(f) is at most twice the `1 distance from f to the nearest Lipschitz
function. Bubble Smooth has several other important properties that allow us to obtain a dimension
reduction, i.e., a reduction from testing functions on multidimensional domains to testing functions on
one-dimensional domains. Our dimension reduction incurs only a small multiplicative overhead in the
running time and thus avoids the exponential dependence on the dimension.

1 Introduction

Property testing aims to understand how much information is needed to decide (approximately) whether an
object has a property. A property tester [RS96, GGR98] is given oracle access to an object and a proxim-
ity parameter ε ∈ (0, 1). If the object has the desired property then the tester accepts it with probability1

∗A preliminary version of this paper appeared in RANDOM’12 [AJMR12].
†P.A. is supported by NSF grant CCF-1116892.
‡M.J. and S.R. are supported by NSF CAREER grant CCF-0845701 and NSF grant CCF-0729171.
§M.M. is supported by NSF grant CMMI-1024554.
1In the definition of a property tester, we set the success probability to 2/3. By standard arguments, it can be amplified to 1− γ

for any γ ∈ (0, 1/3) with Θ(log 1/γ) overhead in the complexity of the tester.

1

at least 2/3; if the object is ε-far from having the desired property then the tester rejects it with proba-
bility at least 2/3. Specifically, for properties of functions, ε-far means that a given function differs on
at least an ε fraction of the domain points from any function with the property2. Properties of many dif-
ferent types of objects have been studied, including graphs, metrics spaces, images and functions (see,
e.g., [Ron09, CS10, Gol11, RS11] for recent surveys.) Specifically, for non-Boolean functions, sublinear-
time testers of linearity [BLR93], being a low-degree polynomial [RS96, KR06, JPRZ09], monotonic-
ity [EKK+00, GGL+00, DGL+99, BRW05, FLN+02, HK08, ACCL07, BGJ+12], submodularity [SV14]
and the Lipschitz property [JR13] have been proposed.

We present efficient testers for the Lipschitz property of functions3 f : [n]d → δZ, where δ ∈ (0, 1]
and δZ is the set of integer multiples of δ. A function f is c-Lipschitz (with respect to the `1 metric on the
domain) if |f(x)− f(y)| ≤ c · |x− y|1 for all x, y in the domain. Points in the domain [n]d can be thought
of as vertices of a d-dimensional hypergrid, where every pair of points at `1 distance 1 is connected by an
edge. Each edge (x, y) imposes a constraint |f(x)−f(y)| ≤ c and a function f is c-Lipschitz iff every edge
constraint is satisfied. We say a function is Lipschitz if it is 1-Lipschitz. (Note that rescaling by a factor of
1/c converts a c-Lipschitz function into a Lipschitz function.)

Testing of the Lipschitz property was first studied by Jha and Raskhodnikova [JR13] who motivated it
by applications to data privacy and program verification. They presented testers for the Lipschitz property
of functions on the domains {0, 1}d (the hypercube) and [n] (the line) that run in time O(d2/(δε)) and
O(log n/ε), respectively. Even though the applications in [JR13] are most convincing for functions on
general hypergrid domains (in one of their applications, for instance, a point in [n]d represents a histogram
of a private database), no nontrivial tester for functions on such general domains was known prior to this
work.

1.1 Our Results

We present two efficient testers of the Lipschitz property of functions of the form f : [n]d → δZ with
running time polynomial in d, n and (δε)−1. Our testers are faster for functions whose image has small
diameter.

Definition 1.1 (Image diameter). Given a function f : [n]d → R, its image diameter is

ImgD(f) = max
x∈[n]d

f(x)− min
y∈[n]d

f(y).

Observe that a Lipschitz function on [n]d must have image diameter at most nd. However, image diameter
can be arbitrarily large for a non-Lipschitz function.

Our testers are nonadaptive, that is, their queries do not depend on answers to previous queries. The
first tester has 1-sided error, that is, it always accepts Lipschitz functions. The second tester is faster (when√
d� log(1/ε) and ImgD(f) is large), but has 2-sided error, that is, it can err with probability at most 1/3

on both positive and negative instances.
2The distance measure on the space of functions used here and in previous work on property testing is Hamming distance. After

the conference version of this article was published, Berman et al. [BRY14] proposed to use `p distances in property testing of
real-valued functions. We note that even though testing with respect to `p distances is very useful, testing with respect to Hamming
distance is still important. In particular, the applications of Lipschitz testers to privacy developed in [JR13, DJRT13] require the
use of Hamming distance.

3The set {1, . . . , n} is denoted by [n].

2

Theorem 1.1 (Lipschitz testers). For4 all δ ∈ (0, 1], ε ∈ (0, 1), the Lipschitz property of functions f :
[n]d → δZ can be tested nonadaptively with the following time complexity:

(1) in O
(
d
δε ·min {ImgD(f), nd} · log min{ImgD(f), n}

)
time with 1-sided error.

(2) in O
(
d
δε ·min

{
ImgD(f), n

√
d log(1/ε)

}
· log min{ImgD(f), n}

)
time with 2-sided error.

If the image diameter, δ and ε are constant, then both testers run in O(d) time. This is tight already for
the range {0, 1, 2}, even for the special case of the hypercube domain [JR13].

1.2 Our Techniques

For clarity of presentation, we first state and prove all our theorems for δ = 1, i.e., for integer-valued
functions. In Section 5, by discretizing (as was done in [JR13]), we extend our results to the range δZ.

The main challenge in designing a tester for functions on the hypergrid domains is avoiding an exponen-
tial dependence on the dimension d. We achieve this via a dimension reduction, i.e., a reduction from testing
functions on the hypergrid [n]d to testing functions on the line [n], that incurs only anO(d·min{ImgD, nd})
multiplicative overhead in the running time. In order to do this, we relate the distance to the Lipschitz prop-
erty of a function f on the hypergrid to the average distance to the Lipschitz property of restrictions of f
to 1-dimensional (axis-parallel) lines. For i ∈ [d], let ei ∈ [n]d be 1 on the ith coordinate and 0 on the
remaining coordinates. Then for every dimension i ∈ [d] and α ∈ [n]d with αi = 0, the line g of f along
dimension i with position α is the restriction of f defined by g(xi) = f(α + xi · ei), where xi ranges over
[n]. We denote the set of lines of f along dimension i by Lif and the set of all lines, i.e.,

⋃
i∈[d] L

i
f , by Lf .

We denote the relative distance of a function h to the Lipschitz property, i.e., the fraction of input points
where the function needs to be changed in order to become Lipschitz, by εLip(h). The technical core of
our dimension reduction is the following theorem that demonstrates that if a function on the hypergrid is far
from the Lipschitz property then a random line from Lf is, in expectation, also far from it.

Theorem 1.2 (Dimension reduction). For all functions f : [n]d → Z, the following holds:

Eg←Lf

[
εLip(g)

]
≥ εLip(f)

2 · d · ImgD(f)
.

To obtain this result, we introduce a smoothing procedure that “repairs” a function (i.e., makes it Lips-
chitz) one dimension at a time, while modifying it at a few points. Such procedures have been previously
designed for restoring monotonicity of Boolean functions [GGL+00, DGL+99] and for restoring the Lip-
schitz property of functions on the hypercube domain [JR13]. The key challenge is to find a smoothing
procedure that satisfies the following three requirements:

1. It makes all lines along dimension i (i.e., in Lif) Lipschitz.

2. It changes only a small number of function values.

3. It does not make lines in other dimensions less Lipschitz, according to some measure.

There are known smoothing operators (e.g., graph Laplacian) that make a function more Lipschitz [Oll09],
but to the best of our knowledge there are no appropriate bounds on the number of function values that are
changed.

4If δ > 1 then f is Lipschitz iff it is 0-Lipschitz (that is, constant). Testing if a function is constant takes O(1/ε) time.

3

Smoothing Procedure for 1-dimensional Functions. Our first technical contribution is a local smoothing
procedure for functions f : [n]→ Z, which we call BubbleSmooth, in analogy to Bubble Sort. In one basic
step, BubbleSmooth modifies two consecutive values (i.e., f(i) and f(i + 1) for some i ∈ [n − 1]) that
violate the Lipschitz property, namely, differ by more than 1. It decreases the larger and increases the smaller
by 1, i.e., it transfers a unit from the larger to the smaller. See Algorithm 1 for the description of the order
in which basic steps are applied. BubbleSmooth is a natural generalization of the averaging operator in
[JR13], used to repair an edge of the hypercube, that can also be viewed as several applications of the basic
step to the edge.

One challenge in analyzing BubbleSmooth is that when it is applied to all lines in one dimension, it
may increase the average distance to the Lipschitz property for the lines in the remaining dimensions. Our
second key technical insight is to use the `1 distance to the Lipschitz property to measure the performance
of our procedure on the line and its effect on other dimensions. The `1 distance between functions f and
f ′ on the same domain, denoted by |f − f ′|1, is the sum of |f(x)− f ′(x)| over all values x in the domain.
The `1 distance of a function f to Lipschitz, denoted `Lip1 (f), is minf ′ |f − f ′|1, where the minimum is
taken over all Lipschitz functions with the same domain as f . Observe that the Hamming distance and the
`1 distance from a function to a property can differ by at most ImgD(f). Later, we leverage the fact that
Lipschitz functions have a relatively small image diameter to relate the `1 distance to the Hamming distance.

We prove that BubbleSmooth returns a Lipschitz function and that it makes at most twice as many
changes in terms of `1 distance as necessary to make a function Lipschitz.

Theorem 1.3. Consider a function f : [n] → Z and let f ′ be the function returned by BubbleSmooth(f).
Then (1) function f ′ is Lipschitz and (2) |f − f ′|1 ≤ 2 · `Lip1 (f).

The proof of the second part of this theorem requires several technical insights. One of the challenges is
that BubbleSmooth changes many function values, but then undoes most changes during subsequent steps.
We define a transfer graph to keep track of the transfers that move a unit of function value during each basic
step. Its vertex set is [n] and an edge (x, y) represents that a unit was transferred from f(x) to f(y). Since
two transfers (x, y) and (y, z) are equivalent to a transfer (x, z), we can merge the corresponding edges in
the transfer graph, proceeding with such merges until no vertex in it has both incoming and outgoing edges.
As a result, we get a transfer graph where the number of edges, |E|, is half the `1 distance from the original
to the final function.

To prove that |E| ≤ `Lip1 (f), we show that the transfer graph has a matching with the violation score at
least |E|. The violation score of an edge (or a pair) (x, y) is the quantity by which |f(x) − f(y)| exceeds
the distance between x and y. (Recall that |f(x)− f(y)| ≤ |x− y| for all Lipschitz functions f on domain
[n].) The violation score of a matching is the sum of the violation scores over all edges in the matching. We
observe (in Lemma 2.4) that `Lip1 (f) is bounded below by a violation score of any matching. The crucial step
in obtaining a matching with a large violation score is pinpointing a provable, but strong enough property
of the transfer graph that guarantees such a matching. Specifically, we show that the violation score of each
edge in the graph is at least the number of edges adjacent to its endpoints at its (suitably defined) moment
of creation (Lemma 2.2). For example, this statement is not true if we consider adjacent edges in the final
transfer graph. The construction of a matching with a large violation score in the transfer graph is one of the
key technical contributions of this paper. It is the focus of Section 2.

Dimension Reduction with respect to `1. Our smoothing procedure for functions on the hypergrids ap-
plies BubbleSmooth to repair all lines in dimensions 1, 2, ..., d, one dimension at a time. We show that for
all i, j ∈ [d] applying BubbleSmooth in dimension i does not increase the expected `Lip1 (f) for a random

4

line g in dimension j. The key feature of our smoothing procedure that makes the analysis tractable is that
it can be broken down into steps, each consisting of one application of the basic step of BubbleSmooth to
the same positions (k, k + 1) on all lines in a specific dimension. This allows us to show that one such step
does not make other dimensions worse in terms of the `1 distance to the Lipschitz property. The cleanest
statement of the resulting dimension reduction is with respect to the `1 distance.

Theorem 1.4. For all functions f : [n]d → Z, we have:
∑

g∈Lf
`Lip1 (g) ≥ `Lip

1 (f)
2 .

Our Testers and Effective Image Diameter. The main component of our tester (Algorithm 5) repeats the
following procedure: Pick a line uniformly at random and run one step of the line tester. (We use the line
tester from [JR13]. One step of this tester samples a random pair (x, x′) from a collection of special pairs
and rejects if f violates the Lipschitz condition for the pair (x, x′). The special pairs are edges of a sparse 2-
transitive-closure-spanner (2-TC-spanner) of the line graph on n vertices. Specifically, there are O(n log n)
special pairs.) Our dimension reduction (Theorem 1.2) is crucial in analyzing this component. However,
the bound in Theorem 1.2 depends on the image diameter of the function f . In the case of a non-Lipschitz
function, it can be arbitrarily large, but for a Lipschitz function on [n]d it is at most the diameter of the
space, namely nd (notice this factor in part (1) of Theorem 1.1). In fact, for our application we can also use
the observable diameter of the space [Gro99]: since the hypergrid exhibits Gaussian-type concentration of
measure, one obtains that a Lipschitz function maps the vast majority of points to an interval of sizeO(n

√
d)

(notice this factor in part (2) of Theorem 1.1). Our testers use a preliminary step to rule out functions with
large image diameter (resulting in 1-sided error) or with large observable diameter (resulting in 2-sided
error).

1.3 Comparison to Previous and Subsequent Work

Results. Jha and Raskhodnikova [JR13] gave a 1-sided error nonadaptive testers for the Lipschitz property
of functions of the form f : {0, 1}d → δZ and f : [n]→ R that run in time O

(
d
δε ·min {ImgD(f), d}

)
and

O
(logn

ε

)
, respectively. They also showed that Ω(d) queries are necessary for testing the Lipschitz property

on the domain {0, 1}d, even when the range is {0, 1, 2}. No nontrivial tester of the Lipschitz property of
functions on the domain [n]d was known prior to this work.

Our first tester from Theorem 1.1 naturally generalizes the testers of [JR13] to functions on the domain
[n]d. As in [JR13], our tester has at most quadratic dependence on the dimension d. Our second tester from
Theorem 1.1 gives an improvement in the running time over the hypercube tester in [JR13] at the expense
of allowing 2-sided error. In this specific case, Theorem 1.1 gives a tester with running time Õ(d1.5/(δε)).

Subsequently to our work, Chakrabarty and Seshadhri [CS13] gave an ingenious tester for the Lipschitz
property of functions [n]d → R that runs in O(d log n/ε) time. Later, Chakrabarty et al. [CDJS15] pre-
sented a dimension reduction for the Lipschitz property with respect to Hamming distance. Our dimension
reduction with respect to `1 was used by Berman et al. [BRY14] to obtain testers for the Lipschitz property
that work with respect to `p distances.

Techniques. Relating the distance to the property of a given function with the distance to the property of
random restrictions has been successfully used to obtain testers for many properties. Notably, for functions
on multi-dimensional domains, it has been done for testing low degree, monotonicity and, for the special
case of the hypercube, the Lipschitz property. Two ideas that appeared repeatedly in proofs of this type of
statements are self-correction (e.g., in low-degree testing) and repair (e.g., in monotonicity and Lipschitz

5

testing). Specifically, in [GGL+00, DGL+99, JR13] the function is repaired one dimension at a time. We
note that many new ideas are required to generalize the repair procedure in [JR13] to functions on the
hypergrid domains. Their repair procedure takes an integer average of values for each edge in a given
dimension. So, our main challenge was designing and analyzing a natural generalization of this procedure.
The procedure in [GGL+00, DGL+99], for repairing monotonicity of Boolean functions on the hypergrid
domains sorts the 0-1 values on each line in a given dimension. There are at least three obstacles that make
the design and analysis of our repair procedure significantly harder: (1) Our function values are not limited
to 0s and 1s. (2) There is no natural unique Lipschitz function to which we should reconstruct (in the case of
monotonicity, sorting gives such a function). (3) Unlike in the case of sorting, the Hamming distance does
not work as a measure of progress for our operator.

The repair procedure in [DGL+99] for restoring monotonicity of functions on general ranges applies
induction on the size of the range, using Boolean range as the base case. Observe that in the case of the
Lipschitz property, functions with Boolean ranges are always Lipschitz, so there is nothing to test. In
addition, in this case, not only the size of the range, but also the distances between points in the range play a
role. Even though for monotonicity, repairing a function with a range of size greater than 2 in one dimension
at a time does not work, this is exactly what we do here.

1.4 Organization

In Section 2, we present and analyze BubbleSmooth, our procedure for smoothing 1-dimensional functions,
and prove Theorem 1.3. In Section 3, we use BubbleSmooth to construct a smoothing procedure for multi-
dimensional functions that leads to the dimension reduction of Theorems 1.2 and 1.4. Our Lipschitz testers
for functions on hypergrids claimed in Theorem 1.1 are presented in Section 4.

2 BubbleSmooth and its Analysis

In this section, we describe BubbleSmooth and prove Theorem 1.3 which asserts that BubbleSmooth(f)
outputs a Lipschitz function that does not differ too much from f in the `1 distance. In Section 2.1, we
present BubbleSmooth (Algorithm 1) and show that it outputs a Lipschitz function. Sections 2.2 and 2.3
are devoted to proving part (2) of Theorem 1.3. At the high level, the proof follows the ideas explained
in Section 1.2 (right after Theorem 1.3). In Section 2.2, we define our transfer graph (Definition 2.3) and
prove its key property (Lemma 2.2). In Section 2.3, we show that the existence of a matching with a large
violation score implies that f is far from Lipschitz in the `1 distance (Lemma 2.4) and complete the proof
of part (2) of Theorem 1.3 by constructing such a matching in the transfer graph.

2.1 Description of BubbleSmooth and Proof of Part (1) of Theorem 1.3

We begin this section by recalling two basic definitions from [JR13].

Definition 2.1 (Violation score). Let f be a function and x, y be points in its domain. The pair (x, y) is
violated by f if |f(x) − f(y)| > |x − y|1. The violation score of (x, y), denoted by vsf (x, y), is |f(x) −
f(y)| − |x− y|1 if it is violated and 0 otherwise.

Definition 2.2 (Basic operator). Given f : [n]d → Z and x, y ∈ [n]d, where |x− y|1 = 1 and vertex names
x and y are chosen so that f(x) ≤ f(y), the basic operator Bx,y works as follows: If the pair (x, y) is not
violated by f then Bx,y[f] is identical to f . Otherwise, Bx,y[f](x) = f(x) + 1 and Bx,y[f](y) = f(y)− 1.

6

In this section, we view a function f : [n] → Z as an integer-valued sequence f(1), f(2), . . . , f(n).
We denote the subsequence f(i), f(i + 1), . . . , f(j) by f [i..j]. Naturally, a sequence f [i..j] is Lipschitz if
|f(k)− f(k+ 1)| ≤ 1 for all i ≤ k ≤ j− 1. Algorithm 1 presents a formal description of BubbleSmooth.

Algorithm 1: BubbleSmooth (Input: an integer sequence
f [1 . . . n])

1 for i = n− 1 to 1 do
// Start phase Fix(i).

2 while |f(i)− f(i+ 1)| > 1 do // (i, i+ 1) is
violated by f

3 LinePass(i).
4 return f

Algorithm 2: LinePass (Input:
integer i)

1 for j = i to n− 1 do
2 f ← Bj,j+1[f].

// Apply basic
operator (see
Definition 2.2.)

See Figure 1 for an illustration of BubbleSmooth. We start analyzing the behavior of BubbleSmooth
by proving part (1) of Theorem 1.3, which states that BubbleSmooth returns a Lipschitz function.

Proof of part (1) of Theorem 1.3. Consider an integer sequence f [1..n] and let f ′[1..n] be the sequence re-
turned by BubbleSmooth(f). We prove that f ′ is Lipschitz by induction on the phase of BubbleSmooth.
Initially, f(n) is vacuously Lipschitz. We fix i ∈ [n], assume f [i + 1..n] is Lipschitz at the beginning of
phase Fix(i) and show this phase terminates and that f [i..n] is Lipschitz at the end of the phase.

Consider an execution of LinePass(i). Assume f [i+1..n] is Lipschitz in the beginning of this execution.

Observation 2.1. Let j be the index, such that at the beginning of the execution, f [i..j] is the longest strictly
monotone sequence starting from f(i). Then LinePass(i) modifies two elements: f(i) and f(j).

If f(i) > f(j) then f(i) is decreased by 1 and f(j) is increased by 1, i.e., 1 unit is transferred from i to
j. Similarly, if f(i) < f(j) then 1 unit is transferred from j to i. It is easy to see that after this transfer is
performed, f [i+ 1..n] is still Lipschitz. Moreover, each iteration of LinePass(i) reduces the violation score
of the pair (i, i+ 1) by at least 1. Thus, phase Fix(i) terminates with f [i..n] being Lipschitz.

2.2 Transfer Graph

In the proof of part (1) of Theorem 1.3, we established that for all i ∈ [n], each iteration of LinePass(i)
transfers one unit to or from i. We record the transfers in the transfer graph T = ([n], E), defined next.
A transfer from x to y is recorded as a directed edge (x, y). The edges of the transfer graph are ordered
(indexed), according to when they were added to the graph. The edge (i, j) (resp., (j, i)) corresponding to
the most recent transfer is combined with a previously added edge (j, k) (resp., (k, j)) if such an edge exists.
This is done because transfers from x to y and from y to z are equivalent to a transfer from x to z. If a new
edge (x, y) is merged with an existing edge (y, z), the combined edge retains the index of the edge (y, z).

Definition 2.3 (Transfer graph). The transfer graph is a directed graph T = ([n], E), where the edge set
E = (e1, . . . , et) is ordered and edges are not necessarily distinct. The graph is defined by the following
procedure. Initially, E = ∅ and t = 0. Each new run of LinePass during the execution of BubbleSmooth,
transfers a unit from i to j (or resp., from j to i) for some i and j. If j has no outgoing (resp., incoming)
edge in T , then increment t by 1 and add the edge et = (i, j) (resp., et = (j, i)) to E. Otherwise, let es be
an outgoing edge (j, k) (resp., an incoming edge (k, j)) with the largest index s. Replace (j, k) with (i, k),
i.e., es ← (i, k). (Replace (k, j) with (k, i), i.e., es ← (k, i).) The final transfer graph is denoted by T ∗.

7

-1

0

1

2

3

4

5

6

1 2 3 4

(a)

-1

0

1

2

3

4

5

6

1 2 3 4

(b)

-1

0

1

2

3

4

5

6

1 2 3 4

(c)

-1

0

1

2

3

4

5

6

1 2 3 4

(d)

-1

0

1

2

3

4

5

6

1 2 3 4

(e)

-1

0

1

2

3

4

5

6

1 2 3 4

(f)

Figure 1: An illustration of BubbleSmooth. (a) The initial function. Phase Fix(3) does not alter the func-
tion. (b)-(c) Phase Fix(2): Functions obtained after one and two executions of LinePass(2), respectively.
(d)-(f) Phase Fix(1): Functions obtained after each execution of LinePass(1).

As mentioned previously, the order of creation of edges is important to formalize the desired property
of the transfer graph, so we need to consider the subgraphs that consist of the first s edges e1, . . . , es of E.

Definition 2.4 (Degrees). Consider a transfer graph T at some time during the execution of BubbleSmooth.
For all s ∈ {0, . . . , t}, its subgraph graph Ts is defined as ([n], (e1, . . . , es)), where (e1, . . . , et) is the
ordered edge set of T . (When s = 0, the edge set of Ts is empty.) The degree of a vertex x ∈ [n] of Ts is
denoted by degs(x); when Ts is a subgraph of the final transfer graph, it is denoted by deg∗s(x).

Observe that at no point in time can a vertex in T simultaneously have an incoming and an outgoing
edge because such edges would get merged into one edge.

Lemma 2.2 (Key property of transfer graph). Let f be an input function given to BubbleSmooth. Then for
each edge es = (x, y) of the final transfer graph T ∗, the following holds:

vsf (x, y) ≥ deg∗s(x) + deg∗s(y)− 1.

To prove this lemma, we consider each phase of BubbleSmooth separately and formulate a slightly
stronger invariant that holds at every point during that phase.

Definition 2.5. For all i ∈ [n− 1], let ∆i be the degree of i in the transfer graph at the end of phase Fix(i).

The following stronger invariant of the transfer graph directly implies Lemma 2.2.

Claim 2.3 (Invariant for phase Fix(i)). Let f be an input function given to BubbleSmooth. At every point
during the execution of BubbleSmooth(f), for each edge es = (x, y) of the transfer graph T ,

f(x)− f(y) ≥ degs(x) + degs(y)− 1 + |x− y|.

8

Moreover, for phase Fix(i) for each i ∈ [n − 1], after each execution of LinePass(i), for each edge es
incident on vertex i, the following (stronger) condition holds:

if the edge es = (i, j), i.e., it is outgoing from i, then f(i)− f(j) ≥ ∆i + degs(j)− 1 + |i− j|;
if the edge es = (j, i), i.e., it is incoming into i, then f(j)− f(i) ≥ ∆i + degs(j)− 1 + |i− j|.

Observe that all transfers involving i during phase Fix(i) are in the same direction: if in the beginning of
the phase we have f(i) > f(i+ 1), then all transfers are from i; if we have f(i) < f(i+ 1) instead, then all
transfers are to i. In particular, whenever an edge incident to i is added, it is not modified subsequently during
phase Fix(i). So for all s, degs(i) never exceeds ∆i during phase Fix(i) and the condition in Claim 2.3 is
indeed stronger than that in Lemma 2.2.

𝒊 𝒋

Case 1

𝒊 𝒋

Case 2

𝒌

Figure 2: Two cases in the proof of Claim 2.3.

Proof of Claim 2.3. Initially the transfer graph has no edges, so the invariant in Claim 2.3 holds. Observe
that for all i ∈ [n− 2], if the invariant holds at the end of phase Fix(i+ 1), it also holds in the beginning of
the following phase Fix(i). This is because the condition on each edge not incident to i in phase Fix(i+ 1)
is the same or stronger than in phase Fix(i) (notice that in the beginning of phase Fix(i) there are no edges
incident to i). It remains to prove that if the invariant holds before an iteration of LinePass, it also holds
after the iteration.

Consider a phase Fix(i) for some i ∈ [n− 1] and an execution of LinePass(i) that transfers a unit from
i to j for some j ∈ {i+ 1, . . . , n}. (The case when a unit is transferred in the other direction is symmetric.)
Let f− be the function and T− be the transfer graph right before the considered execution of LinePass.
Define deg−s as in Definition 2.4, with respect to the transfer graph T−. Define T+ and deg+s analogously
for the moment right after the considered execution of LinePass. Let t be the number of edges in T−.

Since the current transfer occurred, the sequence f−[i+1, j] is monotone decreasing, giving f−(i+1)−
f−(j) ≥ |i + 1 − j|. The number of transfers from i that occurred before the current transfer is deg−t (i).
The number of the remaining transfers, including the current one, in phase Fix(i) is thus ∆i − deg−t (i).
Since each such transfer from i can happen only if the pair (i, i + 1) is violated, and moreover it lowers
the violation score of the pair (i, i + 1) by at least 1, it follows that vsf−(i, i + 1) ≥ ∆i − deg−t (i) or,
equivalently, f−(i)− f−(i+ 1) ≥ ∆i − deg−t (i) + 1. Therefore,

f−(i)− f−(j) = [f−(i)− f−(i+ 1)] + [f−(i+ 1)− f−(j)] ≥ ∆i − deg−t (i) + |i− j|. (1)

The effect the current transfer has on the transfer graph T− depends on whether T− contains an outgoing
edge from j. We consider the two corresponding cases separately.

Case 1: transfer graph T− contains no outgoing edge from j. Then T+ is obtained from T− by adding
the edge et+1 = (i, j). (See Figure 2.)

9

Recall that all transfers involving i made during phase Fix(i) are in the same direction, either all from i
or all to i. So, by the assumption that the current transfer is from i, vertex i can have only outgoing edges in
the transfer graph during phase Fix(i). That is,

f(i) = f−(i) + deg−t (i). (2)

By assumption of Case 1, vertex j can have only incoming edges. That is,

f(j) = f−(j)− deg−t (j). (3)

Applying first (2), (3), and then (1), we get:

f(i)− f(j) = f−(i)− f−(j) + deg−t (i) + deg−t (j)

≥ ∆i − deg−t (i) + |i− j|+ deg−t (i) + deg−t (j)

= ∆i + deg+t+1(j)− 1 + |i− j|.

The last equality holds because the edge et+1 = (i, j) is added to T after the current transfer, so deg+t+1(j) =
deg−t (j)+1. We proved that the invariant in Claim 2.3 holds for the new edge.

Since all other edges and their ordering are unchanged, deg+s (x) = deg−s (x) for all x ∈ [n] and s ≤ t.
Thus, the invariant of Claim 2.3 holds for all edges of T+.

Case 2: transfer graph T− contains an outgoing edge from j. Let er = (j, k) be such an edge with the
largest index r. Then T+ is obtained from T− by replacing the edge (j, k) with the edge (i, k), with this
new edge receiving the index r. (See Figure 2.) Notice that k could be larger or smaller5 than j.

Recall that each vertex in T− can only have one type of incident edges: either incoming or outgoing. In
this case, both i and j can only have outgoing edges. Since T− has t edges,

f(i) = f−(i) + deg−t (i) and f(j) = f−(j) + deg−t (j). (4)

By assumption, the invariant in Claim 2.3 holds for the transfer graph T−. Since the edge (j, k) has index r
in T−, i.e., (j, k) = er,

f(j)− f(k) ≥ deg−r (j) + deg−r (k)− 1 + |j − k|.

Finally, deg−t (j) = deg−r (j) because of our choice of r. Putting the equations for this case together, then
applying (1) and finally using the triangle inequality, we get:

f(i)− f(k) = [f(i)− f(j)] + [f(j)− f(k)]

≥ [f−(i) + deg−t (i)− f−(j)− deg−t (j)] + [deg−r (j) + deg−r (k)− 1 + |j − k|]
≥ ∆i − deg−t (i) + |i− j|+ deg−t (i) + deg−r (k)− 1 + |j − k|
≥ ∆i + deg−r (k)− 1 + |i− k| = ∆i + deg+t (k)− 1 + |i− k|.

Thus, the invariant in Claim 2.3 holds for the newly formed edge.
When the transfer graph is modified to reflect the current transfer, only edges incident to i,j or k are

affected by the changes. For all other nodes x and all s < t, the corresponding degrees remain the same:
5For example, the case when k is smaller than j occurs when running BubbleSmooth over the sequence f(1) = 5, f(2) = 0,

and f(3) = 2, during phase Fix(1).

10

deg+s (x) = deg−s (x). For the node k and all s < t, the degrees are unchanged: deg+s (k) = deg−s (k).
For the node j and all s ≤ t, the degrees decrease or remain the same: deg+s (j) ≤ deg−s (j). Therefore,
for all edges in T+ not affected by the current merge and not incident to i, the invariant in Claim 2.3 still
holds. Finally, the stronger invariant for edges incident to i also holds for T+ because it depends on a fixed
parameter ∆i (instead of deg+s (i)).

2.3 Matchings of Violated Pairs

Part (2) of Theorem 1.3 states that the `1 distance between f and BubbleSmooth(f) is at most 2 · `Lip1 (f).
By definition of the transfer graph T = ([n], E), the distance |f−BubbleSmooth(f)|1 = 2|E|. Lemma 2.4
shows that `Lip1 (f) is bounded below by the violation score of any matching. We complete the proof of
Theorem 1.3 by showing that T has a matching with violation score |E|.

Definition 2.6 (Violation score of a set of pairs). Let M be a set of pairs violated by f . The violation score
of the set M , denoted vsf (M), is the sum of violation scores of all pairs in M .

Lemma 2.4. LetM be a matching of pairs (x, y) where x and y are in the (discrete) domain of a function f .
Then `Lip1 (f) ≥ vsf (M).

Proof. Let f∗ be a closest Lipschitz function to f (on the same domain as f) with respect to the `1 distance,
i.e., |f − f∗|1 = `1(f, Lip). Consider a pair (x, y) ∈ M. Since |f(x) − f(y)| = |x − y|1 + vsf (x, y) and
|f∗(x) − f∗(y)| ≤ |x − y|1, it follows by the triangle inequality that |f(x) − f∗(x)| + |f(y) − f∗(y)| ≥
vsf (x, y). Since M is a matching, we can add over all of its pairs to obtain

`1(f, Lip) = |f − f∗|1 ≥
∑

(x,y)∈M

(|f(x)− f∗(x)|+ |f(y)− f∗(y)|)

≥
∑

(x,y)∈M

vsf (x, y) = vsf (M),

which concludes the proof.

Now using Lemma 2.2 we exhibit a matching in the final transfer graph which has large violation score,
concluding the proof of Theorem 1.3.

Proof of part (2) of Theorem 1.3. Let T ∗ = ([n], E) be the final transfer graph corresponding to the exe-
cution of BubbleSmooth on f and let E = {e1, . . . , et}. By definition of the transfer graph, |f − f ′|1 =∑

i∈[n] deg
∗
t (i) = 2|E|, where f ′ is the output of BubbleSmooth(f). By Lemma 2.4, it is enough to show

that there is a matching M of pairs violated by f with the violation score vsf (M) ≥ |E|.
We claim that T ∗ contains such a matching. It can be constructed greedily by setting T = T ∗ and

repeating the following step until no edges remain in T : let es = (x, y) be the edge in T with the largest
index s ∈ [t]; add es to M and then remove es and all other edges adjacent to its endpoints from T . In each
step, at most deg∗s(x)+deg∗s(y)−1 edges are removed from T , where degrees deg∗s are defined with respect
to the original graph T ∗. This is because the degree of x (respectively, y) in T just before es is removed
from T is at most deg∗s(x) (respectively, deg∗s(y)), since es is the edge with the highest index present in
T . By Lemma 2.2, vsf (x, y) ≥ deg∗s(x) + deg∗s(y) − 1. So, at each step of the greedy procedure, the
violation score of the pair (x, y) added to M is at least the number of edges removed from T . Therefore,
vsf (M) ≥ |E|.

11

3 Dimension Reduction: Proof of Theorems 1.2 and 1.4

In this section, we prove Theorems 1.2 and 1.4 that connect the distance of a function to being Lipschitz to
the distance of its lines to being Lipschitz. Effectively, these results reduce the task of testing a multidimen-
sional function to the task of testing its lines. Our main contribution in this section is a smoothing procedure
that makes a function Lipschitz by repairing one dimension at a time while modifying only a few function
values. In Section 3.1, we present the dimension operator that repairs all lines in a specified dimension by
applying BubbleSmooth to each of them. The important properties of the dimension operator are summa-
rized in Lemma 3.1 which is the key ingredient in the proofs of Theorems 1.2 and 1.4. Section 3.2 proves
auxiliary claims used in the proof of Lemma 3.1. Section 3.3 completes the proofs of Theorems 1.2 and 1.4.

3.1 Dimension operator and its properties

Recall from the discussion in Section 1.2 that we denote the set of lines of f along dimension i by Lif and
the set of all lines of f by Lf = Lif . Notice that there are d · nd−1 lines.

Definition 3.1 (Dimension operatorAi). Given f : [n]d → Z and dimension i ∈ [d], the dimension operator
Ai applies BubbleSmooth to every function g ∈ Lif and returns the resulting function, denoted Ai[f].

Next lemma summarizes the properties of the dimension operator.

Lemma 3.1 (Properties of the dimension operator Ai). For all i ∈ [d], the dimension operator Ai satisfies
the following properties for every function f : [n]d → Z.

1. (Repairs dimension i.) Every g ∈ LiAi[f]
is Lipschitz.

2. (Does not modify the function too much.) |f −Ai[f]|1 ≤ 2 ·∑g∈Li
f
`Lip1 (g).

3. (Does not worsen other dimensions.) For all j 6= i in [d], it does not increase the expected `1 distance
of a random line in dimension j to the Lipschitz property, i.e., E

g←Lj
Ai[f]

[`Lip1 (g)] ≤ E
g←Lj

f
[`Lip1 (g)].

Proof. Item 1. Item 1 follows from part (1) of Theorem 1.3.
Item 2. Since the dimension operator Ai operates by applying BubbleSmooth to all (disjoint) lines in

Lif , we get |f −Ai[f]|1 =
∑

g∈Li
f
|g − BubbleSmooth[g]|1. The latter is at most

∑
g∈Li

f
2 · `Lip1 (g) by Part

(2) of Theorem 1.3, thus proving the item.
Item 3. Fix i and j. First, we give a standard argument [GGL+00, DGL+99, JR13] that it is enough

to prove this statement for n × n grids. Namely, every α ∈ [n]d with αi = αj = 0 defines a restriction
of a function f to an n × n grid by h(xi, xj) = f(α + xi · ei + xj · ej), where xi and xj range over [n].
(Recall that ei ∈ [n]d is 1 on the ith coordinate and 0 on the remaining coordinates.) If the item holds for
all 2-dimensional grids, we can average over all such grids defined by different α to obtain the statement for
the d-dimensional function f . Now fix an arbitrary restriction h : [n]2 → Z as discussed and think of h as
an n× n matrix with rows (resp., columns) corresponding to lines in dimension i (resp., in dimension j).

The key feature of our dimension operator Ai is that it can be broken down into steps, each consisting of
one application of the basic step of BubbleSmooth to the same positions (k, k+1) on all lines in dimension
i. In other words, the basic step is applied to all rows of columns k and k + 1. To see this, observe that we
can replace the while loop condition on Line 2 of Algorithm 2 with “repeat t times”, where t should be large
enough to guarantee that the line segment under consideration is Lipschitz after t iterations of LinePass.

12

(E.g., t = n · ImgD(f) repetitions suffices.) If this version of BubbleSmooth is run synchronously and in
parallel on all lines in dimension i, the basic step will be applied to the same positions (k, k+1) on all lines.

Since in each parallel update step only two adjacent columns of h are affected, it is sufficient to prove
the item for two adjacent columns of h. Accordingly, consider two adjacent columns C1 and C2 of h. Let
M1 and M2 be Lipschitz columns that are closest in the `1 distance to C1 and C2, respectively. Thus,
`Lip1 (C1) = |C1 − M1|1 and `Lip1 (C2) = |C2 − M2|1. Let C ′1 and C ′2 be the columns of the matrix
resulting from applying the basic operator to the rows of the matrix (C1, C2). Similarly, define M ′1 and
M ′2 to be the columns of the matrix resulting from applying the basic operator to the rows of (M1,M2).
(See also Figure 4.) By Corollary 3.3, M ′1 and M ′2 are Lipschitz. Therefore, `Lip1 (C ′1) ≤ |C ′1 −M ′1|1 and
`Lip1 (C ′2) ≤ |C ′2−M ′2|1. Finally, using the inequality |C ′1−M ′1|1 + |C ′2−M ′2|1 ≤ |C1−M1|1 + |C2−M2|1
proved in Corollary 3.4 below, the proof of Item 3 is completed as follows:

`Lip1 (C1) + `Lip1 (C2) = |C1 −M1|1 + |C2 −M2|1
≥ |C ′1 −M ′1|1 + |C ′2 −M ′2|1 ≥ `Lip1 (C ′1) + `Lip1 (C ′2).

3.2 Basic operator on a square

To analyze the behavior of the dimension operator, we need to understand the effect of the basic operator
Bk,k+1 on a multidimensional function. We remark that our definition of the basic operator coincides with
that of [JR13] (see Definition 3.5 of [JR13]) for integer-valued functions defined on domain {0, 1}2. We
recall and extend properties of the basic operator from [JR13] when applied to functions defined on {0, 1}2
in Claim 3.2 below.

Claim 3.2 (Properties of basic operator on a square). Consider a function f : {xt, xb, yt, yb} → Z where xb
denotes 00, xt = 10, yb = 01 and yt = 11. (See Figure 3.) Let f ′ be the function obtained by applying basic
operators Bxt,yt and Bxb,yb along the horizontal edges. Then the following holds for the vertical edges.

1. [JR13, proof of Lemma 3.9, paragraph 3] The sum of violation scores of vertical edges does not
increase:

vsf ′(xt, xb) + vsf ′(yt, yb) ≤ vsf (xt, xb) + vsf (yt, yb).

2. The absolute difference of values along vertical edges does not increase:

|f ′(xt)− f ′(xb)|+ |f ′(yt)− f ′(yb)| ≤ |f(xt)− f(xb)|+ |f(yt)− f(yb)|.

Proof of Claim 3.2, Item 2. If neither horizontal edge is violated then f ′ = f, and we are done. So assume
without loss of generality {xt, yt} is violated and f(yt) ≥ f(xt) + 2. Then Bxt,yt increases f(xt) by 1
and decreases f(yt) by 1 leading to inequality (i): f ′(yt) ≥ f(xt) + 1. If, for both vertical edges, the
absolute difference of the values does not increase, we are also done. Assume without loss of generality that
the absolute difference of the values of the left vertical edge increases strictly, namely, |f ′(xb) − f ′(xt)| =
|f(xb) − f(xt)| + ∆ for ∆ ∈ {1, 2}. This implies that Bxb,yb does not increase the value at xb and the
following holds: (ii) f(xb) ≤ f(xt). The former also implies that: (iii) f ′(yb) ≤ f ′(xb) + 1. The definition
of ∆ further gives that: (iv) f ′(xb) = f(xb)− (∆−1) and (v) f ′(yb) = f(yb)+(∆−1). Using inequalities
(i), (ii), (iv) and (iii), we get

f ′(yt) ≥ f(xt) + 1 ≥ f(xb) + 1 = f ′(xb) + ∆ ≥ f ′(yb) + (∆− 1),

13

Figure 3: The sum of absolute difference of values of the endpoints of vertical edges does not increase as a
result of application of the basic operator along horizontal edges.

xt yt

xb yb1

1

Bxt,yt

Bxb,yb

and hence f ′(yt)− f ′(yb) ≥ 0. Using the last inequality, equation (v) and the fact that f ′(yt) = f(yt)− 1,
we get

|f ′(yt)−f ′(yb)| = f ′(yt)−f ′(yb) = f ′(yt)−f(yb)−(∆−1) = f(yt)−f(yb)−∆ ≤ |f(yt)−f(yb)|−∆.

Thus, the absolute difference of the values for {xt, xb} increases by ∆, whereas that quantity for {yt, yb}
decreases by ∆. This completes the proof of the claim.

Claim 3.2 implies Corollaries 3.3 and 3.4 which were used in the proof of Lemma 3.1.

Corollary 3.3. Let M ∈ Zn×2 be a matrix consisting of two Lipschitz columns. If the basic operator is
applied to the rows of this matrix then the resulting matrix M ′ still has Lipschitz columns.

Proof. Applying part 1 of Claim 3.2 to each 2×2 grid formed by taking 2 adjacent rows ofM (respectively,
M ′), we get the desired statement.

The second corollary is about one-dimensional functions C1, C2,M1,M2, C
′
1, C

′
2,M

′
1 and M ′2 used in

proof of Lemma 3.1.

Corollary 3.4. |C1 −M1|1 + |C2 −M2|1 ≥ |C ′1 −M ′1|1 + |C ′2 −M ′2|1.

Proof. Expanding each term in the statement, we get that it is equivalent to∑
z∈[n]

[
(|C1(z)−M1(z)|+ |C2(z)−M2(z)|)−

(
|C ′1(z)−M ′1(z)|+ |C ′2(z)−M ′2(z)|

)]
≥ 0. (5)

We show that for each term in the sum, the inequality holds separately. Accordingly, fix z ∈ [n] and let
f : {0, 1}2 → Z be the function defined as follows: f(xb) = C1(z), f(yb) = M1(z), f(xt) = C2(z) and
f(yt) = M2(z). Similarly, let f ′ : {0, 1}2 → Z be defined as follows: f ′(xb) = C ′1(z), f ′(yb) = M ′1(z),
f ′(xt) = C ′2(z) and f ′(yt) = M ′2(z). Then the inequality for the term in (5) relative to z follows from the
second part of Claim 3.2. Hence the corollary follows.

14

3.3 Proof of Theorems 1.2 and 1.4

To prove Theorems 1.2 and 1.4, we use the following observation that relates `Lip1 (f) to εLip(f).

Observation 3.5. For all f : [n]d → δZ, the following holds:

δεLip(f) · nd ≤ `Lip1 (f) ≤ εLip(f) · nd · ImgD(f).

The first inequality follows directly from definitions, while the second follows from the fact that one can
make a function f Lipschitz by changing εLip(f) fraction of values, each by at most ImgD(f).

Proof of Theorems 1.2 and 1.4. LetAi be the dimension repair operator of Definition 3.1. For i ∈ [d], define
fi inductively by letting fi = Ai[fi−1] with the base case being f0 = f . Items 1 and 3 of Lemma 3.1 give
that fd is Lipschitz. Specifically, Item 1 implies that the application of the dimension operator Ai makes
fi−1 Lipschitz along the ith dimension while Item 3 ensures that each such application does not introduce
violations in the already repaired dimensions. Using properties of Ai from Lemma 3.1, the following holds
for all i ∈ [d].

|fi−1 − fi|1 = |fi−1 −Ai[fi−1]|1 ≤ 2 ·
∑

g∈Li
fi−1

`Lip1 (g) ≤ 2 ·
∑
g∈Li

f

`Lip1 (g).

Specifically, the two inequalities above follow from Items 2 and 3 of Lemma 3.1, respectively. By the
triangle inequality, `Lip1 (f) ≤ ∑d

i=1 |fi−1 − fi|1. This fact together with the above bound on |fi−1 − fi|1,
leads to the following chain of (in)equalities and proves Theorem 1.4.

`Lip1 (f) ≤
d∑
i=1

|fi−1 − fi|1 ≤
d∑
i=1

2 ·
∑
g∈Li

f

`Lip1 (g) = 2 ·
∑
g∈Lf

`Lip1 (g).

For proving Theorem 1.2, we apply Observation 3.5 to both sides of the inequality of Theorem 1.4
leading to the first inequality below.

ndεLip(f) ≤ 2·
∑
g∈Lf

εLip(g) · ImgD(g) · n ≤ 2·ImgD(f)·n
∑
g∈Lf

εLip(g) = 2·d·ImgD(f)·nd·Eg∈Lf
[εLip(g)].

The last inequality follows from the fact that ImgD(f) is a trivial upper bound on ImgD(g) for every g ∈ Lf .
Finally, expressing the sum as an expectation (as done in the last equality), we get Theorem 1.2.

4 Algorithms for Testing the Lipschitz Property on Hypergrids

In this section, we present our testers for the Lipschitz property of functions f : [n]d → Z. Theorem 1.2
relates the distance of a function f from the Lipschitz property to the (expected) distance of its lines to this
property. The resulting bound, however, depends on the image diameter of f . The image diameter is small
(at most nd) for Lipschitz functions, but it is not bounded for general functions. Next we give a high-level
description of our testers:

1. Estimate the image diameter of f and reject if it is too large.

15

2. Repeatedly sample a line g of f at random, run one step of a Lipschitz tester for the line on g and
reject if a violated pair is discovered; otherwise, accept.

Step 1 ensures that a small sample of lines is enough to succeed with constant probability. The two testers
we present differ only in one parameter which quantifies what “too large” means in Step 1.

4.1 Estimating the Effective Image Diameter

As mentioned before, a Lipschitz function on [n]d has image diameter at most nd, which can serve as a
threshold for rejection in Step 1 of the informal procedure above. However, if we are willing to tolerate
two-sided error, it is sufficient to use a smaller threshold, equal the effective diameter of the function. For a
given ε ∈ (0, 1), define ImgDε(f) as the smallest value α such that f is ε-close to having image diameter
α:

ImgDε(f) = min
U⊆[n]d:|U |≥(1−ε)nd

{max
x∈U

f(x)−min
x∈U

f(x)}.

Although the image diameter of a Lipschitz function f can indeed achieve value nd, the effective ImgDε(f)
is upper bounded by the potentially smaller quantity O(n

√
d ln(1/ε)). The next lemma makes this precise.

It follows directly from McDiarmid’s inequality (stated in Appendix A).

Lemma 4.1 (Effective image diameter of Lipschitz functions). For all ε ∈ (0, 1), each Lipschitz function
f : [n]d → R is (ε/21)-close to having image diameter at most n

√
d ln(42/ε).

Our testers use estimates of the image diameter or effective diameter to reject functions. For this, we
use the procedure SAMPLE-DIAMETER (Algorithm 3) defined in [JR13].

Algorithm 3: SAMPLE-DIAMETER

input : function f : [n]d → R, ε ∈ (0, 1)

1 Let s = d5/εe.
2 Select samples z1, z2, . . . , zs from [n]d uniformly and independently at random.
3 Return r = maxsi=1 f(zi)−minsi=1 f(zi).

The next lemma provides guarantees for the estimate returned by SAMPLE-DIAMETER.

Lemma 4.2. The value r returned by SAMPLE-DIAMETER satisfied the following: (i) ImgDε(f) ≤ r with
probability at least 3/4; (ii) r ≤ ImgD(f) (always) and (iii) r ≤ ImgDε/21(f) with probability at least 2/3.
Moreover, the algorithm runs in time O(1/ε).

Proof. It is clear that r ≤ ImgD(f) and the first part of the lemma is proved in Claim 3.10 of [JR13]. It
remains to prove that r ≤ ImgDε/21(f) with probability at least 2/3.

Recall the definition of ImgDε/21(f). Let S ⊆ [n]d be a set of size at most εnd/21 such that |f(x) −
f(y)| ≤ ImgDε/21(f) for every x, y ∈ [n]d \ S. We have r ≤ ImgDε/21(f) whenever all the samples
zi lie outside S. By the union bound, the probability of this event is at least 1 −

(
5
ε + 1

) (
ε
21

)
≥ 2/3, as

required.

16

4.2 Tester for Hypergrid Domains

Our tester for functions on hypergrids uses a tester (Algorithm 4) for functions on lines from [JR13].

Algorithm 4: LINE-TESTER

input : function g : [n]→ R, r ∈ R

1 Let H = ([n], E) be a 2-TC-spanner of the line graph, and let E′ ⊆ E be the set of edges (x, y) such
that |x− y| < r.

2 Sample an edge (x, y) uniformly at random from E′

3 If |g(x)− g(y)| > |x− y|, output g not Lipschitz, else output g is Lipschitz.

Lemma 4.3 (Claim 3.13, [JR13]). Consider a function g : [n]→ R and r ≥ ImgD(g). Then LINE-TESTER

on input g and r is a 1-sided tester that always accepts if g is Lipschitz and otherwise rejects with probability
at least εLip(g)

10 logmin{r,n} . Moreover, it makes only a constant number of queries to g.

To analyze our testers, we also need to estimate the probability that a random line g ← Lf is rejected
by LINE-TESTER(g, r) with r ≥ ImgDε/2(f). Such an upper bound r on ImgDε/2(f) will be obtained via
Lemma 4.2. Since r may be much smaller than ImgD(f), Lemma 4.3 does not apply directly. Nevertheless,
the next lemma shows how to circumvent this difficulty.

Lemma 4.4. Let f : [n]d → Z be ε-far from Lipschitz. Consider a real number r ≥ ImgDε/2(f). For a
random line g ← Lf , the probability that LINE-TESTER(g, r) rejects is at least ε

40d·r·logmin{r,n} .

Proof. Define the function f ′ by truncating f as follows. Consider integers a < b such |a−b| ≤ ImgDε/2(f)

and at most εnd/2 points x ∈ [n]d have f(x) /∈ [a, b]. Define

f ′(x) =

a if f(x) < a;

f(x) if f(x) ∈ [a, b];

b if f(x) > b.

Clearly, ImgD(f ′) ≤ ImgDε/2(f) ≤ r and, since f and f ′ differ on at most ε/2 points, f ′ is ε/2-far from
Lipschitz.

We first analyze how LINE-TESTER behaves on f ′. Let g′ ← Lf ′ be a random line of f ′. Since r
is an upper bound on ImgD(f ′), and hence also an upper bound on ImgD(g′), we can use Lemma 4.3 to
obtain that LINE-TESTER(g′, r) rejects with probability at least Eg′←Lf ′

[εLip(g′)/10 log min{r, n}]. By the
dimension reduction (Theorem 1.2), the probability of rejection is at least

εLip(f ′)

20d · ImgD(f ′) log min{r, n} ≥
ε

40d · r · log min{r, n} .

The following claim directly implies the desired result.

Claim 4.5. Consider a line g ∈ Lf of f and let g′ be the corresponding line of f ′. The probability that
LINE-TESTER(g, r) rejects is at least as large as the probability that LINE-TESTER(g′, r) rejects.

17

Proof. Notice that every pair x, y ∈ [n] that is violated by g′, must be also violated by g. To see this, assume
without loss of generality that g′(x) < g′(y)−|x−y|. We obtain, in particular, that g′(x) < maxz f

′(z) ≤ b.
Notice that by construction of f ′, this also implies that g(x) ≤ g′(x), since whenever we decrease a value
in the construction of f ′ from f , this new value becomes equal to b. Similarly, g′(y) > a, and hence
g(y) ≥ g′(y). These bounds give that g(x) < g(y) − |x − y| and hence (x, y) is violated with respect
to g. Note that every pair violated by g′ is also violated by g. Since LINE-TESTER only checks pairs for
violations, the claim follows.

This concludes the proof of the lemma.

Algorithm 5 presents our tester for the Lipschitz property on hypergrid domains. One of its inputs is a
threshold R for rejection in Step 1. The testers in Theorem 1.1 are obtained by setting R appropriately.

Algorithm 5: Tester for the Lipschitz property for functions on hypergrids.

input : function f : [n]d → Z, ε ∈ (0, 1), and value R ∈ R

1 Let r ← SAMPLE-DIAMETER(f, ε/2). If r > R, reject.
2 for i = 1 to ` = 120d·r logmin{r,n}

ε do
3 Select a line g uniformly from Lf and reject if LINE-TESTER(g, r) does.
4 Accept.

Proof of Theorem 1.1. We show that Algorithm 5 when run withR = nd (respectively,R = n
√
d ln(84/ε))

satisfies Theorem 1.1.
First, we focus on the correctness of the testers. Suppose that the input function f is Lipschitz. Since Lip-

schitz functions do not have any violated pairs, Algorithm 5 may only reject f in Step 1. WhenR = nd, this
happens with probability 0, since Lemma 4.2 guarantees that r ≤ ImgD(f) ≤ nd. Then Algorithm 5 with
R = nd is a 1-sided error tester. Now consider the case when R = n

√
d ln(84/ε). By the second part of

Lemma 4.2 and Lemma 4.1, with probability at least 2/3 we have r ≤ R (notice that SAMPLE-DIAMETER

is evoked with parameter ε/2). Thus, Algorithm 5 with R = n
√
d ln(84/ε) accepts the Lipschitz function

f with probability at least 2/3.
Now consider the case when f is ε-far from Lipschitz. We show that with probability at least 2/3, f

is rejected in some iteration of Step 3. This part of the analysis is independent of the setting of R. Let E
be the event that r is a good estimate, namely that r ≥ ImgDε/2(f); from part 1 of Lemma 4.2, E holds
with probability at least 3/4. Then f is rejected with probability at least Pr(Step 3 rejects and E holds) ≥
Pr(Step 3 rejects | E) · (3/4). Conditioned on E (or more precisely conditioning on a realization of r
satisfying E), Lemma 4.4 gives that the probability p of rejection on a single execution of Step 3 rejects is
at least p = ε

40d·r·logmin{r,n} . Therefore, using the standard approximation (1 − x) ≤ e−x valid for all x,
we obtain that Pr(Step 3 rejects | E) is at least 1 − (1 − p)` ≥ 8/9; it then follows that the probability of
rejection by the procedure is at least (8/9) · (3/4) = 2/3.

Finally, we analyze the running time of the testers. Observe that since all operations performed by the
algorithms (computing the maximum and simple comparisons) take time at most linear in the number of
queries, the time complexity is the same as query complexity (in the model where each required random
number is generated in one step). It remains to analyze the query complexity of Algorithm 5 for both
settings of R. First, SAMPLE-DIAMETER in Step 1 makes O(1/ε) queries. Each iteration of Step 3 makes
only 2 queries. Finally, by construction of the estimator, r ≤ ImgD(f) and whenever the for loop is

18

executed we also have r ≤ R. This gives that the total number of iteration of the for loop is at most O(1) ·
dmin{ImgD(f), R} log min{ImgD(f), R, n}/ε, so the total number of queries made by Algorithm 5 is
also of this order. Our choices ofR give the desired query complexity, concluding the proof of Theorem 1.1.

5 Testers for functions with range δZ

In this section, we discuss modifications in the proofs required to obtain the desired testers for functions
f : [n]d → δZ with δ ∈ (0, 1].

5.1 Modifications to Section 2

First, the main product of Section 2, namely, Theorem 1.3, holds as stated for the more general functions
f : [n] → δZ with δ ≤ 1. To prove it, we start by changing the definition of the basic operator to modify
the values of the function by ±δ.

Definition 5.1 (Basic operator). Given f : [n]d → δZ and x, y ∈ [n]d where |x− y|1 = 1 and vertex names
x and y are chosen so that f(x) ≤ f(y), the basic operator Bx,y works as follows: If the pair (x, y) is not
violated by f then Bx,y[f] is identical to f . Otherwise, Bx,y[f](x) = f(x) + δ and Bx,y[f](y) = f(y)− δ.

We continue with procedures LinePass and BubbleSmooth. Now LinePass uses the new basic oper-
ator defined above, but no other changes are required in these procedures. However, notice that whenever
LinePass (i) is applied to a function f , there is a transfer of δ units between nodes i and j (recall that
when δ = 1, one unit is transferred). Moreover, node j that participates in this transfer is as described in
Observation 2.1: it has the largest index such that the sequence f(i), f(i+1), . . . , f(j): (i) is monotone and
(ii) has consecutive terms that differ by exactly 1.

The definition of the transfer graph is unchanged, but its key property (Lemma 2.2) is scaled by a factor
of δ.

Lemma 5.1 (Key property of transfer graph). Let f : [n] → δZ be an input function given to Bub-
bleSmooth. Then for each edge es = (x, y) of the final transfer graph T ∗, the following holds:

vsf (x, y) ≥ δ(deg∗s(x) + deg∗s(y)− 1).

Naturally, Claim 2.3 used to prove Lemma 2.2 is also scaled accordingly. The proof of Lemma 5.1
follows directly from the claim below.

Claim 5.2 (Invariant for phase Fix(i)). Let f : [n]→ δZ be an input function given to BubbleSmooth. At
every point during the execution of BubbleSmooth(f), for each edge es = (x, y) of the transfer graph T ,

f(x)− f(y) ≥ δ(degs(x) + degs(y)− 1) + |x− y|.

Moreover, for each phase Fix(i) for some i ∈ [n− 1], after each execution of LinePass(i), for each edge es
incident on vertex i, the following (stronger) condition holds:

if the edge es = (i, j), i.e., it is outgoing from i, then f(i)− f(j) ≥ δ(∆i + degs(j)− 1) + |i− j|;
if the edge es = (j, i), i.e., it is incoming into i, then f(j)− f(i) ≥ δ(∆i + degs(j)− 1) + |i− j|.

19

The proof of Claim 2.3 can be used almost directly to prove Claim 5.2, the only modifications required
being the following. First, (1) becomes

f−(i)− f−(j) ≥ δ(∆i − deg−t (i)) + |i− j|
(because each transfer lowers the violation score of the pair (i, i + 1) by at least δ). Since each transfer
moves δ units of mass instead of 1, equations (2) and (3) become, respectively, f(i) = f−(i) + δ · deg−t (i)
and f(j) = f−(j)−δ ·deg−t (j). For the same reason, equation (4) becomes f(i) = f−(i)+δ ·deg−t (i) and
f(j) = f−(j) +deg−t (j). The rest of the proof can be used exactly as in the case δ = 1 to obtain Claim 5.2.

With Lemma 5.1 at hand, we can prove Theorem 1.3 for functions f : [n]→ δZ just as before. Indeed,
the proof of part 1 of the theorem requires no changes. For part 2, we note that |f −BubbleSmooth(f)|1 =
2δ|E|, whereE is the set of edges in the final transfer graph. Moreover, the same greedy procedure as before
yields a matching in the final transfer graph with violation score at least δ|E|; part 2 of Theorem 1.3 then
follows from Lemma 2.4.

5.2 Modifications to Section 3

The proof of the dimension reduction uses Claim 3.2. Below we present the corresponding lemma for the
modified definition of the basic operator and its proof. This lemma is sufficient to prove Item 3 of Lemma 3.1
for the modified definition of basic operator; the proofs of Items 1 and 2 are unchanged.

5.2.1 Modifications to the basic operator on a square

Claim 5.3 (Properties of modified basic operator on a square). Consider a function f : {xt, xb, yt, yb} →
δZ, where vertices are labels of the four vertices of the square {0, 1}2. (See Figure 3.) Let f ′ be the
function obtained by applying modified basic operators Bxt,yt and Bxb,yb along the horizontal edges. Then
the following holds for the vertical edges.

1. [JR13]: vsf ′(xt, xb) + vsf ′(yt, yb) ≤ vsf (xt, xb) + vsf (yt, yb).

2. |f ′(xt)− f ′(xb)|+ |f ′(yt)− f ′(yb)| ≤ |f(xt)− f(xb)|+ |f(yt)− f(yb)|.
Proof. If neither horizontal edge is violated then f ′ = f , and we are done. So assume without loss of
generality {xt, yt} is violated such that f(yt) ≥ f(xt) + 1 + δ. Then Bxt,yt increases f(xt) by δ and
decreases f(yt) by δ leading to inequality (i): f ′(yt) ≥ f(xt) + 1.

If, for both vertical edges, the absolute difference on the values does not increase, we are also done.
Assume without loss of generality that the absolute difference of the values of the left vertical edge increases
strictly, namely |f ′(xb)− f ′(xt)| = |f(xb)− f(xt)|+ ∆ for ∆ ∈ {δ, 2δ}. This implies that Bxb,yb did not
increase the value at xb and also that the following holds: (ii) f(xb) ≤ f(xt). The former also implies that:
(iii) f ′(yb) ≤ f ′(xb) + 1. The definition of ∆ further gives that: (iv) f ′(xb) = f(xb) − (∆ − δ) and (v)
f ′(yb) = f(yb) + (∆− δ).

Using inequalities (i), (ii), (iv) and (iii), we get

f ′(yt) ≥ f(xt) + 1 ≥ f(xb) + 1 = f ′(xb) + (∆− δ) + 1 ≥ f ′(yb) + (∆− δ).
Hence f ′(yt) ≥ f ′(yb). Further using equation (v), we get

|f ′(yt)− f ′(yb)| = f ′(yt)− f ′(yb) = f(yt)− δ − (f(yb) + (∆− δ)) ≤ |f(yt)− f(yb)| −∆.

Thus, the absolute difference of the values for the edge {xb, xt} increases by ∆, whereas this quantity for
the edge {yb, yt} decreases by at least ∆. This completes the proof of the claim.

20

5.2.2 Remaining modifications

The proof of Theorem 1.4 for functions f : [n] → δZ follows exactly as before. The general dimen-
sion reduction looses a factor of 1/δ in the bound, as compared to Theorem 1.2. It follows directly from
Theorem 1.4 and Observation 3.5.

Theorem 5.4 (Dimension reduction). For all functions f : [n]d → δZ, the following holds:

Eg←Lf

[
εLip(g)

]
≥ εLip(f)

2 · d · δ ImgD(f)
.

5.3 Modifications to Section 4

Modifications are required neither in the procedure for estimating the image diameter of a function nor in
LINE-TESTER. However, the guarantee from Lemma 4.4 for the latter worsens by a factor of δ.

Lemma 5.5. Consider a function f : [n]d → δZ that is ε-far from Lipschitz and a real number r ≥
ImgDε/2(f). For a random line g ← Lf , the probability that LINE-TESTER(g, r) rejects is at least

εδ
40d·r·logmin{r,n} .

Proof. The proof is the same as for Lemma 4.4, except that now we construct the truncation f ′ of the original
function f by taking a < b in δZ (as opposed to in Z) such that |a − b| ≤ ImgDε/2(f) and at most εnd/2
points x ∈ [n]d have f(x) /∈ [a, b]. Define f ′(x) in terms of a, b and f(x), as before. The rest of the proof
carries through (now using Theorem 5.4).

The only modification in our final tester, Algorithm 5, is in the number of iterations of the for loop,
which is multiplied by 1/δ. Correctness and the running time of the modified algorithm for functions
f : [n]d → δZ are analyzed as before. This concludes the proof of Theorem 1.1 for arbitrary δ ∈ (0, 1].

References

[ACCL07] Nir Ailon, Bernard Chazelle, Seshadhri Comandur, and Ding Liu. Estimating the distance to a
monotone function. Random Struct. Algorithms, 31(3):371–383, 2007.

[AJMR12] Pranjal Awasthi, Madhav Jha, Marco Molinaro, and Sofya Raskhodnikova. Testing Lipschitz
functions on hypergrid domains. In Anupam Gupta, Klaus Jansen, José D. P. Rolim, and
Rocco A. Servedio, editors, APPROX-RANDOM, volume 7408 of Lecture Notes in Computer
Science, pages 387–398. Springer, 2012.

[BGJ+12] Arnab Bhattacharyya, Elena Grigorescu, Kyomin Jung, Sofya Raskhodnikova, and David P.
Woodruff. Transitive-closure spanners. SIAM J. Comput., 41(6):1380–1425, 2012.

[BLR93] Manuel Blum, Michael Luby, and Ronitt Rubinfeld. Self-testing/correcting with applications to
numerical problems. J. Comput. Syst. Sci., 47(3):549–595, 1993.

[BRW05] Tugkan Batu, Ronitt Rubinfeld, and Patrick White. Fast approximate PCPs for multidimensional
bin-packing problems. Inf. Comput., 196(1):42–56, 2005.

21

[BRY14] Piotr Berman, Sofya Raskhodnikova, and Grigory Yaroslavtsev. Lp-testing. In David B.
Shmoys, editor, Symposium on Theory of Computing, STOC 2014, New York, NY, USA, May
31 - June 03, 2014, pages 164–173. ACM, 2014.

[CDJS15] Deeparnab Chakrabarty, Kashyap Dixit, Madhav Jha, and C. Seshadhri. Property testing on
product distributions: Optimal testers for bounded derivative properties. In Proceedings of the
Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2015, 2015.

[CS10] Artur Czumaj and Christian Sohler. Sublinear-time algorithms. In Oded Goldreich, editor,
Property Testing, volume 6390 of Lecture Notes in Computer Science, pages 41–64. Springer,
2010.

[CS13] Deeparnab Chakrabarty and C. Seshadhri. Optimal bounds for monotonicity and Lipschitz test-
ing over hypercubes and hypergrids. In Dan Boneh, Tim Roughgarden, and Joan Feigenbaum,
editors, Symposium on Theory of Computing Conference, STOC’13, Palo Alto, CA, USA, June
1-4, 2013, pages 419–428. ACM, 2013.

[DGL+99] Yevgeniy Dodis, Oded Goldreich, Eric Lehman, Sofya Raskhodnikova, Dana Ron, and Alex
Samorodnitsky. Improved testing algorithms for monotonicity. In RANDOM, pages 97–108,
1999.

[DJRT13] Kashyap Dixit, Madhav Jha, Sofya Raskhodnikova, and Abhradeep Thakurta. Testing the Lip-
schitz property over product distributions with applications to data privacy. In TCC, pages
418–436, 2013.

[EKK+00] F. Ergun, S. Kannan, S. R. Kumar, R. Rubinfeld, and M. Viswanathan. Spot-checkers. J.
Comput. Syst. Sci., 60(3):717–751, 2000.

[FLN+02] Eldar Fischer, Eric Lehman, Ilan Newman, Sofya Raskhodnikova, Ronitt Rubinfeld, and Alex
Samorodnitsky. Monotonicity testing over general poset domains. In STOC, pages 474–483,
2002.

[GGL+00] Oded Goldreich, Shafi Goldwasser, Eric Lehman, Dana Ron, and Alex Samorodnitsky. Testing
monotonicity. Combinatorica, 20(3):301–337, 2000.

[GGR98] Oded Goldreich, Shafi Goldwasser, and Dana Ron. Property testing and its connection to learn-
ing and approximation. J. ACM, 45(4):653–750, 1998.

[Gol11] Oded Goldreich. Introduction to testing graph properties. In Oded Goldreich, editor, Studies
in Complexity and Cryptography, volume 6650 of Lecture Notes in Computer Science, pages
470–506. Springer, 2011.

[Gro99] Mikhail Gromov. Metric Structures for Riemannian and non-Riemannian Spaces. 1999.

[HK08] Shirley Halevy and Eyal Kushilevitz. Testing monotonicity over graph products. Random Struct.
Algorithms, 33(1):44–67, 2008.

[JPRZ09] Charanjit S. Jutla, Anindya C. Patthak, Atri Rudra, and David Zuckerman. Testing low-degree
polynomials over prime fields. Random Struct. Algorithms, 35(2):163–193, 2009.

22

[JR13] Madhav Jha and Sofya Raskhodnikova. Testing and reconstruction of Lipschitz functions with
applications to data privacy. SIAM J. Comput., 42(2):700–731, 2013.

[KR06] Tali Kaufman and Dana Ron. Testing polynomials over general fields. SIAM J. Comput.,
36(3):779–802, 2006.

[McD89] Colin McDiarmid. On the method of bounded differences. In Surveys in Combinatorics. London
Math. Soc. Lecture Notes 141, 1989.

[Oll09] Yann Ollivier. Ricci curvature of markov chains on metric spaces. Journal of Functional Anal-
ysis, 256(3):810–864, 2009.

[Ron09] Dana Ron. Algorithmic and analysis techniques in property testing. Foundations and Trends in
Theoretical Computer Science, 5(2):73–205, 2009.

[RS96] Ronitt Rubinfeld and Madhu Sudan. Robust characterization of polynomials with applications
to program testing. SIAM J. Comput., 25(2):252–271, 1996.

[RS11] Ronitt Rubinfeld and Asaf Shapira. Sublinear time algorithms. SIAM J. Discrete Math.,
25(4):1562–1588, 2011.

[SV14] C. Seshadhri and Jan Vondrák. Is submodularity testable? Algorithmica, 69(1):1–25, 2014.

A McDiarmid’s Inequality

We state the well-known McDiarmid’s inequality [McD89] specialized to the domain [n]d.

Theorem A.1 ([McD89]). For every Lipschitz function f : [n]d → R and uniformly distributed X ∈
[n]d, the following holds (where the expectation is taken over the uniformly distributed X): Pr[|f(X) −
E[f(X)]| ≥ t] ≤ 2e

−2t2

dn2 .

23

k k + 1 k + 2k − 11 n

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

Bk,k+1

Bk,k+1

Bk,k+1

Bk,k+1

Bk,k+1

Bk,k+1

k k + 1 k + 2k − 11 n

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

k k + 1 k k + 1

M1 M2 M ′
1 M ′

2

C1 C2 C ′1 C ′2

h : [n]2 → Z

Bk,k+1

Bk,k+1

Bk,k+1

Bk,k+1

Bk,k+1

Bk,k+1

i

j

Figure 4: Illustration of proof of Item 3 of Lemma 3.1.

24

	Introduction
	Our Results
	Our Techniques
	Comparison to Previous and Subsequent Work
	Organization

	BubbleSmooth and its Analysis
	Description of BubbleSmooth and Proof of Part (1) of Theorem 1.3
	Transfer Graph
	Matchings of Violated Pairs

	Dimension Reduction: Proof of Theorems 1.2 and 1.4
	Dimension operator and its properties
	Basic operator on a square
	Proof of Theorems 1.2 and 1.4

	Algorithms for Testing the Lipschitz Property on Hypergrids
	Estimating the Effective Image Diameter
	Tester for Hypergrid Domains

	Testers for functions with range Z
	Modifications to Section 2
	Modifications to Section 3
	Modifications to the basic operator on a square
	Remaining modifications

	Modifications to Section 4

	McDiarmid's Inequality

