
SIAM J. COMPUT. c© 2005 Society for Industrial and Applied Mathematics
Vol. 35, No. 1, pp. 1–21

SOME 3CNF PROPERTIES ARE HARD TO TEST∗

ELI BEN-SASSON† , PRAHLADH HARSHA‡ , AND SOFYA RASKHODNIKOVA§

Abstract. For a Boolean formula ϕ on n variables, the associated property Pϕ is the collection
of n-bit strings that satisfy ϕ. We study the query complexity of tests that distinguish (with high
probability) between strings in Pϕ and strings that are far from Pϕ in Hamming distance. We prove
that there are 3CNF formulae (with O(n) clauses) such that testing for the associated property
requires Ω(n) queries, even with adaptive tests. This contrasts with 2CNF formulae, whose associated
properties are always testable with O(

√
n) queries [E. Fischer et al., Monotonicity testing over general

poset domains, in Proceedings of the 34th Annual ACM Symposium on Theory of Computing, ACM,
New York, 2002, pp. 474–483]. Notice that for every negative instance (i.e., an assignment that does
not satisfy ϕ) there are three bit queries that witness this fact. Nevertheless, finding such a short
witness requires reading a constant fraction of the input, even when the input is very far from
satisfying the formula that is associated with the property.

A property is linear if its elements form a linear space. We provide sufficient conditions for linear
properties to be hard to test, and in the course of the proof include the following observations which
are of independent interest:

1. In the context of testing for linear properties, adaptive two-sided error tests have no more
power than nonadaptive one-sided error tests. Moreover, without loss of generality, any
test for a linear property is a linear test. A linear test verifies that a portion of the input
satisfies a set of linear constraints, which define the property, and rejects if and only if it
finds a falsified constraint. A linear test is by definition nonadaptive and, when applied to
linear properties, has a one-sided error.

2. Random low density parity check codes (which are known to have linear distance and
constant rate) are not locally testable. In fact, testing such a code of length n requires
Ω(n) queries.

Key words. sublinear algorithms, lower bounds, property testing, CNF formulae, locally
testable codes

AMS subject classification. 68Q17

DOI. 10.1137/S0097539704445445

1. Introduction. Property testing deals with a relaxation of decision problems,
where one must determine whether an input belongs to a particular set, called a
property, or is far from it. “Far” usually means that many characters of the input
have to be modified to obtain an element in the set. Property testing was first
formulated by Rubinfeld and Sudan [RS96] in the context of linear functions and was

∗Received by the editors July 30, 2004; accepted for publication (in revised form) March 17, 2005;
published electronically September 8, 2005. A preliminary version of this paper appeared in the
Proceedings of the 35th Annual ACM Symposium on Theory of Computing, 2003 [BHR03].

http://www.siam.org/journals/sicomp/35-1/44544.html
†Computer Science Department, Technion - Israel Institute of Technology, Haifa, Israel (eli@eecs.

harvard.edu; elli@cs.technion.ac.il). This work was done while the author was a postdoctoral re-
searcher at the Department of Engineering and Applied Sciences, Harvard University, Cambridge,
MA 02138, and Laboratory for Computer Science, Massachusetts Institute of Technology, Cambridge,
MA 02139. This author’s work was supported by NSF grants CCR 0133096, CCR 9877049, CCR
9912342, and CCR 0205390, and by NTT Award MIT 2001-04.

‡Microsoft Research, 1065 La Avenida, Mountain View, CA 94043 (pharsha@microsoft.com).
This work was done at the Laboratory for Computer Science, Massachusetts Institute of Technology,
Cambridge, MA 02139 and was supported in part by NSF Award CCR 9912342 and NTT Award
MIT 2001-04.

§Weizmann Institute of Science, Rehovot, Israel (sofya@theory.csail.mit.edu). This work was
done at the Laboratory for Computer Science, Massachusetts Institute of Technology, Cambridge,
MA 02139.

1

2 E. BEN-SASSON, P. HARSHA, AND S. RASKHODNIKOVA

applied to combinatorial objects, especially graphs, by Goldreich, Goldwasser, and
Ron [GGR98]. Property testing has recently become quite an active research area;
see [Ron01, Fis01] for surveys on the topic.

One of the important problems in property testing is characterizing properties
that can be tested with a sublinear1 number of queries to the input (cf. [GGR98,
AKNS01, New02, FN04, AFKS00, Fis01, GT03]; see also section 1.1 for more infor-
mation). Our paper continues this line of research by trying to relate the testability
of properties over the binary alphabet with their formula complexity. We prove a
linear lower bound for testing some properties with very small formula complexity,
thus showing that the formula complexity of the property does not always help to
assess the testability of the property. In section 1.1 several strong lower bounds on
the query complexity [GGR98, GT03, BOT02, GR02] are discussed and compared to
our lower bound.

Testing kCNFs. A property is a collection of strings of a fixed size n. Every
property over the binary alphabet can be represented by a conjunctive normal form
(CNF) formula, whose set of satisfying assignments equals the set of strings in the
property. Testing this property can be viewed as testing whether a given assignment to
Boolean variables of the corresponding CNF is close to one that satisfies the formula.2

Goldreich, Goldwasser, and Ron [GGR98] prove that there exist properties over the
binary alphabet that require testing algorithms to read a linear portion of the input.
This implies that testing assignments to general CNF formulae is hard. A natural
question is whether restricting CNF formulae to a constant number of variables, k, per
clause allows for faster testers. Observe that the standard reduction from satisfiability
(SAT) to 3SAT does not apply because it introduces auxiliary variables and thus
changes the testing problem.

At first glance, there seems to be hope of obtaining good testers for every fixed
k because, for any assignment that does not satisfy the formula, there exists a set
of k queries that witnesses this fact. Indeed, Fischer et al. [FLN+02] prove that
properties expressible as sets of satisfying assignments to 2CNF formulae are testable
with O(

√
n) queries, where n is the length of the input. However, we will show that,

already for k = 3, testing whether an input assignment is close to satisfying a fixed
kCNF formula might require a linear number of queries.

Results and techniques. We show the existence of families of 3CNF formulae over
n variables (for arbitrarily large n) of size O(n) such that the corresponding properties
are not testable with o(n) queries. Thus, we present a gap between 2CNFs and 3CNFs.
Our lower bound applies to adaptive tests, i.e., tests in which queries might depend
on the answers to previous queries. This gives a class of properties which are easy to
decide in the standard sense3 but are hard to test.

Each hard 3CNF property we use is a linear4 space V ⊆ {0, 1}n that can be
expressed as the set of solutions to a set of homogeneous linear constraints of weight
3 (i.e., a 3LIN formula). While proving the lower bound, we show that every adaptive

1We measure the query complexity as a function of the input length. Thus, linear (sublinear,
respectively) query complexity means query complexity that is linear (sublinear) in the input length.

2Our problem should not be confused with the problem of testing whether a CNF formula is
“close” to being satisfiable (under a proper definition of closeness). In our problem the CNF formula
is fixed and known to the tester. See section 1.1 for a discussion of the seemingly related problem.

3A property is easy to decide in the following standard sense: given the entire assignment, it
can be checked in time linear in the number of variables and size of the formula, whether or not the
assignment is a satisfying one.

4We work over the field with two elements and our linear space is defined over this field.

SOME 3CNF PROPERTIES ARE HARD TO TEST 3

two-sided error test for checking membership in a vector space can be converted to
a nonadaptive one-sided error test with the same query complexity and essentially
identical parameters. This allows us to consider only one-sided error nonadaptive
tests. In order to prove that a particular linear space V is hard, we need to find, for
every such test T , a bad vector b ∈ {0, 1}n (that is, far from V) such that T accepts
b with significant probability (i.e., T fails to reject b, as it should). Yao’s minimax
principle allows us to switch the quantifiers. In other words, in order to prove our
lower bound, it suffices to present a distribution B over bad vectors such that any
deterministic test (making few queries) fails to reject a random b (selected according
to the distribution B) with significant probability.

We now give a rough picture of how to get a vector space V that is hard to test
and a distribution B that shows this hardness (per Yao’s minimax principle). Fix
0 < κ < 1 and let V be the set of solutions to a system A of m = κn random linear
constraints over n Boolean variables, where each constraint is the sum of a constant
number of randomly selected variables, and each variable appears in a constant number
of constraints. Such linear spaces are called random low density parity check (LDPC)
codes.5 These codes were introduced by Gallager [Gal63], who showed that they have
constant rate and (with high probability) large minimal distance. It is possible to show
that with high probability the random constraints are linearly independent. Our bad
distribution B is the uniform distribution over vectors that satisfy all but one random
constraint of A. Since the constraints are linearly independent, this distribution is
well defined. By definition, each input chosen according to B is not in the property.
It is less obvious, but still true, that each such input is far from the property. The
tricky part is to show that every deterministic test making o(n) queries will fail to
reject a random input chosen according to B.

A natural way to test if an input belongs to V is to select a few random constraints
in A, query all entries lying in their supports, and accept if and only if all constraints
are satisfied. This test always accepts inputs in V . It correctly rejects an input
distributed according to B when the unique random constraint falsified by the input is
queried. This method is costly in query complexity because there are O(n) constraints,
and only one randomly chosen constraint is not satisfied. A more efficient way to
attack the distribution B would be to use linearity, as follows. If an input satisfies a
set of constraints, it must satisfy their sum; if it falsifies exactly one of the constraints
in the sum, it must falsify the sum. Thus, one might choose a set of constraints in A,
take their sum, and query the entries in the support of the sum. The summation might
cancel out some entries (namely, those that appear in an even number of summands)
and reduce the query complexity. This suggests the following general test for testing
membership in V : query the input in a small subset of entries and accept if and only if
these entries satisfy all possible sums (of constraints in A), whose support lies entirely
within the small subset. In fact, it can be easily observed that any nonadaptive one-
sided error test for membership in V is of the above form. Furthermore, we prove that,
without loss of generality, the only possible tests (for membership in a linear space)
are of the above mentioned form (see Theorem 3.3). The crux of our proof consists of
showing that this general method does not significantly reduce the query complexity.
Namely, we show that the sum of any large subset of the constraints of A has large
support, and thus results in large query complexity. The reason for this phenomenon
is the underlying expansion of the random set of constraints. Thus, any deterministic

5LDPC codes are linear codes defined as solutions to a system of linear constraints with small
support.

4 E. BEN-SASSON, P. HARSHA, AND S. RASKHODNIKOVA

testing algorithm making o(n) queries essentially checks only o(m) constraints of A,
and thus will reject a random input from B with subconstant probability.

Connections to coding theory. Our results shed some light on the question of
optimal locally testable codes. An infinite family of codes {C}n is called locally testable
if the property Cn is testable with constant query complexity. These codes play a vital
role in probabilistically checkable proof (PCP) constructions and are of fundamental
importance in theoretical computer science. Recently, Ben-Sasson et al. [BSVW03,
BGH+04], following the work of Goldreich and Sudan [GS02], proved the existence of
such codes, which achieve linear distance and near constant rate, resulting in better
PCP constructions.

As mentioned earlier, the vector spaces we use (which are hard to test) are built
upon random LDPC codes, which are heavily studied in coding theory (cf. [Gal63] and
[Spi95, Chap. 2] and references therein). It follows from an intermediate step in our
proof that this important class of codes is not locally testable. Moreover, the property
that makes random codes so good in terms of minimal distance, namely expansion,
is also behind the poor testability of these codes. In his thesis, Spielman informally
discusses why expander codes might not be locally testable and states that a high
level of redundancy among the constraints of the code might be required to make it
testable ([Spi95, Chap. 5]. In our proof, we make this argument formal and prove
that random (c, d)-regular LDPC codes are not locally testable (see Theorem 3.7).
This sheds some light on the question of optimal locally testable codes. The existence
of such optimal codes that (i) achieve constant rate, (ii) achieve linear distance, and
(iii) are locally testable (or even testable with a sublinear number of queries) remains
an interesting open problem.

1.1. Connection to previous results.
Classes of testable properties. One of the important problems in property testing

is characterizing properties that can be tested with a sublinear number of queries
to the input. A series of works identified classes of properties testable with con-
stant query complexity. Goldreich, Goldwasser, and Ron [GGR98] found many such
properties. Alon et al. [AKNS01] proved that all regular languages are testable with
constant complexity. Newman [New02] extended their result to properties that can
be computed by oblivious read-once constant-width branching programs. Fischer and
Newman [FN04] demonstrated a property that requires superconstant query com-
plexity and is computable by a read-twice constant-width branching program, thus
showing that Newman’s result does not generalize to read-twice branching programs.
Several papers [AFKS00, Fis05] worked on the logical characterization of graph prop-
erties testable with a constant number of queries. Goldreich and Trevisan [GT03]
provide a characterization of properties testable with a constant number of queries
and one-sided error in the framework of graph partition properties.

Linear lower bounds. The published linear lower bounds are the aforementioned
generic bound due to Goldreich, Goldwasser, and Ron [GGR98], later extended by
Goldreich and Trevisan [GT03] to monotone graph properties in NP, and the bound
for testing 3-coloring in bounded degree graphs due to Bogdanov, Obata, and Tre-
visan [BOT02]. In addition, there is a simple and elegant unpublished linear lower
bound, observed by Madhu Sudan in a personal communication to the authors. His
property consists of polynomials of degree at most n/2 over a finite field Fn of size
n, where each polynomial is given by its evaluation on all elements of the field. It is
not hard to see that every nonadaptive one-sided error test for this property requires
linear query complexity. Since the property of low-degree polynomials is linear, our

SOME 3CNF PROPERTIES ARE HARD TO TEST 5

reduction from general to nonadaptive one-sided error tests implies a linear lower
bound for adaptive two-sided tests for this property. A related property, suggested
by Oded Goldreich in a personal communication to the authors, consists of a random
linear code. It is not hard to show, using similar reasoning, that with high probability
testing this property requires linear query complexity. Observe that both of these
properties (low degree polynomials and random codes) are easy to decide once all the
input is read, but both cannot be represented by a family of 3CNF formulae.6

The aforementioned linear lower bounds of Sudan and Goldreich and of Bogdanov,
Obata, and Trevisan capitalize on the existence of inputs that are far from having
the property, yet any local view of a constant fraction of them can be extended to
an element having the property.7 But if the property is defined by a kCNF ϕ, this
cannot happen. Clearly, any string that does not have the property must falsify at
least one clause of ϕ. Thus, there is some view of the input of size k that proves
that the input does not have the property. Our result shows that, in certain cases,
finding such a falsified clause requires reading a constant fraction of the input, even
if the assignment is far from any satisfying one. A similar phenomenon is exhibited
by Goldreich and Ron for testing bipartiteness in 3-regular, n-vertex graphs [GR02].
They showed a lower bound of Ω(

√
n) on the query complexity; despite this, short

witnesses of nonbipartiteness do exist in the form of odd cycles of length poly(logn).
Our result strengthens this finding, since in our case the query complexity is linear,
whereas the witness size is constant.

Testing an input kCNF. A related problem, but very different from ours, is that
of testing whether an input kCNF formula is satisfiable. (Recall that in our setting the
input is an assignment to a fixed kCNF formula.) The exact version of this problem is
a classical NP-complete problem. The property testing version was studied by Alon
and Shapira [AS03]. They showed that satisfiability of kCNF formulae is testable
with complexity independent of the input size.8 In contrast, our problem is very easy
in its exact version but hard in its property testing version for k ≥ 3.

2. Definitions.

Property testing. A property is a collection of strings of a fixed size n. A
property is linear if it forms a vector space (over some underlying field). In this
paper, strings are over a binary alphabet unless mentioned otherwise. The distance
dist(x,P) of a string x to a property P is minx′∈P dist(x, x′), where dist(x, x′) denotes
the Hamming distance between the two strings x and x′. The relative distance of x
to P is its distance to P divided by n. A string is ε-far from P if its relative distance
to P is at least ε.

A test for property P with distance parameter ε, positive error η+, negative error
η− and query complexity q is a probabilistic algorithm that queries at most q bits of
the input, accepts strings in P with probability at least 1 − η+, and accepts strings
that are ε-far from P with probability at most η−, for some 0 ≤ η− < 1 − η+ ≤ 1.

6In other words, these properties cannot be decided by a family of circuits of depth 2, where the
output gate of the circuit is an AND-gate, the next level of gates are all OR-gates of fan-in 3, and
the inputs to the OR-gates are either the input bits or their negations.

7For example, in Sudan’s construction any evaluation of a polynomial on d points can be extended
to an evaluation of a polynomial of degree d′ > d. Thus, n/2 values of the polynomial cannot prove
or disprove that the polynomial has degree at most n/2.

8Complexity of a testing problem depends on the definition of distance; in Alon and Shapira’s
work the distance from the input to a satisfiable formula is defined as the number of clauses that
have to be removed to make the input formula satisfiable.

6 E. BEN-SASSON, P. HARSHA, AND S. RASKHODNIKOVA

Note that the positive error η+ is the maximum error made by the test on the YES-
instances (i.e., strings in P), and the negative error η− is the maximum error made
on NO-instances (i.e., strings ε-far from P). Sometimes we refer to η+ + η− as the
sum of errors made by the test T . A test is said to have error η if η+, η− ≤ η (for
η < 1

2). If a test T accepts input x, we say T (x) = 1. Otherwise, we say T (x) = 0. A
test with distance parameter ε and error η is referred to as an (ε, η)-test (analogously,
(ε, η+, η−)-test). An ε-test denotes a test with distance parameter ε. A property is
(ε, η, q)-testable if it has an (ε, η)-test that makes at most q queries on every input;
(ε, η+, η−, q)-testable is defined analogously.

Two special classes of tests are of interest. An algorithm is nonadaptive if it makes
all queries in advance before getting the answers. Namely, a query may not depend
on the answers to previous queries. An algorithm has a one-sided error if it always
accepts an input that has the property. In other words, an algorithm has a one-sided
error if the positive error η+ is 0.

CNF and linear formulae. Recall that a Boolean formula is in CNF if it is a
conjunction of clauses, where every clause is a disjunction of literals. (A literal is a
Boolean variable or a negated Boolean variable.) If all clauses contain at most three
literals, the formula is a 3CNF.

A linear (LIN) Boolean formula is a conjunction of constraints, where every con-
straint is satisfied if and only if the variables in the constraint add up to 0 mod 2. If
all constraints contain at most d literals, the formula is a dLIN.

Let ϕ be a formula on n variables. An n-bit string satisfies ϕ if it satisfies all
clauses (constraints) of the formula. An n-bit string is ε-far from satisfying ϕ if at
least an ε fraction of the bits needs to be changed to make the string satisfy ϕ. Each
formula ϕ defines a property {x| x satisfies ϕ}. For brevity, we refer to a test for this
property as a test for ϕ.

Random regular bipartite graphs and LDPC codes. Let G = 〈L,R,E〉
be a bipartite multigraph, with |L| = n, |R| = m, and let d(v) be the degree of a
vertex v. G is called (c, d)-regular if for all v ∈ L, d(v) = c, and if for all v ∈
R, d(v) = d. A random (c, d)-regular graph with n left vertices and m = c

dn right
vertices9 is obtained by selecting a random matching between cn “left” nodes labeled
{v1

1 , . . . , v
c
1, v

1
2 , . . . , v

c
n} and dm = cn “right” nodes labeled {u1

1, . . . , u
d
m}, collapsing

every c consecutive nodes on the left to obtain n c-regular vertices, and collapsing
every d consecutive nodes on the right to obtain m d-regular vertices. Formally, let
L = {v1, . . . , vn}, R = {u1, . . . , um}, and connect vertex vi to uj if and only if there

exist α ∈ [c], β ∈ [d] such that (vαi , u
β
j) is an edge of the random matching. Notice

that the resulting graph may be a multigraph (i.e., have multiple edges between two
vertices). The code associated with G, called an LDPC code, was first described and
analyzed by Gallager [Gal63].

Definition 2.1 (LDPC Code). Let G = 〈L,R,E〉 be a bipartite multigraph
with |L| = n, |R| = m. Associate a distinct Boolean variable xi with any i ∈ L.
For each j ∈ R, let N(j) ⊆ L be the set of neighbors of j. The jth constraint
is Aj(x1, . . . , xn) =

∑
i∈N(j) xi mod 2. (Notice that a variable may appear several

times in a constraint because G is a multigraph.) Let A(G) be the dLIN formula

9Typically, one fixes c, d to be constants, whereas n,m are unbounded.

SOME 3CNF PROPERTIES ARE HARD TO TEST 7

A(G) =
∧m

j=1

(
Aj(x) = 0

)
. The code defined by G is the property defined by A(G),

namely,

C(G) = {x ∈ {0, 1}n|∀j ∈ [m] Aj(x) = 0}.

A random (c, d)-regular LDPC code of length n is obtained by taking C(G) for a
random (c, d)-regular graph G with n left vertices.

3. Main theorem. In this section we state and prove the main theorem and
show that some 3CNF properties are hard to test.

Theorem 3.1 (main). There exist 0 < δ�, ε�, η� < 1 such that, for every suffi-
ciently large n, there is a 3CNF formula ϕ on n� = Θ(n) variables with Θ(n) clauses
such that every adaptive (ε�, η+, η−, q)-test for ϕ with the sum of errors η+ +η− ≤ η�

makes at least q = δ�n� queries.
To prove Theorem 3.1, we need to find 3CNF formulae that define hard properties.

Our main idea is to work with linear properties (i.e., vector spaces). We prove that,
for linear properties, tests of a very simple kind, which we call linear, are as powerful
as general tests. In particular, linear tests are nonadaptive and have a one-sided
error. Working with linear properties allows us to focus on proving a lower bound for
this simple kind of tests—bypassing often insurmountable issues of adaptivity and
two-sided error.

To explain how we find 3CNF formulae that define hard linear properties, we need
some linear algebra terminology. Let F be a field. We say that two vectors u, v ∈ F

n

are orthogonal to each other (denoted u ⊥ v) if
∑n

i=1 ui · vi = 0. Furthermore, we
say that a vector u is orthogonal to a subset S ⊆ F

n (denoted by u ⊥ S) if u ⊥ v
for all vectors v ∈ S. For a linear space V ⊆ F

n over the field F, the dual space V ⊥

is defined as the set of all vectors orthogonal to V (i.e., V ⊥ �
= {u ∈ F

n : u ⊥ V }).
For I ⊆ [n], let V ⊥

I be the subset of V ⊥ composed of all vectors with support in
I (i.e., u ∈ V ⊥

I if and only if u ∈ V ⊥ and the indices of nonzero entries of u lie
in I).

Definition 3.2 (linear test). A test for a linear property V ⊆ F
n is called a

linear test if it is performed by selecting I = {i1, . . . , iq} ⊆ [n] (according to some
distribution), querying w at coordinates I, and accepting if and only if w ⊥ V ⊥

I .
Linear tests are by definition nonadaptive and have only a one-sided error (mem-

bers of V are always accepted). Since the inception of property testing, linear proper-
ties have been invariably tested by linear tests (starting with [BLR93]). The following
theorem shows this is not a coincidence.

Theorem 3.3 (linear properties have linear tests). If a linear property V ⊆ F
n

over a finite field F has a two-sided error adaptive (ε, η+, η−, q)-test, then it has a
linear (ε, 0, η+ + η−, q)-test.

The proof of Theorem 3.3 appears in section 5. The reduction to linear tests
does not increase the overall error but rather shifts it from the YES-instances to the
NO-instances, maintaining the sum of errors η+ + η−. Although stated for general
finite fields, this theorem is used in our paper only for linear properties over the binary
alphabet, namely, with F = GF (2).

Consider a vector space V ⊆ GF (2)n and let A = (A1, . . . , Am) be a basis for
the dual space V ⊥. Denote the ith coordinate of x ∈ GF (2)n by xi. For two vectors
x, y ∈ GF (2)n, let 〈x, y〉 =

∑n
i=1 xiyi mod 2. We can view each vector Ai ∈ A as a

linear constraint on Boolean variables x1, . . . , xn of the form 〈x,Ai〉 = 0. This gives
us a way to see a vector space as a set of vectors satisfying all constraints in the dual

8 E. BEN-SASSON, P. HARSHA, AND S. RASKHODNIKOVA

space, or, equivalently, in the basis of the dual space: V = {x|〈x,Ai〉 = 0 for all
Ai ∈ A}. Linear constraints can be thought of as linear formulae.

Let |x| denote the size of the support of vector x ∈ GF (2)n. Viewing each Ai as
a constraint, we can represent V as a dLIN formula, where d = maxAi∈A |Ai|. We
work with an arbitrary constant d and later show how to reduce it to 3. Since each
3LIN formula has an equivalent 3CNF, to prove Theorem 3.1 it is enough to find hard
3LINs.

We now present sufficient conditions for a vector space to be hard to test. To
understand the conditions, keep in mind that later we employ Yao’s minimax principle
to show that all vector spaces satisfying these conditions are hard for linear tests.
Yao’s principle implies that to prove that each low-query probabilistic linear test fails
on some input, it is enough to give a distribution on the inputs on which each low-
query deterministic linear test fails. Therefore, we need to exhibit a distribution on
vectors that are far from the vector space but are orthogonal with high probability to
any fixed set of linear constraints that have support ≤ q.

Definition 3.4 (hard linear properties). Let V ⊆ GF (2)n be a vector space and
let A be a basis for V ⊥. Fix 0 < ε, μ < 1.

• A is ε-separating if every x ∈ GF (2)n that falsifies exactly one constraint in
A has |x| ≥ εn.

• A is (q, μ)-local if every α ∈ GF (2)n that is a sum of at least μm vectors in
A has |α| ≥ q.

For the proof that every vector space satisfying the above conditions is hard to
test, our bad distribution that foils low-query tests is over strings that falsify exactly
one constraint. The falsified constraint is chosen uniformly at random. The first con-
dition ensures that the distribution is over vectors which are ε-far from the vector
space. (To see this, notice that if the distance of x from y ∈ V is less than εn,
then |x + y| < εn and x + y falsifies exactly one constraint, contradicting the first
condition.)

The second condition ensures that the distribution is hard to test. Assume that
each deterministic linear test corresponds to some vector u ∈ V ⊥, |u| ≤ q. (This is
oversimplified because a deterministic linear test may read several dual vectors, whose
combined support size is at most q. However, this simple case clarifies our approach
and is not far from the formal proof given in section 4.) Vector u can be expressed as
a linear combination of vectors in the basis: u =

∑
j∈J Aj for some J ⊂ [m]. Let Ak

be the (random) constraint falsified by a vector w in our hard distribution. Clearly,
u will reject w if and only if k ∈ J . The second condition implies that this will occur
with probability at most μ. This intuitive discussion is formalized by the following
theorem, proved in section 4.

Theorem 3.5. Let V ⊆ GF (2)n be a linear space. If V ⊥ has an ε-separating
(q, μ)-local basis A = (A1, . . . , Am) and 0 < μ < 1/2, then every linear ε-test for it
with error ≤ 1 − 2μ requires q queries.

We now turn to constructing linear spaces that are hard to test. In particular, we
show that for sufficiently large constants c, d, with high probability a random (c, d)-
regular LDPC code (per Definition 2.1) is hard according to Definition 3.4. The proof
of this lemma, which uses the probabilistic method, appears in section 6. (We do not
attempt to optimize constants.)

Lemma 3.6 (hard linear properties exist). Fix odd integer c ≥ 7 and constants

SOME 3CNF PROPERTIES ARE HARD TO TEST 9

μ, ε, δ, d > 0 satisfying

μ ≤ 1

100
· c−2; δ < μc; d >

2μc2

(μc − δ)2
; ε ≤ 1

100
· d−2.

Then, for all sufficiently large n, with high probability for a random (c, d)-regular
graph G with n left vertices, the dLIN formula A(G) (as in Definition 2.1) is linearly
independent, ε-separating, and (δn, μ)-local.

We now have an abundance of dLIN formulae that are hard to test for sufficiently
large d. As an immediate corollary, we conclude that random LDPC codes are hard
to test.

Theorem 3.7 (random (c, d)-regular LDPC codes are hard to test). Let c, d, μ, ε, δ
satisfy the conditions of Lemma 3.6. For sufficiently large n, with high probability a
random (c, d)-regular LDPC code C(G) of length n satisfies the following: Every adap-
tive (ε, η+, η−, q)-test for C(G) with the sum of errors η+ +η− ≤ 1−2μ makes at least
q = δn queries.

Proof. The proof follows directly from Lemma 3.6 and Theorems 3.3 and
3.5.

The following reduction brings d down to 3 while preserving the conditions of
Definition 3.4 (with smaller constants).

Lemma 3.8 (reduction to 3CNFs). Suppose A ⊆ {0, 1}n is a set of m = c
dn

vectors, each vector of weight at most d. Suppose furthermore A is (i) linearly inde-
pendent, (ii) ε-separating, and (iii) (δn, μ)-local. Then there exists a set A� ⊂ {0, 1}n�

of m� vectors, each vector of weight at most 3, such that A� is (i) linearly independent,
(ii) ε�-separating, and (iii) (δ�n�, μ�)-local, for

m� ≤ 2dm ; n ≤ n� ≤ (2c + 1) · n ; ε ≥ ε∗ ≥ ε

(2c + 1)
;

δ ≥ δ� ≥ δ

dlog d+1 · (2c + 1)
; μ� ≤ μ +

δ(log d + 1)

c
.

Lemma 3.8 is proved in section 7. We now complete the proof of our main theorem.
Proof of Theorem 3.1 (main). We start by fixing the following parameters:

c = 7; μ =
1

100
· c−2; δ =

μc

2
; d =

⌈
4μc2

(μc − δ)2

⌉
=

⌈
16c2μ1−2c

⌉
; ε =

1

100
· d−2.

We pick An ⊂ {0, 1}n to be a linearly independent, (δn, μ)-local, ε-separating collec-
tion of vectors, of weight ≤ d. By Lemma 3.6, such a set An exists for our setting of
μ, ε, δ, d and sufficiently large n.

Next, let A�
n� ⊂ {0, 1}n�

be a linearly independent, (δ�n�, μ�)-local, ε�-separating
set of vectors of weight at most 3, ensured by Lemma 3.8 (where δ�, μ�, ε�, n� are as
stated in this lemma). Recall that for every 3LIN formula there is an equivalent 3CNF
and let ϕ be the 3CNF formula equivalent to A�

n� . Moreover, because m�, n� = Θ(n)
and each 3LIN constraint translates into a constant number of 3CNF constraints, we
conclude that the number of clauses in ϕ is linear in n�.

Notice δ�, ε�, μ� > 0 because δ, ε, μ, d > 0, and δ�, ε� < 1 because δ, ε < 1.
Furthermore, for our setting of constants,

μ� ≤ μ +
δ(log d + 1)

c
= μ +

μc(log(16c2μ−(2c−1)) + 1)

2c
<

1

2
.

Therefore, 0 < 1 − 2μ∗ < 1. Set η� = 1 − 2μ�. By Theorem 3.5, every linear ε�-
test for A�

n� with error ≤ η� requires δ�n� queries. Theorem 3.3 implies that every

10 E. BEN-SASSON, P. HARSHA, AND S. RASKHODNIKOVA

adaptive (ε�, η+, η−, q)-test for A�
n� with η+ + η− ≤ η� makes at least δ�n� queries.

This completes the proof of our main theorem.

4. Lower bounds for linear tests: Proof of Theorem 3.5. We employ Yao’s
minimax principle. It states that to prove that every q-query randomized linear test
fails with probability more than η, it is enough to exhibit a distribution B on the
inputs for which every q-query deterministic linear test fails with probability more
than η. For i = 1, . . . ,m let Bi be the uniform distribution over n-bit strings that
falsify constraint Ai and satisfy the rest. The distribution B is the uniform distribution
over the Bi’s. The comment after Definition 3.4 shows that the distribution B is over
strings which are ε-far from V .

A deterministic linear test T is identified by a subset I ⊆ [n], |I| = q and rejects
the input w only if w is not orthogonal to V ⊥

I (see Definition 3.2). Write each vector
u ∈ V ⊥ in the basis A as u = A · bu, where A is interpreted as the m × n matrix
whose ith row is Ai and bu ∈ GF (2)m. Let JT = ∪V ⊥

I
supp(bu). We claim T rejects

w distributed according to B if and only if the index of the unique constraint falsified
by w belongs to JT . This is because w is orthogonal to all but one Ai ∈ A, so the
subspace of V ⊥ that is orthogonal to w is precisely the span of A \ {Ai}. Summing
up, the probability that T rejects w is precisely |JT |/m. We now give an upper bound

on |JT |. Notice that V ⊥
I is a vector space, so the set V ′ �

= {bu : u ∈ V ⊥
I } is also

a vector space (it is the image of the vector space V ⊥
I under the linear map A−1).

Since A is (q, μ)-local, we know |bu| ≤ μm for every u ∈ V ⊥
I . Thus, V ′ is a vector

space over GF (2) in which each element has support size ≤ μm. We claim that
|JT | = | ∪v′∈V ′ supp(v′)| ≤ 2μm. To see this, pick a uniformly random vector of
v ∈ V ′. We claim that

Ev′∈V ′ |v| = | ∪v′′∈V ′ supp(v′′)|/2.

This follows from the linearity of expectation and the fact that the projection of V ′

onto any j ∈ ∪V ′ supp(v′) is a linear function, so the expected value of v′j is 1/2.
Since A is (q, μ)-local, we know Ev′∈V ′ |v′| ≤ μm, which means that |JT | ≤ 2μm. This
implies that our deterministic test (reading q entries of w) will detect a violation with
probability at most |JT |/m ≤ 2μ. The proof of Theorem 3.5 is complete.

5. Reducing general tests to linear ones. In this section we prove Theo-
rem 3.3 by presenting a generic reduction that converts any adaptive two-sided error
test for a linear property to a linear test, as in Definition 3.2. We perform this re-
duction in two stages: we first reduce an adaptive test with two-sided error to an
adaptive linear test (Theorem 5.3), maintaining the sum of the positive and negative
errors (η+ + η−), and then remove the adaptivity and maintain all other parameters
(Theorem 5.6). The second reduction was suggested by Madhu Sudan. We state and
prove these reductions for the general case when the linear spaces V considered are
over any finite field F, though we require them only for the case F = GF (2).

Preliminaries. Any probabilistic test can be viewed as a distribution over deter-
ministic tests, and each deterministic test can be represented by a decision tree. Thus,
any test T can be represented by an ordered pair (ΥT ,DT), where ΥT = {Γ1,Γ2, . . . }
is a set of decision trees and DT is a distribution on this set such that on input x, T
chooses a decision tree Γ with probability DT (Γ) and then answers according to Γ(x).

We say that a test detects a violation if no string in V is consistent with the
answers to the queries. By linearity, it is equivalent to having a constraint α in V ⊥

SOME 3CNF PROPERTIES ARE HARD TO TEST 11

such that 〈x, α〉 �= 0 for all x ∈ F
n, which are consistent with the answers to the

queries.
Let V be a vector space. For any leaf l of decision tree Γ, let Vl be the set of

all vectors in V that are consistent with the answers along the path leading to l.
Similarly, for any string x ∈ F

n, let V x
l be the set of all vectors in x + V that are

consistent with the answers along the path leading to l.
Claim 5.1. Let F be a finite field and V ⊆ F

n be a vector space. Let x ∈ F
n. For

any decision tree Γ and a leaf l in Γ, if both Vl and V x
l are nonempty, then |Vl| = |V x

l |.
Proof. Let U be the set of all strings in V which have the element 0 in all the

positions queried along the path leading to l. Since 0n ∈ U , we have that U is
nonempty. Observe that if u ∈ U and v ∈ Vl, then u + v ∈ Vl. In fact, if Vl �= ∅,
Vl = v + U for any v ∈ Vl. Hence, |Vl| = |U |. Similarly, if V x

l �= ∅, we have that
V x
l = y + U for any y ∈ V x

l . Hence, |V x
l | = |U | and the lemma follows.

5.1. Reduction from adaptive two-sided to adaptive linear.
Definition 5.2 (adaptive linear test). A test for a linear property V ⊆ F

n is
called adaptive linear if it is performed by making adaptive queries I = {i1, . . . , iq}
(according to some distribution) to w and accepting if and only if w ⊥ V ⊥

I .
Notice that adaptive linear tests have a one-sided error: every w ∈ V is always

accepted.
Theorem 5.3. Let F be a finite field and V ⊆ F

n a vector space. If V has an
adaptive (ε, η+, η−, q)-test T , then it has a (one-sided error) adaptive linear (ε, 0, η++
η−, q)-test T

′.
Proof. Let T = (ΥT ,DT) be a two-sided error (adaptive) (ε, η, q)-test for V .

To convert T to an adaptive linear one, we modify the test so that it rejects if and
only if it observes that a constraint in V ⊥ has been violated. We say that a leaf l is
labeled optimally if its label is 0 when the query answers on the path to l falsify some
constraint in V ⊥, and its label is 1 otherwise. We relabel the leaves of each tree Γ in
ΥT optimally to obtain the tree Γopt.

Relabeling produces a one-sided error test with unchanged query complexity.
However, the new test performs well only on “average.” To get good performance on
every string, we randomize the input x by adding a random vector v from V to it and
perform the test on x + v instead of x. Now we formally define T ′.

Definition 5.4. Given a two-sided error (adaptive) test T for V , define the test
T ′ as follows: On input x, choose a decision tree Γ according to the distribution DT

as T does, choose a random v ∈ V , and answer according to Γopt(x + v).
Clearly, T ′ is adaptive linear and has the same query complexity as T . It remains

to check that T ′ has error η+ + η− on negative instances.
For any x ∈ F

n and any test T , let ρTx be the average acceptance probability
of test T over all strings in x + V , i.e., ρTx = averagey∈x+V

(
Pr[T (y) = 1]

)
. For

notational brevity, we denote ρT0n , the average acceptance probability of strings in V ,
by ρT . Observe that, for the new test T ′, for each input x, Pr[T ′(x) = 1] = ρT

′

x .
Claim 5.5 below shows that the transformation to a one-sided error test given by

Definition 5.4 increases the acceptance probability of any string not in V by at most
ρT

′ − ρT . Notice that all vectors in x + V have the same distance to V . Therefore
if x is ε-far from V , then ρTx ≤ η−. Together with Claim 5.5, it implies that for all
vectors x that are ε-far from V , the error is low:

Pr[T ′(x) = 1] = ρT
′

x ≤ ρT
′ − ρT + ρTx ≤ 1 − (1 − η+) + η− = η+ + η−.

This completes the proof of Theorem 5.3

12 E. BEN-SASSON, P. HARSHA, AND S. RASKHODNIKOVA

Claim 5.5. ρT − ρTx ≤ ρT
′ − ρT

′

x for any vector x ∈ F
n.

Proof. Let x ∈ F
n. It is enough to prove that relabeling one leaf l of a decision

tree Γ in ΥT optimally does not decrease ρT − ρTx . Then we obtain the claim by
relabeling one leaf at a time to get T ′ from T . There are two cases to consider.

Case (i) The path to l falsifies some constraint in V ⊥. Then l is relabeled from
1 to 0. This change preserves ρT because it only affects strings that falsify some
constraint. Moreover, it can only decrease the acceptance probability for such strings.
Therefore, ρTx does not increase. Hence, ρT − ρTx does not decrease.

Case (ii) The path to l does not falsify any constraint in V ⊥. Then l is relabeled
from 0 to 1. Let Vl and V x

l , respectively, be the set of vectors in V and x+V that are
consistent with the answers observed along the path to l. Thus, every string in Vl∪V x

l

was rejected before relabeling but is accepted now. The behavior of the algorithm on
the remaining strings in V and x+V is unaltered. Hence, the probability ρT increases

by the quantity DT (Γ) · |Vl|
|V | . Similarly, ρTx increases by DT (Γ) · |V x

l |
|V | .

It suffices to show that |Vl| ≥ |V x
l |. Since the path leading to l does not falsify

any constraint, Vl is nonempty. If V x
l is empty, we are done. Otherwise, both Vl and

V x
l are nonempty, and by Claim 5.1, |Vl| = |V x

l |.
5.2. Reduction to linear tests. In this section, we remove the adaptivity from

the linear tests. The intuition behind this is as follows: To check if a linear constraint
is satisfied, a test needs to query all the variables that participate in that constraint.
Based on any partial view involving some of the variables, the test cannot guess if the
constraint is going to be satisfied or not until it reads the final variable. Hence, any
adaptive decision based on such a partial view does not help.

Theorem 5.6. If V ⊆ F
n is a vector space over a finite field F that has an

adaptive linear (ε, 0, η, q)-test, then it has a (nonadaptive) linear (ε, 0, η, q)-test.
Proof. Let T be an adaptive linear (ε, 0, η, q)-test for V . Let ΥT and DT be the

associated set of decision trees and the corresponding distribution, respectively.
Definition 5.7. Given an adaptive linear test T for V , define the test T ′as

follows: On input x, choose a random v ∈ V , query x on all variables that T queries
on input v, and reject if a violation is detected; otherwise accept.

T ′ makes the same number of queries as T . Moreover, the queries depend only
on the random v ∈ V and not on the input x. Hence, the test T ′ is nonadaptive.
The following claim relates the acceptance probability of T ′ to the average acceptance
probability of T .

Claim 5.8. Let T be an adaptive linear test and T ′ the nonadaptive version of
T (as in Definition 5.7). Then, for any string x ∈ F

n,

Pr[T ′(x) = 1] = average
v∈V

(Pr[T (x + v) = 1]) .

Proof. For any decision tree Γ, let l1(Γ) denote the set of leaves in Γ that are
labeled 1. For any leaf l in a decision tree Γ, let var(l) denote the set of variables
queried along the path leading to l in the tree Γ. Following the notation of Claim 5.1,
let Vl and V x

l be the set of all vectors in V and x+V , respectively, that are consistent
with the answers along the path leading to l. Also let Ixl be a binary variable which
is set to 1 if and only if x does not violate any constraint in V ⊥ involving only the
variables var(l). Observe that if test T ′ chooses the decision tree Γ ∈ ΥT and the
vector v ∈ V such that v ∈ Vl for some leaf l labeled 1 in the tree Γ, then Ixl = 1 if
and only if T ′(x) = 1.

The quantity “averagev∈V (Pr[T (x + v) = 1])” can be obtained as follows: First,

SOME 3CNF PROPERTIES ARE HARD TO TEST 13

choose a decision tree Γ ∈ ΥT according to the distribution DT . Then for each leaf l
labeled 1 in Γ, find the fraction of vectors in x + V that follow the path leading to l.
The weighted sum of these fractions is averagev∈V (Pr[T (x + v) = 1]). Thus,

average
v∈V

(Pr[T (x + v) = 1]) =
∑

Γ∈ΥT

DT (Γ)

⎛
⎝ ∑

l∈l1(Γ)

|V x
l |

|V |

⎞
⎠ .(5.1)

Now consider the quantity Pr[T ′(x) = 1]. Test T ′ can be viewed in the following
fashion: On input x, T ′ chooses a random decision tree Γ ∈ ΥT according to the
distribution DT . It then chooses a leaf l labeled 1 in Γ with probability proportional
to the fraction of vectors v ∈ V that are accepted along the path leading to l (i.e.,
|Vl|/|V |), queries x on all variables in var(l), accepts if Ixl = 1, and rejects otherwise.
This gives us the following expression for Pr[T ′(x) = 1]:

Pr[T ′(x) = 1] =
∑

Γ∈ΥT

DT (Γ)

⎛
⎝ ∑

l∈l1(Γ)

|Vl|
|V | · I

x
l

⎞
⎠ .(5.2)

From (5.1) and (5.2), it suffices to prove that |V x
l | = Ixl · |Vl| for all leaves l labeled 1

in order to prove the claim.
Observe that |Vl| is nonempty since l is labeled 1. Hence, by Claim 5.1, |Vl| = |V x

l |
if V x

l is also nonempty. It now suffices to show that V x
l is nonempty if and only if

Ixl = 1.
Suppose V x

l is nonempty. Then there exists y ∈ x + V that does not violate any
constraint involving only the variables var(l). But y and x satisfy the same set of
constraints. Hence, x also does not violate any constraint involving only the variables
var(l). Thus, Ixl = 1.

Now, for the other direction, suppose Ixl = 1. Then the values of the variables
var(l) of x do not violate any constraint in V ⊥. Hence, there exists u ∈ V that
has the same values as x for the variables var(l). Let v ∈ Vl. Then, the vector
x − u + v ∈ x + V has the same values for the variables var(l) as v. Hence, V x

l is
nonempty. This concludes the proof of the claim.

The above claim proves that T ′ inherits its acceptance probability from T . As
mentioned earlier, T ′ inherits its query complexity from T . Hence T ′ is a linear
(ε, 0, η, q)-test for V .

6. Random codes require a linear number of queries. In this section we
prove Lemma 3.6. We start by analyzing the expansion properties of random regular
graphs.

6.1. Some expansion properties of random regular graphs. To prove that
a random C(G) obeys Definition 3.4 with high probability, we use standard arguments
about expansion of the random graph G. We reduce each requirement on A(G) to
a requirement on G and then show that the expansion of a random graph G implies
that it satisfies the requirements. We need the following notions of neighborhood and
expansion.

Definition 6.1 (neighborhood). Let G = 〈V,E〉 be a graph. For S ⊂ V , let
(i) N(S) be the set of neighbors of S.
(ii) N1(S) be the set of unique neighbors of S, i.e., vertices with exactly one

neighbor in S.
(iii) Nodd(S) be the set of neighbors of S with an odd number of neighbors in S.

14 E. BEN-SASSON, P. HARSHA, AND S. RASKHODNIKOVA

Notice that N1(S) ⊆ Nodd(S).
Definition 6.2 (expansion). Let G = 〈L,R,E〉 be a bipartite graph with |L| =

n, |R| = m.
(i) G is called a (λ, γ)-right expander if

∀S ⊂ R, |S| ≤ γn, |N(S)| > λ · |S|.

(ii) G is called a (λ, γ)-right unique neighbor expander if

∀S ⊂ R, |S| ≤ γn, |N1(S)| > λ · |S|.

(iii) G is called a (λ, γ)-right odd expander if

∀S ⊂ R, |S| ≥ γn, |Nodd(S)| > λ · |S|.

Notice that the definitions of an expander and a unique neighbor expander deal
with subsets of size at most γn, whereas the definition of an odd expander deals with
subsets of size at least γn. Left expanders (all three of them) are defined analogously
by taking S ⊂ L in Definition 6.2.

Lemmas 6.3 and 6.6 are proved using standard techniques for analysis of expansion
of random graphs, such as those appearing in, for example, [CS88, Spi95].

Lemma 6.3. For any integers c ≥ 7, d ≥ 2 and sufficiently large n, a random
(c, d)-regular graph with n left vertices is with high probability a (1, 1

100 ·d−2)-left unique
neighbor expander.

Proof. We need the following claims, the proofs of which will follow.
Claim 6.4. For any integers c ≥ 2, d, any constant α < c − 1, and sufficiently

large n, a random (c, d)-regular bipartite graph with n left vertices is with high proba-
bility a (α, ε)-left expander for any ε satisfying

ε ≤
(

2e(1+α) ·
(
αd

c

)(c−α)
)− 1

c−α−1

.(6.1)

Claim 6.5. Let G be a (c, d)-regular bipartite graph with n left vertices. If G is
a (α, ε)-left expander, then G is a (2α− c, ε)-left unique neighbor expander.

Set α = c+1
2 . Then c

2 < α < c − 1 for c ≥ 7. Let G be a random (c, d)-regular
bipartite graph. By Claim 6.4, with high probability G is an (α, ε)-right expander for
any ε satisfying (6.1).

The following inequalities hold for our selection of α and any c ≥ 7:

(1 + α)

(c− α− 1)
≤ 3,

α

c
>

1

2
,

(c− α)

(c− α− 1)
≤ 2.

Hence, ε = 1
100 · d−2 satisfies (6.1). Claim 6.5 completes the proof of

Lemma 6.3.
Proof of Claim 6.4. Let BAD be the event in which the random graph is not an

expander. This means there is some S ⊂ L, |S| ≤ εn such that |N(S)| ≤ α · |S|.

SOME 3CNF PROPERTIES ARE HARD TO TEST 15

Fix sets S ⊂ L, T ⊂ R, |S| = s ≤ εn, |T | = αs, and let Bs be the event in which
all edges leaving S land inside T . We upper-bound the probability of this bad event:

Pr[Bs] =

c·s−1∏
i=0

αds− i

cn− i
≤

(
αds

cn

)cs

.

The inequality above holds as long as αds < cn. In the following, we now use a
union bound over all sets S ⊂ L, |S| = s ≤ εn and all sets T ⊂ R, |T | = αs. Let κ

be the constant κ = e1+α ·
(
αd
c

)c−α
.

Pr[BAD] ≤
εn∑
s=1

(
n

s

)
·
(
m

αs

)
· Pr[Bs]

≤
εn∑
s=1

(en
s

)s

·
(em
αs

)αs

·
(
αds

cn

)cs

=

εn∑
s=1

[
e1+α ·

(
αd

c

)c−α

·
(s

n

)c−α−1
]s

=

εn∑
s=1

[
κ ·

(s

n

)c−α−1
]s

.(6.2)

By definition of α, c− α− 1 > 0. Hence
(
s
n

)c−α−1 ≤ 1. Set

ε ≤ (2κ)
−1

(c−α−1) =

(
2e(1+α) ·

(
αd

c

)(c−α)
)− 1

c−α−1

.(6.3)

For this value of ε, each term of the sum (6.2) is at most 1
2 .

Set λ = min{ 1
3 ,

c−α−1
2 } and split the sum (6.2) into two subsums:

Pr[BAD] ≤
εn∑
s=1

[
κ ·

(s

n

)c−α−1
]s

≤
nλ∑
s=1

[
κ ·

(s

n

)c−α−1
]s

+

εn∑
s=nλ

[
κ ·

(s

n

)c−α−1
]s

≤ nλ · κ · n(λ−1)2λ + n · 2−nλ

= κ · n−λ+2λ2

+ n · 2−nλ

≤ κ · n− 1
9 + n · 2−nλ

= o(1).

We conclude that, with high probability, G is an (α, ε)-left expander.
Proof of Claim 6.5. Let S ⊂ L, |S| ≤ ε|L|. Then by expansion,

α · |S| < |N(S)|.

Any neighbor of S that is not a unique neighbor must be touched by at least two
edges leaving S. Since the left degree of G is c,

|N(S)| ≤ |N1(S)| + c · |S| − |N1(S)|
2

=
c · |S| + |N1(S)|

2
.

16 E. BEN-SASSON, P. HARSHA, AND S. RASKHODNIKOVA

Combining the two equations, we get our claim.
Lemma 6.6. For any odd integer c, any constants μ > 0, δ < μc, and any integer

d > 2μc2

(μc−δ)2 , a random (c, d)-regular graph is with high probability a (δ, μ)-right odd

expander.
Proof. In the proof, we make use of the following theorem (see [MR95]).
Theorem 6.7 (Azuma’s inequality). If X0, . . . , Xt is a martingale sequence such

that |Xi −Xi+1| ≤ 1 for all i, then

Pr[|Xt −X0| ≥ λ
√
t] ≤ 2e−λ2/2.

Fix T ⊆ R |T | = t ≥ μm. Let X = |Nodd(T)|. We start by computing E[X].
For i = 1, . . . , n, let Xi be the random variable indicating whether vertex i ∈ L is
in Nodd(T). Clearly, X =

∑n
i=1 Xi, so by the linearity of expectation, we need only

compute E[Xi]. Recall that cn = dm. Let odd(c) = {1, 3, 5, . . . , c} be the set of
positive odd integers ≤ c, and notice that c ∈ odd(c) because c is odd:

E[Xi] =

∑
i∈odd(c)

(
μdm
i

)
·
(
(1−μ)dm

c−i

)
(
cn
c

)
≥

(
μcn
c

)(
cn
c

) = μc −O

(
1

n

)
.

We conclude by linearity of expectation:

E[X] ≥ μc · n−O(1).

We now use the following edge-exposure martingale to show concentration of X around
its expectation. Fix an ordering on the μdm edges leaving T and define a sequence
of random variables Y0, . . . , Yμdm as follows: Yi is the random variable that is equal
to the expected size of Nodd(T) after the first i edges leaving T have been revealed.
By definition, Yμdm = X, Y0 = E[X], and the sequence is a martingale, where

|Yi − Yi+1| ≤ 1 for all i ≤ μdm. Since d > 2μc2

(μc−δ)2 , Azuma’s inequality (Theorem 6.7)
gives us

Pr[X ≤ δn] ≤ Pr[|Yμdm − Y0| ≥ (μc − δ)n]

= Pr

[
|Yμdm − Y0| ≥ (μc − δ)

d

c
m

]

≤ 2e
− d(μc−δ)2

2μc2
·m ≤ 2e−(1+ε)m,

where ε = d(μc−δ)2

2μc2 − 1 > 0. Since there are at most 2m possible sets T ⊆ R, by the
union bound,

Pr

[
∃T ⊂ R |T | ≥ μm,

∣∣∣∣∣
∑
j∈T

Aj

∣∣∣∣∣ ≤ δn

]
≤ 2m · 2e−(1+ε)m

= o(1).

We conclude that with high probability A(G) is a (δ, μ)-right odd expander.

SOME 3CNF PROPERTIES ARE HARD TO TEST 17

6.2. Proof of Lemma 3.6. Let G be a random (c, d)-regular graph G with n
left vertices. We prove that A(G) is with high probability (i) linearly independent,
(ii) (δn, μ)-local, and (iii) ε-separating.

(i) We need to show that adding up any subset of A(G) cannot yield �0. Since
we are working modulo 2, this is equivalent to proving

∀T ⊆ R, Nodd(T) �= ∅.

For small T we use unique neighbor expansion, and for large T we use odd
neighbor expansion.
Fix c, and reverse the roles of left and right in Lemma 6.3. We conclude that,
for any d ≥ 7 and for our setting of μ, G is with high probability a (1, μ)-right
unique neighbor expander. This implies that if |T | ≤ μ|R|, then Nodd(T) �= ∅
because Nodd(T) ⊇ N1(T) and N1(T) �= ∅.
Lemma 6.6 says that for any μ > 0, and for our selection of d, all sets of size
at least μm have a nonempty odd neighborhood. (Actually, the lemma shows
that the odd neighborhood is of linear size, which is more than we need here.)
This completes the proof of the first claim.

(ii) Notice that if T ⊆ R, then Nodd(T) is exactly the support of
∑

j∈T Aj . Thus,

it suffices to show that Nodd(T) is large for large subsets T .
By definition of d, μ, δ and by Lemma 6.6, with high probability G is a (δn, μ)-
right odd expander. This means A(G) is (δn, μ)-local. Part (ii) is proved.

(iii) Let G−j be the graph obtained from G by removing vertex j ∈ R and all
edges touching it. Since A(G) is linearly independent, it is sufficient to show
that C(G−j) has no nonzero element of Hamming weight < εn.
Let x be a nonzero element of C(G−j), and let Sx ⊆ L be the set of coordinates
at which x is 1. Consider the graph G−j . In this graph, the set of unique
neighbors of Sx is empty because x ∈ C(G−j) (otherwise, some j′ ∈ N1(Sx),
so 〈Aj′ , x〉 = 1, a contradiction). Thus,

N1(Sx) ⊆ {j},(6.4)

where N1(Sx) is the set of unique neighbors of Sx in G. Clearly, |Sx| > 1
because the left degree of G is c > 1. But if |Sx| ≤ 1

100 · d−2 · n, then by
Lemma 6.3 |N1(Sx)| ≥ |Sx| > 1, in contradiction to (6.4). We conclude that
for any x ∈ C(G−j), |x| ≥ 1

100 · d−2, so A(G) is ε-separating for our selection
of ε. Part (iii) is complete.

This completes the proof of Lemma 3.6.

7. Reducing dLIN to 3LIN. This section proves Lemma 3.8. The randomized
construction from section 6 produces d-linear formulae, which are hard to test for some
constant d. We would like to make d as small as possible. This section obtains 3-
linear, hard-to-test formulae. First, we give a reduction from d-linear to �d

2�+1-linear
formulae and then apply it log d times to get 3-linear formulae.

Let ϕ be a d-linear formula on variables in X = {x1, . . . , xn}. The reduction
maps ϕ to a (�d

2� + 1)-linear formula on variables X ∪ Z, where Z is a collection of
new variables {z1, . . . , zm}. For each constraint Ai, say x1 ⊕ · · · ⊕ xd = 0, in ϕ, two
constraints, A1

i and A2
i , are formed: x1⊕· · ·⊕x� d

2 	
⊕zi = 0 and x� d

2 	+1⊕· · ·⊕xd⊕zi =

0. Let V ⊆ {0, 1}n be the vector space of vectors satisfying ϕ, and let A be an m-
dimensional basis for the vector space V ⊥ of constraints. Define R(A) to be the
collection of 2m vectors in {0, 1}n+m formed by splitting every constraint in A in
two, as described above.

18 E. BEN-SASSON, P. HARSHA, AND S. RASKHODNIKOVA

The following three claims show that the reduction preserves the properties which
make the formula hard to test. A parameter followed by a prime denotes the value
of the parameter after one application of the reduction: for example, m′ = 2m,
n′ = m + n, and d′ = �d

2� + 1.
Claim 7.1. R(A) is independent.
Proof. It is enough to prove that no set of constraints in R(A) sums up to 0. Let

C be a subset of constraints in R(A). If only one of the two constraints involving a
new variable z appears in C, then the sum of vectors in C has 1 in z’s position. If,
on the other hand, all constraints appear in pairs, then the sum of vectors in C is
equal to the sum of the constraints in A from which C’s constraints were formed. By
independence of old constraints, this sum is not 0.

Claim 7.2. If A is ε-separating, then R(A) is ε′-separating, where ε′ = ε
1+(m/n) .

Proof. Let x′ be a vector in {0, 1}n+m that falsifies exactly one constraint, say
A1

i , in R(A). Namely, 〈x′, A1
i 〉 = 1 and 〈x′, A′〉 = 0 for all A′ ∈ R(A), A′ �= A1

i . Let
x = x′

1 . . . x
′
n. Then 〈x,Ai〉 = 〈x′, A1

i + A2
i 〉 = 〈x′, A1

i 〉 + 〈x′, A2
i 〉 = 1, and similarly,

〈x,A〉 = 0 for all A ∈ A, A �= Ai. Thus, x falsifies exactly one constraint in A.
Since A is ε-separating, |x| ≥ εn. It follows that |x′| ≥ εn, implying that R(A) is
(εn
n+m)-separating.

Claim 7.3. If A is (q, μ)-local, then R(A) is (q′, μ′)-local, where q′ = q
d′ and

μ′ = μ + q′

m′ .
Proof. Let α′ ∈ {0, 1}m+n be the sum of a subset T of μ′ ·m′ constraints in R(A).

Let T2 be the subset of constraints in T which appear in pairs. Namely, for every new
variable z, both constraints with z are either in T2 or not in T2. Let T1 = T \ T2.

Case 1. |T1| ≥ q′. For every constraint in T1, the new variable z from that
constraint does not appear in any other constraint in T . Therefore, α′ is 1 on z’s
coordinate. Hence, |α′| ≥ |T1| ≥ q′.

Case 2. |T1| < q′. Then |T2| = |T |−|T1| ≥ μ′ ·m′−q′ = μ·m′ = 2μm. Let S be the
set of constraints in A that gave rise to constraints in T2. Then |S| = |T2|/2 ≥ μm.
Old variables appear in the same number of constraints in S and in T2. Thus,∣∣∣∣∣

∑
A′∈T2

A′

∣∣∣∣∣ ≥
∣∣∣∣∣
∑
A∈S

A

∣∣∣∣∣ ≥ q.

The last inequality follows from the fact that A is (q, μ)-local. When constraints
from T1 are added to

∑
A′∈T2

A′, each T1 constraint zeros out at most �d
2� = d′ − 1

coordinates:

|α′| ≥
∣∣∣∣∣
∑

A′∈T2

A′

∣∣∣∣∣− d

2

∣∣∣∣∣
∑

A′∈T1

A′

∣∣∣∣∣ ≥ q − (d′ − 1)q′ = q′.

If the reduction is applied �log(d− 2)� times, the number of terms in a constraint
drops to 3. To see this, think of applying the reduction i times to a formula with
d ≤ 2i + 2 terms per constraint. Successive iterations will decrease the clause size to
≤ 2i−1 +2, ≤ 2i−2 +2, etc. We apply the reduction �log d� times to obtain hard 3LIN
formulae from hard dLIN formulae, as shown in Lemma 3.8.

Proof of Lemma 3.8. For A ⊂ {0, 1}n as in the statement of our lemma, let
R(0)(A) = A, and for i ≥ 1 let R(i)(A) = R(R(i−1)(A)). Let A� = R(�log d)(A).
As explained above, each constraint in A� has weight at most 3. We now calculate
the remaining parameters of A�. In doing so, we denote the value of a parameter in

SOME 3CNF PROPERTIES ARE HARD TO TEST 19

R(i)(A) by the superscript (i), and the superscript � signifies the final value of the
parameter in A�.

Since each application of the reduction doubles the dimension, m� = 2�log d	m ≤
2dm. To calculate n�, observe that the reduction does not change m − n and recall
that dm = cn. Therefore,

n� = n + m� −m ≤ n + 2dm = (2c + 1) · n.

Claim 7.1 guarantees that A� is independent. By Claim 7.2, ε′ = ε
1+(m/n) = ε n

n′ .

Thus,

ε ≥ ε� = ε · n

n(1)
· n

(1)

n(2)
· · · n

(�log d	−1)

n�
= ε

n

n�
≥ ε

2c + 1
.

Let q = δn. Applying Claim 7.3 �log d� times, we obtain

q ≥ q� =
q

d(1) × d(2) × · · · × d�
≥ q

d�log d	 ≥ q

dlog d+1
;

δ ≥ δ� =
q�

n�
≥ q

dlog d+1 · (2c + 1)n
=

δ

dlog d+1 · (2c + 1)
;

μ� = μ +
q(1)

m(1)
+

q(2)

m(2)
+ · · · + q�

m�

< μ +
q

m

(
1

2d(1)
+

1

4d(1)d(2)
+ · · · + 1

d · d(1)d(2) · · · d�

)

≤ μ +
q

m

�log d�
d

≤ μ +
dδn

cn
· log d + 1

d
= μ +

δ(log d + 1)

c
.

This completes the proof of Lemma 3.8.

Acknowledgments. We thank Madhu Sudan for (i) many helpful conversations,
(ii) suggesting the reductions of section 5, and (iii) allowing us to include the “hard
to test” properties based on Reed–Muller codes. We thank Piotr Indyk for referring
us to Azuma’s inequality to simplify the analysis and thank Michael Sipser for helpful
discussions. We are grateful to Oded Goldreich for allowing us to include the “hard
to test” properties based on random linear codes. We thank Oded Goldreich and the
anonymous referees for several useful suggestions which improved the presentation of
the paper.

REFERENCES

[AFKS00] N. Alon, E. Fischer, M. Krivelevich, and M. Szegedy, Efficient testing of large
graphs, Combinatorica, 20 (2000), pp. 451–476. (A preliminary version appears in
Proceedings of the 40th Annual Symposium on Foundations of Computer Science
(FOCS), IEEE, Los Alamitos, CA, 1999, pp. 656–666.)

[AKNS01] N. Alon, M. Krivelevich, I. Newman, and M. Szegedy, Regular languages are
testable with a constant number of queries, SIAM J. Comput., 30 (2001), pp. 1842–
1862. (A preliminary version appears in Proceedings of the 40th Annual Symposium
on Foundations of Computer Science (FOCS), IEEE, Los Alamitos, CA, 1999, pp.
645–655.)

[AS03] N. Alon and A. Shapira, Testing satisfiability, J. Algorithms, 47 (2003), pp. 87–
103. (A preliminary version appears in Proceedings of the 13th Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA), SIAM, Philadelphia, ACM,
New York, 2002, pp. 645–654).

20 E. BEN-SASSON, P. HARSHA, AND S. RASKHODNIKOVA

[BGH+04] E. Ben-Sasson, O. Goldreich, P. Harsha, M. Sudan, and S. Vadhan, Robust PCPs
of proximity, shorter PCPs and applications to coding, in Proceedings of the 36th
Annual ACM Symposium on Theory of Computing, Chicago, IL, June 13–15, 2004,
pp. 1–10.

[BHR03] E. Ben-Sasson, P. Harsha, and S. Raskhodnikova, Some 3CNF properties are hard
to test, in Proceedings of the 35th Annual ACM Symposium on Theory of Com-
puting, San Diego. CA, June 9–11, 2003, pp. 345–354.

[BSVW03] E. Ben-Sasson, M. Sudan, S. Vadhan, and A. Wigderson, Randomness-efficient
low degree tests and short PCPs via epsilon-biased sets, in Proceedings of the 35th
Annual ACM Symposium on Theory of Computing, San Diego. CA, June 9–11,
2003, pp. 612–621.

[BLR93] M. Blum, M. Luby, and R. Rubinfeld, Self-testing/correcting with applications to
numerical problems, J. Comput. System Sci., 47 (1993), pp. 549–595. (A prelimi-
nary version appears in Proceedings of the 22nd Annual Symposium on Theory of
Computing (STOC), ACM, New York, 1990, pp. 73–83.)

[BOT02] A. Bogdanov, K. Obata, and L. Trevisan, A lower bound for testing 3-colorability
in bounded-degree graphs, in Proceedings of the 43rd Annual IEEE Symposium on
Foundations of Computer Science, Vancouver, Canada, Nov. 16–19, 2002, pp. 93–
102.

[CS88] V. Chvátal and E. Szemerédi, Many hard examples for resolution, J. ACM, 35 (1988),
pp. 759–768.

[Fis01] E. Fischer, The art of uninformed decisions: A primer to property testing, Bull.
European Assoc. Theoret. Comput. Sci., 75 (2001), pp. 97–126.

[Fis05] E. Fischer, Testing graphs for colorability properties, Random Structures Algorithms,
26 (2005), pp. 289–309. (A preliminary version appears in Proceeding of the 12th
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), SIAM, Philadel-
phia, ACM, New York, 2001, pp. 873–882.)

[FLN+02] E. Fischer, E. Lehman, I. Newman, S. Raskhodnikova, R. Rubinfeld, and A.

Samorodnitsky, Monotonicity testing over general poset domains, in Proceedings
of the 34th Annual ACM Symposium on Theory of Computing, New York, May
19–21, 2002, pp. 474–483.

[FN04] E. Fischer and I. Newman, Functions that have read-twice constant width branching
programs are not necessarily testable, Random Structures Algorithms, 24 (2004),
pp. 175–193. (A preliminary version appears in Proceedings of the 17th Annual
Conference on Computational Complexity, IEEE, Los Alamitos, CA, 2002, pp.
55–61.)

[Gal63] R. G. Gallager, Low Density Parity Check Codes, MIT Press, Cambridge, MA, 1963.
[GGR98] O. Goldreich, S. Goldwasser, and D. Ron, Property testing and its connection

to learning and approximation, J. ACM, 45 (1998), pp. 653–750. (A preliminary
version appears in Proceedings of the 37th Annual Symposium on Foundations of
Computer Science (FOCS), IEEE, Los Alamitos, CA, 1996, pp. 339–348.)

[GR02] O. Goldreich and D. Ron, Property testing in bounded degree graphs, Algorithmica,
32 (2002), pp. 302–343. (A preliminary version appears in Proceedings of the 29th
Annual Symposium on Theory of Computing (STOC), ACM, New York, 1997, pp.
406–415.)

[GS02] O. Goldreich and M. Sudan, Locally testable codes and PCPs of almost linear length,
in Proceedings of the 43rd Annual IEEE Symposium on Foundations of Computers
Science, Vancouver, Canada, Nov. 16–19, 2002, pp. 13–22.

[GT03] O. Goldreich and L. Trevisan, Three theorems regarding testing graph properties,
Random Structures Algorithms, 23 (2003), pp. 23–57. (A preliminary version ap-
pears in Proceedings of the 42nd Annual Symposium on Foundations of Computer
Science (FOCS), IEEE, Los Alamitos, CA, 2001, pp. 460–469.)

[MR95] R. Motwani and P. Raghavan, Randomized Algorithms, Cambridge University Press,
Cambridge, UK, 1995.

[New02] I. Newman, Testing membership in languages that have small width branching pro-
grams, SIAM J. Comput., 31 (2002), pp. 1557–1570. (A preliminary version ap-
pears in Proceedings of the 41st Annual Symposium on Foundations of Computer
Science (FOCS), IEEE, Los Alamitos, CA, 2000, pp. 251–258.)

[Ron01] D. Ron, Property testing (a tutorial), in Handbook of Randomized Computing, Comb.
Optim. 9, S. Rajasekaran, P. M. Pardalos, J. H. Reif, and J. D. P. Rolim, eds.,
Kluwer Academic Publishers, Dordrecht 2001, pp. 597–649.

SOME 3CNF PROPERTIES ARE HARD TO TEST 21

[RS96] R. Rubinfeld and M. Sudan, Robust characterizations of polynomials with applica-
tions to program testing, SIAM J. Comput., 25 (1996), pp. 252–271. (Preliminary
versions appear in Proceedings of the 23rd Symposium on Theory of Computing
(STOC), ACM, New York, 1991, pp. 33–42 and Proceedings of the 3rd Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA), SIAM, Philadelphia,
ACM, New York, 1992, pp. 23–32.)

[Spi95] Daniel A. Spielman, Computationally Efficient Error-Correcting Codes and Holo-
graphic Proofs, Ph.D. thesis, Massachusetts Institute of Technology, Cambridge,
MA, 1995.

