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Abstract

We study a parameter of bipartite graphs called readability, introduced by Chikhi et al. (Discrete Applied
Mathematics, 2016) and motivated by applications of overlap graphs in bioinformatics. The behavior of the
parameter is poorly understood. The complexity of computing it is open and it is not known whether the
decision version of the problem is in NP. The only known upper bound on the readability of a bipartite graph
(following from a work of Braga and Meidanis, LATIN 2002) is exponential in the maximum degree of the
graph.

Graphs that arise in bioinformatics applications have low readability. In this paper, we focus on graph
families with readability o(n), where n is the number of vertices. We show that the readability of n-vertex
bipartite chain graphs is between Ω(log n) and O(

√
n). We give an efficiently testable characterization of

bipartite graphs of readability at most 2 and completely determine the readability of grids, showing in
particular that their readability never exceeds 3. As a consequence, we obtain a polynomial time algorithm
to determine the readability of induced subgraphs of grids. One of the highlights of our techniques is the
appearance of Euler’s totient function in the analysis of the readability of bipartite chain graphs. We also
develop a new technique for proving lower bounds on readability, which is applicable to dense graphs with a
large number of distinct degrees.
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1. Introduction1

In this work, we further the study of readability of bipartite graphs initiated by Chikhi et al. [7]. Given a2

bipartite graph G = (Vs, Vp, E), an overlap labeling of G is a mapping from vertices to strings, called labels,3

such that for all u ∈ Vs and v ∈ Vp there is an edge between u and v if and only if the label of u overlaps4

with the label of v (i.e., a non-empty suffix of u’s label is equal to a prefix of v’s label). The length of an5

overlap labeling of G is the maximum length (i.e., number of characters) of a label. The readability of G,6

denoted r(G), is the smallest nonnegative integer r such that there is an overlap labeling of G of length r. We7

emphasize that in this definition, no restriction is placed on the alphabet. One could also consider variants of8

readability parameterized by the size of the alphabet. A result of Braga and Meidanis [5] implies that these9

variants are within constant factors of each other, where the constants are logarithmic in the alphabet sizes.10

Initially, the notion of readability arose in the study of overlap digraphs. Given a set S of strings, the11

overlap digraph of S is the digraph with vertex set S, with an edge from s ∈ S to s′ ∈ S if and only if s12

overlaps s′. Overlap digraphs constructed from DNA strings have various applications in bioinformatics.13

In particular, in the context of genome assembly, variants of overlap digraphs appear as either de Bruijn14

graphs [12] or string graphs [19, 22] and are the foundation of most modern assemblers (see [18, 20] for a15

survey). Several graph-theoretic parameters of overlap digraphs have been studied [3, 2, 4, 10, 16, 17, 21, 24],16

with a nice survey in [15]. As shown by Braga and Meidanis [5], every digraph without multiple edges but17

with loops allowed is the overlap digraph of some set of strings. Therefore, one can define the readability of a18

digraph D as the smallest maximum length of a set of strings the overlap digraph of which is isomorphic19

to D.20

Chikhi et al. showed in [7, Theorem 3.1] that there is a bijection φ from the set of all n-vertex digraphs21

to the set of all bipartite graphs with n vertices in each part such that for every n-vertex digraph D with22

at least one edge, the readability r of D and the readability r′ of its image φ(D) (in the bipartite sense, as23

defined above), are related by the inequalities r′ < r ≤ 2 · r′ − 1. Therefore, the readability of digraphs is24

asymptotically equivalent to that of balanced bipartite graphs1, up to (roughly) a factor of 2. This relation25

between the readability of a digraph and the corresponding bipartite graph, along with the fact that overlap26

digraphs of genomes typically have low readability, motivate the study of bipartite graphs with low readability.27

In this work we derive several results about bipartite graphs with readability sublinear in the number of28

vertices.29

For general bipartite graphs, the only known upper bound on readability is implicit from the work of30

Braga and Meidanis on overlap digraphs [5]. As observed by Chikhi et al. [7, Theorem 4.3], it follows from the31

construction in [5] that the readability of a bipartite graph is well defined and at most 2∆+1 − 1, where ∆ is32

the maximum degree of the graph. Moreover, Chikhi et al. [7, Theorem 5.1] showed that a 1− o(1) fraction of33

bipartite graphs with n vertices in each part have readability Ω(n/ log n). They also constructed [7, Theorem34

5.2] an explicit graph family (called Hadamard graphs) with readability Ω(n).35

For trees, readability can be defined in terms of an integer function on the edges, without any reference36

to strings or their overlaps [7, Theorem 4.1]. In this work, we reveal another connection to number theory,37

through Euler’s totient function, and use it to prove an upper bound on the readability of bipartite chain38

graphs.39

So far, our understanding of readability has been hindered by the difficulty of proving lower bounds.40

Chikhi et al. [7] developed a lower bound technique that is applicable to graphs with sufficiently different41

neighborhoods for any two vertices in each part. In this work, we add another technique to the toolbox. Our42

technique is applicable to dense graphs with a large number of distinct degrees. We apply this technique to43

obtain a lower bound on readability of bipartite chain graphs.44

We give a characterization of bipartite graphs of readability at most 2 and use this characterization45

to obtain a polynomial time algorithm for checking if a graph has readability at most 2. This is the first46

nontrivial result of this kind: graphs of readability at most 1 are extremely simple (disjoint unions of complete47

bipartite graphs, see [7]), whereas the problem of recognizing graphs of readability 3 is open.48

1A bipartite graph G = (Vs, Vp, E) is said to be balanced if |Vs| = |Vp|.
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Figure 1: The graph C4,4

We also give a formula for the readability of grids, showing in particular that their readability is at most 3.49

As a corollary, we obtain a polynomial time algorithm to determine the readability of induced subgraphs of50

grids.51

1.1. Our Results and Structure of the Paper52

Preliminaries are summarized in Section 2; here we only state some of the most important technical53

facts. In the study of readability, it suffices to consider bipartite graphs that are connected and twin-free.54

A bipartite graph is twin-free if no two vertices in the same part have the same set of neighbors [7]. Since55

connected bipartite graphs have a unique bipartition up to swapping the two parts, some of our results are56

stated without specifying the bipartition.57

Bounds on the readability of bipartite chain graphs (Section 3). Bipartite chain graphs are the bipartite58

analogue of a family of digraphs that occur naturally as subgraphs of overlap graphs of genomes. A59

bipartite chain graph is a bipartite graph G = (Vs, Vp, E) such that the vertices in Vs (or Vp) can be linearly60

ordered with respect to inclusion of their neighborhoods. That is, we can write Vs = {v1, . . . , vk} so that61

N(v1) ⊆ . . . ⊆ N(vk) (where N(u) denotes the set of u’s neighbors). A bipartite chain graph that is62

connected and twin-free must have the same number of vertices on either side. For each n ∈ N, there is, up to63

isomorphism, a unique connected twin-free bipartite chain graph with n vertices in each part, denoted Cn,n.64

The graph Cn,n is (Vs, Vp, E) where Vs = {s1, . . . , sn}, Vp = {p1, . . . , pn}, and E = {(si, pj) | 1 ≤ i ≤ j ≤ n}.65

The graph C4,4 is shown in Figure 1. We prove an upper and a lower bound on the readability of Cn,n.66

Theorem 1. For all n ∈ N, the graph Cn,n has readability O(
√
n), with labels over an alphabet of size 3.67

We prove Theorem 1 by giving an efficient algorithm that constructs an overlap labeling of Cn,n of length68

O(
√
n) using strings over an alphabet of size 3.69

Theorem 2. For all n ∈ N, the graph Cn,n has readability Ω(log n).70

Characterization of bipartite graphs with readability at most 2 (Section 4). Let Ct for t ∈ N denote the cycle71

with t vertices. The domino is the graph obtained from the cycle C6 by adding an edge between a pair of two72

diametrically opposite vertices (see Figure 4 on p. 10). For a graph G and a set U ⊆ V (G), let G[U ] denote73

the subgraph of G induced by U .74

Chikhi et al. [7] proved that every bipartite graph with readability at most 1 is a disjoint union of75

complete bipartite graphs (also called bicliques). The characterization in the following theorem extends our76

understanding to graphs of readability at most 2. Recall that a matching in a graph is a set of pairwise77

disjoint edges.78

Theorem 3. A twin-free bipartite graph G has readability at most 2 if and only if G has a matching M such79

that the graph G′ = G−M satisfies the following properties:80

1. G′ is a disjoint union of complete bipartite graphs.81

2. For U ⊆ V (G), if G[U ] is a C6, then G′[U ] is the disjoint union of three edges.82

3. For U ⊆ V (G), if G[U ] is a domino, then G′[U ] is the disjoint union of a C4 and an edge.83

Note that Theorem 3 expresses a condition on vertex labels of a bipartite graph in purely graph-theoretic84

terms. This reduces the problem of deciding if a graph has readability at most 2 to checking the existence of85

a matching with a specific property.86
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(0, 0) (1, 0) (2, 0) (3, 0)

(0, 1) (1, 1) (2, 1) (3, 1)

(0, 2) (1, 2) (2, 2) (3, 2)

(0, 3) (1, 3) (2, 3) (3, 3)

(0, 0) (1, 0) (2, 0) (3, 0)

(0, 1) (1, 1) (2, 1) (3, 1)

(0, 2) (1, 2) (2, 2) (3, 2)

(0, 3) (1, 3) (2, 3) (3, 3)

(0, 0) (1, 0) (2, 0) (3, 0)

(0, 1) (1, 1) (2, 1) (3, 1)

(0, 2) (1, 2) (2, 2) (3, 2)

(0, 3) (1, 3) (2, 3) (3, 3)

Figure 2: The 4× 4 grid G4,4 and toroidal grid TG4,4.

An efficient algorithm for readability 2 (Section 5). It is unknown whether computing the readability of a87

given bipartite graph is NP-hard. In fact, it is not even known whether the decision version of the problem is88

in NP, as the only upper bound on the readability of a bipartite graph with n vertices in each part is O(2n) [5].89

We make progress on this front by showing that for readability 2, the decision version is polynomial time90

solvable.91

Theorem 4. There exists an algorithm that, given a bipartite graph G, decides in polynomial time whether92

G has readability at most 2.93

Moreover, if the answer is “yes”, the algorithm can also produce an overlap labeling of length at most 2.94

Readability of grids and grid graphs (Section 6). We give a full characterization of the readability of grids. A95

(two-dimensional) grid is a graph Gm,n with vertex set {0, 1, . . . ,m− 1} × {0, 1, . . . , n− 1} such that there96

is an edge between two vertices if and only if the L1-distance between them is 1. An example is shown in97

Figure 2. The following theorem fully settles the question of readability of grids.98

Theorem 5. For any two positive integers m,n with m ≤ n, we have

r(Gm,n) =


3, if m ≥ 3;
2, if (m = 2 and n ≥ 3) or (m = 1 and n ≥ 4);
1, if (m,n) ∈ {(1, 2), (1, 3), (2, 2)};
0, if m = n = 1.

Theorem 5 has an algorithmic implication for the readability of grid graphs, where a grid graph is an99

induced subgraph of a grid. Several problems are known to be NP-hard on the class of grid graphs, including100

Hamiltonicity problems [13], various layout problems [9], and others (see, e.g., [8]). We show that unless P =101

NP, this is not the case for the readability problem.102

Corollary 1. The readability of a given grid graph can be computed in polynomial time.103

1.2. Technical Overview104

We now give a brief description of our techniques. The key to proving the upper bound on the readability105

of bipartite chain graphs is understanding the combinatorics of the following process. We start with the106

sequence (1, 2). The process consists of a series of rounds, and as a convention, we start at round 3: we write107

3 (= 1 + 2) between 1 and 2 and obtain the sequence (1, 3, 2). More generally, in round r, we insert r between108

all the consecutive pairs of numbers in the current sequence that sum up to r. Thus, we obtain (1, 4, 3, 2) in109

round 4, then (1, 5, 4, 3, 5, 2) in round 5, and so on. The question is to determine the length of the sequence110

formed in round r as a function of r. We prove that this length is 1
2

∑r
k=1 ϕ(k) = Θ(r2), where ϕ(k) is the111

famous Euler’s totient function denoting the number of integers in {1, . . . , k} that are coprime to k.112
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To prove our lower bound on the readability of bipartite chain graphs, we define a special sequence of113

subgraphs of the bipartite chain graph such that the number of graphs in the sequence is a lower bound on114

the readability. The sequence that we define has the additional property that if two vertices in the same part115

have the same set of neighbors in one of the graphs, then they have the same set of neighbors in all of the116

preceding graphs in the sequence. If the readability is very small, then we cannot simultaneously cover all117

the edges incident with two large-degree nodes as well as have their degrees distinct. The only properties118

of the connected twin-free bipartite chain graph that our proof uses are that it is dense and all vertices in119

the same part have distinct degrees. Hence, this technique is more broadly applicable to any class of dense120

graphs with a large number of distinct degrees.121

Our characterization of graphs of readability at most 2, roughly speaking, states that a twin-free bipartite122

graph has readability at most 2 if and only if the graph can be decomposed into two subgraphs G1 and123

G2 such that G1 is a (vertex-)disjoint union of bicliques and G2 is a matching satisfying some additional124

properties. For i ∈ {1, 2}, the edges in Gi model overlaps of length exactly i. The heart of the proof lies in125

observing that for each pair of bicliques in the first subgraph, there can be at most one matching edge in the126

second subgraph that has its left endpoint in the first biclique and the right endpoint in the second biclique.127

To derive a polynomial time algorithm for recognizing graphs of readability two, we first reduce the128

problem to connected twin-free graphs of maximum degree at least three. For such graphs, we show that129

the constraints from our characterization of graphs of readability at most 2 can be expressed with a 2SAT130

formula having variables on edges and modeling the selection of edges forming a matching to form the graph131

G2 of the decomposition.132

In order to determine the readability of grids, we establish upper and lower bounds and in both cases use133

the fact that readability is monotone under induced subgraphs (that is, the readability of a graph is at least134

the readability of each of its induced subgraphs). The upper bound is derived by observing that every grid is135

an induced subgraph of some 4n× 4n toroidal grid (see Figure 2) and exploiting the symmetric structure of136

such toroidal grids to show that their readability is at most 3. This is the most interesting part of our proof137

and involves partitioning the edges of a 4n× 4n toroidal grid into three sets and coming up with labels of138

length at most 3 for each vertex based on the containment of the four edges incident with the vertex in each139

of these three parts. Our characterization of graphs of readability at most 2 is a helpful ingredient in proving140

the lower bound on the readability of grids, where we construct a small subgraph of the grid for which our141

characterization easily implies that its readability is at least 3.142

2. Preliminaries143

For a string x, let prei(x) (respectively, sufi(x)) denote the prefix (respectively, suffix) of x of length i. A144

string x overlaps another string y if there exists an i with 1 ≤ i ≤ min{|x|, |y|} such that sufi(x) = prei(y).145

If 1 ≤ i < min{|x|, |y|}, we say that x properly overlaps with y. For a positive integer k, we denote by [k] the146

set {1, . . . , k}. Let G = (V,E) be a (finite, simple, undirected) graph. If G is a connected bipartite graph,147

then it has a unique bipartition (up to the order of the parts). In this paper, we consider bipartite graphs148

G = (V,E). If the bipartition V = Vs ∪ Vp is specified, we denote such graphs by G = (Vs, Vp, E). Edges149

of a bipartite graph G are denoted by {u, v} or by (u, v) (which implicitly implies that u ∈ Vs and v ∈ Vp).150

We respect bipartitions when we perform graph operations such as taking an induced subgraph and disjoint151

union. For example, we say that a bipartite graph G1 = (V 1
s , V

1
p , E1) is an induced subgraph of a bipartite152

graph G2 = (V 2
s , V

2
p , E2) if V 1

s ⊆ V 2
s , V 1

p ⊆ V 2
p , and E1 = E2 ∩ {(x, y) : x ∈ V 1

s , y ∈ V 1
p }. The disjoint153

union of two vertex-disjoint bipartite graphs G1 = (V 1
s , V

1
p , E1) and G2 = (V 2

s , V
2
p , E2) is the bipartite graph154

(V 1
s ∪ V 2

s , V
1
p ∪ V 2

p , E1 ∪ E2).155

The path on n vertices is denoted by Pn. Given two graphs F and G, graph G is said to be F -free if no156

induced subgraph of G is isomorphic to F . Two vertices u, v in a bipartite graph are called twins if they157

belong to the same part of the bipartition and have the same neighbors (that is, if N(u) = N(v)). Given a158

bipartite graph G = (Vs, Vp, E) we can define its twin-free reduction TF (G) as the graph with vertices being159

the equivalence classes of the twin relation on V (G) (that is, x ∼ y if and only if x and y are twins in G), and160

two classes X and Y are adjacent if and only if (x, y) ∈ E for some x ∈ X and y ∈ Y . For graph-theoretic161

terms not defined here, we refer to [25].162
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We now state some basic results for later use.163

Lemma 1. Let G and H be two bipartite graphs. Then:164

(a) If G is an induced subgraph of H, then r(G) ≤ r(H).165

(b) If F is the disjoint union of G and H, then r(F ) = max{r(G), r(H)}.166

(c) The readability of G is the same for all bipartitions of V (G).167

(d) r(G) = r(TF (G)).168

Proof. (a) If ` is any overlap labeling for H then the restriction of ` to V (G) yields an overlap labeling for G.169

Thus, r(G) ≤ r(H).170

(b) Part (a) implies that r(G) ≤ r(F ) and r(H) ≤ r(F ); thus r(F ) ≥ max{r(G), r(H)}. On the other
hand, let `G and `H be optimal labelings of G and H, over ΣG and ΣH , respectively. By introducing
new characters if necessary, we may assume that ΣG ∩ ΣH = ∅. Thus, the combined labeling ` of F over
Σ = ΣG ∪ ΣH , defined as

`(x) =

{
`G(x), if x ∈ V (G);
`H(x), if x ∈ V (H).

for all x ∈ V (F ), is an overlap labeling of F , showing that r(F ) ≤ max{r(G), r(H)}.171

(c) By part (b), the readability of G is the maximum readability of a connected component of G. Therefore,172

it is sufficient to prove the lemma for the case when G is connected. Every connected graph has a unique173

bipartition, up to switching the roles of Vs and Vt. Switching the roles of Vs and Vt in a graph does not affect174

its readability, because an overlap labeling of the new graph can be obtained by reversing all the labels in the175

overlap labeling of the original graph. Thus, the readability of G is not affected by the choice of bipartition176

of V (G).177

(d) It suffices to prove that for a pair of twins u and v, r(G) = r(G − u). By part (a), we have
r(G− u) ≤ r(G). Conversely, an optimal overlap labeling ` of G− u can be extended to an overlap labeling
`′ of G of the same maximum length as ` by setting, for all x ∈ V (G),

`′(x) =

{
`(x), if x ∈ V (G) \ {v};
`(u), if x = v.

Thus, r(G) ≤ r(G− u).178

Lemma 1(b) shows that the study of readability reduces to the case of connected bipartite graphs. By179

Lemma 1(c), the readability of a bipartite graph is well defined even if a bipartition is not given in advance.180

We state our results without specifying a bipartition in Sections 4-5. Lemma 1(d) further shows that to181

understand the readability of connected bipartite graphs, it suffices to study the readability of connected182

twin-free bipartite graphs.183

3. Readability of Bipartite Chain Graphs184

In this section, we prove an upper bound (Section 3.1) and a lower bound (Section 3.2) on the readability185

of twin-free bipartite chain graphs Cn,n. Recall that the graph Cn,n is (Vs, Vp, E) where Vs = {s1, . . . , sn},186

Vp = {p1, . . . , pn}, and E = {(si, pj) | 1 ≤ i ≤ j ≤ n}.187

3.1. Upper Bound188

Theorem 1. For all n ∈ N, the graph Cn,n has readability O(
√
n), with labels over an alphabet of size 3.189

To prove Theorem 1, we construct a labeling ` of length O(
√
n) for Cn,n that satisfies (1) `(si) = `(pi) for190

all i ∈ [n], and (2) `(si) properly overlaps `(sj) if and only if i < j. It is easy to see that such an ` will be a191

valid overlap labeling of Cn,n. As the labels on either side of the bipartition are equal, we will just come up192

with a sequence of n strings to be assigned to one of the sides of Cn,n such that the strings satisfy condition193

(2) above.194
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(b) BC has no proper overlap with itself.

Figure 3: Overlaps in the proof of Lemma 2

Definition 1. A sequence of strings (s1, . . . , st) is forward-matching if195

• ∀i ∈ [t], string si does not have a proper overlap with itself and196

• ∀i, j ∈ [t], string si overlaps string sj if and only if i ≤ j.197

Given an integer r ≥ 2, we will show how to construct a forward-matching sequence Sr with Θ(r2) strings,198

each of length at most r, over an alphabet of size 3. This will imply an overlap labeling of length O(
√
n) for199

Cn,n, proving Theorem 1. The following lemma is crucial for this construction.200

Lemma 2. For all integers t ≥ 2 and all i ∈ [t − 1], if (s1, . . . , st) is forward-matching, then so is201

(s1, . . . , si, sisi+1, si+1, . . . , st).202

Proof. For the purposes of notation, let A be an arbitrary string from s1, . . . , si−1 (if it exists), let B = si,203

C = si+1, and let D be an arbitrary string from si+2, . . . , st (if it exists). The reader can easily verify that A204

and B overlap with the new string BC, and BC overlaps with C and D, as desired. What remains to show is205

that there are no undesired overlaps. Suppose for the sake of contradiction that BC overlaps B, and let i be206

the length of any such overlap. If sufi(BC) only includes characters from C, then C overlaps B; if it includes207

characters from B (and the entire C) then B has a proper overlap with itself (see Figure 3a). In either case,208

we reach a contradiction. So, BC does not overlap B. By a symmetric argument, C does not overlap BC.209

Next, suppose for the sake of contradiction that BC overlaps A, and let i be the length of any such210

overlap. If sufi(BC) only includes characters from C, then C overlaps A; if it includes characters from B211

(and the entire C) then B overlaps A. In either case, we reach a contradiction. So, BC does not overlap A.212

By a symmetric argument, D does not overlap BC.213

Finally, suppose for the sake of contradiction that BC has a proper overlap with itself, and let i be the214

length of any such overlap. Since C does not overlap BC, it follows that sufi(BC) must include characters215

from B and the entire C. But then B has a proper overlap with B, a contradiction (see Figure 3b). So, BC216

does not have a proper overlap with itself, completing the proof.217

Now, we show how to construct a forward-matching sequence Sr. For the base case, we let S2 = (20, 0, 01).
It can be easily verified that S2 is forward-matching. Inductively, let Sr for r > 2 denote the sequence
obtained from Sr−1 by applying the operation in Lemma 2 to all indices i such that sisi+1 is of length r, that
is, add all obtainable strings of length r. Let Br, for all integers r ≥ 2, be the sequence of lengths of strings
in Sr. We can obtain Br directly from Br−1 by performing the following operation: for each consecutive pair
of numbers x, y in Br−1, if x+ y = r then insert r between x and y. Note that there is a mirror symmetry to
the sequences with respect to the middle element, 1. The right sides of the first 6 sequences Br, starting
from the middle element, are as follows:

r = 2 1 2
r = 3 1 3 2
r = 4 1 4 3 2
r = 5 1 5 4 3 5 2
r = 6 1 6 5 4 3 5 2
r = 7 1 7 6 5 4 7 3 5 7 2

It turns out that |Br|, and, by extension, |Sr|, is closely related to the totient summatory function [23],218

also called the partial sums of Euler’s totient function. This is the function Φ(r) =
∑r
k=1 ϕ(k), where ϕ(k)219
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is the number of integers in [k] that are coprime to k. The asymptotic behavior of Φ(r) is well known:220

Φ(n) = 3n2

π2 +O(n log n) [11, p. 268]. The following lemma therefore implies |Sr| = |Br| = Θ(r2), completing221

the proof of Theorem 1.222

Lemma 3. For all integers r ≥ 2, the length of the sequence Br is Φ(r) + 1.223

Proof. For the base case, observe that |B2| = 3 = Φ(2) + 1. In general, consider the case of r ≥ 3.224

Definition 2. Two elements of Br are called neighbors in Br if they appear in two consecutive positions in225

Br.226

We will show that any two neighbors are coprime (Claim 1) and any pair (i, j) of coprime positive integers227

that sum up to r appears exactly once as a pair of ordered neighbors in Br (Claim 2). Together, these claims228

show that the neighbor pairs in Br−1 that sum up to r are exactly the pairs of coprime positive integers that229

sum up to r.230

Fact 1. If i and j are coprime then each of them is coprime with i+ j and with i− j.231

Proof. Suppose gcd(i, i+ j) = d > 1. Then d divides both i and (i+ j)− i = j, implying that i and j are not232

coprime, which is a contradiction. Hence, i and i+ j are coprime. By symmetry, j and i+ j are coprime.233

Using a similar argument, we can show that each of i and j is coprime with i− j.234

By this fact, there is a bijection between pairs (i, j) of coprime positive integers that sum up to r and235

integers i ∈ [r] that are coprime to r. Hence, the number of neighbor pairs in Br−1 that sum up to r is236

ϕ(r). Therefore, Br contains ϕ(r) occurrences of r. By induction, it follows that |Br| = |Br−1| + ϕ(r) =237

Φ(r − 1) + 1 + ϕ(r) = Φ(r) + 1, proving the Lemma.238

We now prove the necessary claims.239

Claim 1. For all r ≥ 2, if two numbers are neighbors in Br, then they are coprime.240

Proof. We prove the claim by induction. For the base case of r = 2, the claim follows from the fact that 1 and241

2 are coprime. For the general case of r ≥ 3, recall that Br was obtained from Br−1 by inserting an element242

r between all neighbors i and j in Br−1 that summed to r. By the induction hypothesis, gcd(i, j) = 1, and,243

hence, by Fact 1, gcd(i, r) = gcd(i, i+ j) = 1 and gcd(r, j) = gcd(i+ j, j) = 1. Therefore, any two neighbors244

in Br must be coprime.245

Claim 2. For all r ≥ 3, every ordered pair (i, j) of coprime positive integers that sum to r occurs exactly246

once as neighbors in Br−1.247

Proof. We prove the claim by strong induction. The reader can verify the base case (when r = 3). For the248

inductive step, suppose the claim holds for all k ≤ r − 1 for some r ≥ 4. Consider an ordered pair (i, j) of249

coprime positive integers that sum to r. Assume that i > j; we know that i 6= j, and the case of i < j is250

symmetric. Since r ≥ 4, we have that i ≥ 3. In the recursive construction of the sequences {Bk}, the elements251

i are added to the sequence Bi when Bi is created from Bi−1. Since j < i, all the elements j are already252

present in Bi−1. By Fact 1, since gcd(i, j) = 1, we get that gcd(i− j, j) = 1. By the inductive hypothesis,253

pair (i− j, j) appears exactly once as an ordered pair of neighbors in Bi−1. Consequently, (i, j) must appear254

exactly once as an ordered pair of neighbors in Bi. No new elements i, j are added to the sequence in later255

stages, when k > i. Also, no new elements are inserted between i and j when i+ 1 ≤ k ≤ i+ j − 1 = r − 1.256

Therefore, the ordered neighbor pair (i, j) appears exactly once in Br−1.257
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3.2. Lower Bound258

In this section, we prove Theorem 2.259

Theorem 2. For all n ∈ N, the graph Cn,n has readability Ω(log n).260

First, we will need the notion of a HUB decomposition from [7]. Given G = (Vs, Vp, E) and a function261

w : E → [k], we define Gi, for i ∈ [k], as the graph with the same vertex set as G and edges given by262

E(Gi) = {e ∈ E | w(e) = i}. Observe that the edge sets of G1, . . . , Gk form a partition of E. We say that263

w is a hierarchical-union-of-bicliques decomposition, abbreviated as HUB decomposition, if the following264

conditions hold: i) for all i ∈ [k], Gi is a disjoint union of bicliques, and ii) if two distinct vertices u and v are265

non-isolated twins in Gi for some i ∈ {2, . . . , k} then, for all j ∈ [i− 1], u and v are (possibly isolated) twins266

in Gj . The parameter k is called the size of the HUB decomposition w. Now, consider an arbitrary HUB267

decomposition of Cn,n and let h be its size. We will show that h ≥ log n.268

Lemma 4. For each i ∈ {0, . . . , h− 1}, graph Gh−i has maximum degree at most 2i.269

Proof. We prove the lemma by strong induction on i. The base case is when i = 0. Observe that if Gh has270

non-isolated twins, then those must be twins in Gj for each j ∈ [h], and, as a result, in Cn,n. Since Cn,n271

has no twins, Gh has no non-isolated twins. By the first property of the HUB decomposition, Gh must have272

maximum degree at most 1.273

For general i, let Fi denote the graph (Vs, Vp,
⋃
j∈{0,...,i−1}E(Gh−j)). By the inductive hypothesis, Fi274

has maximum degree at most
∑
j 2j = 2i − 1. Consider a group of vertices S in the same part of Cn,n that275

have the same degree in the graph Cn,n − E(Fi). Since no two vertices in the same part of Cn,n have the276

same degree, no two vertices in S have the same degree in Fi. Combining this with the fact that the degree277

of any vertex in Fi is at most 2i − 1, we infer that |S| ≤ 2i.278

By the second property of the HUB decomposition, if two vertices are non-isolated twins in Gh−i, they are279

twins in Cn,n − E(Fi). Consequently, each group of twins in Gh−i has size at most 2i. By the first property280

of the HUB decomposition, Gh−i is a disjoint union of bicliques. It follows that each of these bicliques281

is a subgraph of the complete bipartite graph K2i,2i , thus implying the required bound on the maximum282

degree.283

Proof of Theorem 2. By Lemma 4, graph Gh−i has at most 2in edges. Since the edge sets of G1, . . . , Gh284

form a partition of the edge set of Cn,n, the number of edges in Cn,n is n(n+1)
2 ≤

∑h−1
i=0 2in = n(2h − 1). We285

get that h ≥ log2(n+ 3)− 1. It was shown in [7] that the readability of every bipartite graph G is bounded286

from below by the minimum size of a HUB decomposition of G. This completes the proof.287

4. A Characterization of Graphs with Readability at most 2288

In this section, we characterize bipartite graphs with readability at most 2 by proving Theorem 3. Due289

to Lemma 1, it is enough to obtain such a characterization for connected twin-free bipartite graphs. We290

later use this characterization in Section 5 to develop a polynomial time algorithm for recognizing graphs of291

readability at most 2 and also in Section 6 to prove a lower bound on the readability of general grids. Recall292

that a domino is the graph obtained from C6 by adding an edge between a pair of two vertices at distance 3293

(see Figure 4). We first define the notion of a conforming matching, which is implicitly used in the statement294

of Theorem 3.295

Definition 3. A matching M in a bipartite graph G is conforming if the following conditions are satisfied:296

1. The graph G′ = G−M is a disjoint union of bicliques (equivalently: P4-free).297

2. For U ⊆ V (G), if G[U ] is a C6, then G′[U ] is the disjoint union of three edges.298

3. For U ⊆ V (G), if G[U ] is a domino, then G′[U ] is the disjoint union of a C4 and an edge.299

We prove Theorem 3 by showing that a bipartite graph G has readability at most 2 iff G has a conforming300

matching. We restate the theorem here for the convenience of the reader.301
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e1

e2
e4

e3

fork

Figure 4: The C6, the domino and the fork

Theorem 3. A twin-free bipartite graph G has readability at most 2 if and only if G has a matching M such302

that the graph G′ = G−M satisfies the following properties:303

1. G′ is a disjoint union of complete bipartite graphs.304

2. For U ⊆ V (G), if G[U ] is a C6, then G′[U ] is the disjoint union of three edges.305

3. For U ⊆ V (G), if G[U ] is a domino, then G′[U ] is the disjoint union of a C4 and an edge.306

Proof. We show that r(G) ≤ 2 if and only if G has a conforming matching.307

Necessity. Suppose that G = (Vs, Vp, E) is a twin-free bipartite graph of readability at most 2. Let ` be an308

overlap labeling of G of length at most 2. For vertices u ∈ Vs, v ∈ Vp, we denote by ov`(u, v) the maximum309

length of a suffix of `(u) that is also a prefix of `(v). Since ` is an overlap labeling of G, we can partition the310

edge set of G into two sets, E1 and E2, by setting E1 = {(u, v) ∈ E | ov`(u, v) = 1} and E2 = E \E1. Then311

for all (u, v) ∈ E2, we have ov`(u, v) = 2, that is, `(u) = `(v). Note that due to the definition of the overlap312

function, for every edge (u, v) ∈ E2, the labels of u and v must not have an overlap of length one.313

We claim that E2 is a conforming matching. If E2 is not a matching, we can assume by symmetry that314

there exists a vertex u ∈ Vs and a pair of distinct vertices v, w in Vp such that {(u, v), (u,w)} ⊆ E2. But315

then `(v) = `(u) = `(w), which implies that v and w are twins in G, a contradiction. Thus, E2 is a matching.316

Let G′ denote the graph G−E2. Next, we show that G′ is P4-free. If (u, v, x, y) forms an induced P4 in317

(V,E1) (with edge set {(u, v), (x, v), (x, y)}), then suf1(`(u)) = pre1(`(v)) = suf1(`(x)) = pre1(`(y)), implying318

that (u, y) ∈ E1, a contradiction. Therefore, G′ is P4-free.319

Now let us verify the remaining two properties in the definition of a conforming matching. Let U be320

a subset of vertices in G. If G[U ] is isomorphic to C6, we would like to show that G′[U ] is a union of321

three disjoint edges. Suppose for the sake of contradiction that it is not. Consider an edge labeling of322

G[U ] as in Figure 4. Since E2 is a matching, the only other way for G′ to be P4-free, i.e., if it was not323

a union of three disjoint edges, is for E2 to contain two diametrically opposite edges of G[U ], say e1 and324

e4. Let ei = (xi, xi+1) for all i ∈ [6] (addition modulo 6). Let, without loss of generality, x1 ∈ Vs.Then325

x2 ∈ Vp. Since e1 ∈ E2 by our assumption, we have `(x1) = `(x2), say `(x1) = `(x2) = ab. We have326

suf1(`(x5)) = pre1(`(x6)) = suf1(`(x1)) = b and pre1(`(x4)) = suf1(`(x3)) = pre1(`(x2)) = a. Since e4 ∈ E2,327

we get `(x4) = `(x5) = ab. Therefore `(x1) = `(x4), which is a contradiction, since (x1, x4) /∈ E and ` is an328

overlap labeling of G.329

Finally, suppose that G[U ] is isomorphic to the domino, and assume an edge labeling as in Figure 4. Since330

G′ is P4-free, G′[U ] is also P4-free and hence G′[U ] can only be isomorphic to either (1) a disjoint union of a331

C4 and an edge (which is what we want to show), or (2) a disjoint union of two P3’s. Suppose we are in332

case (2). Then we have e1, e4, e7 ∈ E2. Let ei = (xi, xi+1) for all i ∈ {1, . . . , 6} (addition modulo 6). We may333

assume without loss of generality that x1 ∈ Vs. Since e1, e4 ∈ E2 and e2, e3, e5, e6 ∈ E1, we can follow the334

same reasoning as above, and conclude that the labels of x1 and x4 are equal, which is a contradiction, since335

(x1, x4) /∈ E and ` is an overlap labeling of G. This establishes the necessity of the condition.336

Sufficiency. Suppose now that G = (Vs, Vp, E) is a twin-free bipartite graph with a conforming matching337

M . We will show that G has readability at most 2 by constructing an overlap labeling of G of length at338

most 2. Since M is a conforming matching, the graph G′ = G −M is P4-free, that is, a disjoint union of339
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bicliques. Let {A1, B1}, . . . , {Ak, Bk} be the bipartitions of the vertex sets of the connected components340

(bicliques) G1, . . . , Gk of G′ (so that Ai = V (Gi)∩ Vs for all i; some of the Ai’s or Bi’s may be empty). Then341

∪ki=1V (Gi) = V . Assign a partial labeling over Σ = {1, . . . , k} to vertices of G by setting `(v) = i if and only342

if v ∈ V (Gi). For each edge (u, v) ∈M , extend the labels of u ∈ Vs and v ∈ Vp as follows. Let u ∈ Ai and343

v ∈ Bj . Then i 6= j because edges of bicliques in G−M cannot be in M . Replace `(u) = i with `(u) = ji,344

and `(v) = j with `(v) = ji. Since M is a matching, every vertex will have a label of length 1 or 2 at the end345

of this procedure. Extend the labels of length 1 by unique new characters to make them of length 2. By346

construction, the overlaps of the obtained labeling create all edges of E(G′) ∪M = E(G).347

Let us verify that no new edges were created by `. Suppose that u, v is a pair of vertices with with348

u ∈ Vs and v ∈ Vp and ov`(u, v) > 0. If `(u) and `(v) have an overlap of length 1, then (u, v) ∈ E(G′) by349

construction. Suppose that `(u) and `(v) do not have an overlap of length 1 but have an overlap of length350

2. Then `(u) = `(v) = ij for two distinct i, j ∈ Σ. By construction, vertex u is adjacent to a unique vertex351

w via a matching edge in M , moreover u ∈ Aj and w ∈ Bi. If w = v, then the edge (u, v) is in M and352

hence in G. So we may assume that w 6= v. Similarly, vertex v is adjacent to a unique vertex z in M , and353

z ∈ Aj and v ∈ Bi. If u = z, then again the edge (u, v) is in M and hence in G. So we may assume that354

u 6= z. Since |Aj | ≥ 2, there exists a vertex s ∈ Bj . Similarly, since |Bi| ≥ 2, there exists a vertex t ∈ Ai.355

Notice that (u, v) 6∈ M since u is of degree 1 in M , and (u, v) 6∈ E(G′) since u and v belong to distinct356

connected components of G′. Therefore, (u, v) 6∈ E(G), and, similarly, (z, w) 6∈ E(G). But now, the subset357

{s, t, u, v, w, z} induces a subgraph of G isomorphic to either a C6 (if (t, s) 6∈ E(G)) or a domino (otherwise).358

In either case, one of the conditions for the C6 and for the domino in Definition 3 is violated, contrary to the359

fact that M is a conforming matching.360

This shows that ` is an overlap labeling of G and implies that the readability of G is at most 2.361

Corollary 2. Every bipartite graph G of maximum degree at most 2 has readability at most 2.362

Proof. If G is a connected twin-free bipartite graph of maximum degree at most 2, then G is a path or an363

(even) cycle. In this case, the edge set of G can be decomposed into two matchings M1 and M2 by picking364

alternate edges. Both M1 and M2 are conforming matchings. Thus, by Theorem 3, G has readability at365

most 2.366

5. An Efficient Algorithm for Readability 2367

In this section, we prove Theorem 4 by developing a polynomial time algorithm for the following problem.368

Readability 2

Instance: A bipartite graph G = (Vs, Vp, E).
Question: Is r(G) ≤ 2?

369

First, we use Lemma 1 and Corollary 2 to reduce the problem to connected twin-free bipartite graphs of370

maximum degree at least 3. We then apply Theorem 3 and reduce the problem to checking for the existence371

of a conforming matching (Definition 3). Finally, we show how to reduce this problem to the 2SAT problem372

(Lemma 5), which is well known to be solvable in linear time (see, e.g., [1]).373

Theorem 4. There exists an algorithm that, given a bipartite graph G, decides in polynomial time whether374

G has readability at most 2.375

Proof. Given a bipartite graph G, we first reduce the problem to its connected components. That is, if G376

is not connected, then, by Lemma 1(b), r(G) ≤ 2 if and only if all components G′ of G satisfy r(G′) ≤ 2.377

Second, assuming G is connected, we compute the twin-free reduction G′ of G, which, by Lemma 1(d), does378

not change the readability. We test whether G′ is of maximum degree at most 2. If this is the case, then, by379

Corollary 2, we assert that G has readability at most 2.380

Consider a connected twin-free bipartite graph G = (V,E) of maximum degree at least 3. Let E′ denote381

the set of all edges e = (u, v) in G such that either (1) {u, v} ∪N(u) ∪N(v) has a vertex of degree at least382
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3, or (2) e is contained in some induced C6. The definition of E′ and the fact that G is connected and of383

maximum degree at least 3 imply that if an induced subgraph H of G is isomorphic to a C4, a fork, a C6, or384

a domino (see Figure 4), then E(H) ⊆ E′.385

Let X = {xe | e ∈ E′} be a set of variables. We now define a 2SAT formula ϕ over X such that G has a386

conforming matching (and hence, readability at most 2) if and only if ϕ is satisfiable. The formula ϕ contains387

the following five types of clauses.388

1. For each pair {e, f} ⊆ E′ of distinct edges that share an endpoint, add the clause xe ∨ xf to ϕ.389

2. For each induced subgraph H of G isomorphic to C4 and each matching {e, f} in H, add the clauses390

xe ∨ xf and xf ∨ xe (equivalent to xe ↔ xf ) to ϕ.391

3. For each induced subgraph H of G isomorphic to C6, with edges labeled as in Figure 4, add the clause392

xe1 ∨ xe2 , the clauses corresponding to xe1 ↔ xe3 and xe3 ↔ xe5 , and the clauses corresponding to393

xe2 ↔ xe4 and xe4 ↔ xe6 to ϕ.394

4. For each induced subgraph H of G isomorphic to the domino, with edges labeled as in Figure 4, add395

the clauses xe2 ∨ xe3 and xe5 ∨ xe6 to ϕ.396

5. For each induced subgraph H of G isomorphic to the fork, with edges labeled as in Figure 4, add the397

clause xe2 ∨ xe3 to ϕ.398

The following lemma shows that if ϕ is satisfiable, then r(G) ≤ 2, otherwise, r(G) > 2.399

Lemma 5. Graph G has a conforming matching if and only if formula ϕ is satisfiable.400

Proof. Suppose first that G has a conforming matching, say M . Let a be an assignment of Boolean values to401

the variables in X such that for every e ∈ E′, variable xe is true if and only if e ∈M . We will prove that a is402

a satisfying assignment for ϕ. It is easy to see that clauses of type (1) in ϕ are satisfied as M is a matching.403

Consider a pair of clauses xe ∨ xf and xf ∨ xe of type (2) in ϕ. These correspond to an induced subgraph404

H of G isomorphic to a C4 and a matching {e, f} in H. Since M is a conforming matching, the graph G−M405

is P4-free, and so we have e ∈M if and only if f ∈M . Hence a satisfies both the clauses.406

Clauses in ϕ of type (3) deal with induced 6-cycles and those of type (4) deal with induced dominos. Both407

types of clauses are satisfied by a due to the fact that M , which is a conforming matching, satisfies conditions408

2 and 3 in Definition 3.409

Finally, clauses in ϕ of type (5) are satisfied only if for each induced subgraph H of G isomorphic to the410

fork (with edges labeled as in Figure 4), we have {e2, e3} ∩M 6= ∅. Suppose for the sake of contradiction that411

there exists an induced fork H for which this is not the case. Since G−M is P4-free, so is H −M and hence412

e1 and e4 are both in M , which is a contradiction. This shows that formula ϕ is satisfiable.413

For the converse direction, suppose that formula ϕ is satisfiable and let a be a satisfying assignment. Let414

M ′ be the set of edges e ∈ E′ such that xe is set to true in a. Extend M ′ greedily to a set of edges M by415

setting M = M ′ and then iteratively adding the middle edge of any induced subgraph H of G isomorphic to416

P4 that contains no edge of M . We claim that the so obtained set M is a conforming matching of G. This417

will be easy to show once we prove the following claim.418

Claim 3. M is a matching in G with M ∩ E′ = M ′ ∩ E′.419

Proof. The claim is true if M = M ′, since M ′ is a matching by virtue of type (1) clauses. Henceforth, assume420

that M 6= M ′. We will first show that M ∩E′ = M ′ ∩E′. For this, it is enough to prove that e /∈ E′ for each421

e ∈M \M ′.422

Consider an edge e ∈ M \M ′. By our construction of M , the edge e is the middle edge of an induced423

subgraph H of G isomorphic to P4 such that H contains no other edge of M . In particular, H has no edge of424

M ′. Let u and v be the endpoints of e, and let x and y be the remaining two vertices in H such that (x, u)425

and (v, y) are the other two edges in H. Assume for the sake of contradiction that e ∈ E′. Then, either (a)426

{u, v} ∪N(u) ∪N(v) has a vertex of degree at least 3, or (b) e is contained in some induced C6.427

Suppose first that (b) holds. Then, by virtue of the type (3) clauses, either (u, v) ∈M ′ or both (x, u) and428

(y, v) are in M ′. Both cases contradict our premise that H contains no edge of M ′.429

12



Suppose now that (a) holds. Assume that the degree of u is at least 3. Let w be a neighbor of u such430

that w 6= x. We will show that the set {x, u, w, v, y} induces a fork in G. Since G is a bipartite graph, it431

has no C3’s and hence (w, x), (w, v) /∈ E. If (w, y) ∈ E, then the set {w, u, v, y} induces a C4. Since u is of432

degree at least 3, we have {(w, u), (u, v), (v, y), (y, w)} ⊆ E′ and hence, by virtue of clauses of type (2), either433

(u, v) and (w, y) are in M ′, or both (u,w) and (v, y) are in M ′. Both of these contradict our premise that H434

contains no edge of M ′. Therefore, the set {x, u, w, v, y} induces a fork in G, and by virtue of its associated435

type (5) clause, either (u, v) or (v, y) is in M ′. This contradicts our assumption that H does not have any436

edge in M ′. Thus, the degree of u is 2. By a symmetric argument, the degree of v is 2. Thus, the only way437

for (a) to hold is for either x ∈ N(u) or y ∈ N(v) to have degree at least 3. By symmetry, we may assume438

that x has degree at least 3. Let s, t ∈ N(x) \ {u}. Since v is of degree 2, it is non-adjacent to both s and439

t, hence the set {s, t, x, u, v} induces a fork in G and hence either (x, u) or (u, v) is in M ′, a contradiction.440

Thus, we have proved that if e ∈M \M ′, then e /∈ E′ and therefore, M ∩ E′ = M ′ ∩ E′.441

We will now show that M is a matching. From the above arguments, we know that for each edge442

(u, v) = e ∈ M \M ′, degree of both u and v are at most 2. Thus, the only edges adjacent with e are the443

ones that form the induced copy of P4 with it. As neither of them are in M , the edge e does not share an444

endpoint with any other edge of M . This completes the proof of the claim.445

It remains to verify that M is a conforming matching. First, suppose for the sake of contradiction that446

G −M is not P4-free. Fix an induced P4 in G −M , say H, with edges {(u, v), (v, w), (w, x)}. The set447

V (H) = {u, v, w, x} does not induce a P4 in G, for otherwise, we would have added one of the edges of H to448

M . Thus, we have, (u, x) ∈ E, implying that, (u, x) ∈M . Recall that since G is connected and of maximum449

degree at least 3, the set V (H) contains a vertex of degree at least 3 in G, which implies that all edges of450

the C4 induced by V (H) must be in E′. Since M ∩ E′ = M ′ ∩ E′, we have in particular (u, x) ∈M ′. Since451

(u, x) is the only M ′-edge in the C4 induced by V (H) in G, it contradicts the fact that the type (2) clause452

corresponding to that C4 is satisfied by the assignment a.453

Second, let H be an induced subgraph of G isomorphic to C6. By the definition of E′, we have that454

E(H) ⊆ E′ and consequently M ∩E(H) = M ′ ∩E(H). The fact that the clauses of type (3) corresponding455

to H are satisfied by a implies that H −M is a union of three disjoint edges.456

Finally, let H be an induced subgraph of G isomorphic to the domino (with edges labeled as in the right457

side of Figure 4). By the definition of E′, we again have E(H) ⊆ E′ and thus M ∩E(H) = M ′ ∩E(H). The458

fact that the clauses of type (4) corresponding to H are satisfied by a implies that M ′ ∩ {e2, e3} 6= ∅ and459

M ′ ∩ {e5, e6} 6= ∅. We may assume by symmetry that M ′ ∩ {e2, e3} = {e2}. The fact that the clause of type460

(2) is satisfied corresponding to the C4 with edge set {e1, e2, e6, e7} and the 2-matching {e2, e6} implies that461

e6 ∈ M ′. Consequently, M ∩ E(H) = M ′ ∩ E(H) = {e2, e6} and the desired condition holds. This proves462

that M is a conforming matching in G and completes the proof of the lemma.463

The correctness of the algorithm follows from Theorem 3. We can compute formula ϕ from a given graph464

G in polynomial time. The 2SAT problem is solvable in linear time [1], and clearly, all the other steps of the465

algorithm can be implemented to run in polynomial time. The method given above can easily be modified so466

that it also efficiently computes an overlap labeling of length at most 2 in case of a yes instance.467

6. Readability of Grids and Grid Graphs468

In this section, we determine the readability of grids by proving Theorem 5. We first look at toroidal469

grids, which are closely related to grids. For positive integers m ≥ 3 and n ≥ 3, the toroidal grid TGm,n is470

obtained from the grid Gm,n by adding edges ((i, 0), (i, n−1)) and ((0, j), (m−1, j)) for all i ∈ {0, . . . ,m−1}471

and j ∈ {0, . . . , n − 1}. (See Figure 2 for an example.) The graph TGm,n is bipartite if and only if m472

and n are both even. In this case, a bipartition can be obtained by setting V (TGm,n) = Vs ∪ Vp where473

Vs = {(i, j) ∈ V (TGm,n) : i+ j ≡ 0 (mod 2)} and Vp = {(i, j) ∈ V (TGm,n) : i+ j ≡ 1 (mod 2)}.474

Lemma 6. For all integers n > 0, we have r(TG4n,4n) ≤ 3.475
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(0, 0) (7, 0)

(0, 7) (7, 7)

Figure 5: The graph TG8,8 (with edges between the extreme layers omitted in the drawing) where the lower left endpoints of
the squares in G0 are marked using solid dots, and the edges in M1 and M2 are drawn using (red) dotted and (blue) dashed
lines, respectively.

Proof. Fix n and let G = TG4n,4n. Each vertex u of G has associated coordinates (u1, u2), where u1, u2 ∈476

{0, 1, . . . , 4n − 1}. All arithmetic on coordinates will be performed modulo 4n. By Lemma 1(c), we may477

assume without loss of generality the bipartition (Vs, Vp) given above.478

We decompose G into three subgraphs. The first subgraph consists of squares. A square Su for a vertex u479

of G is the subgraph of G induced by vertices {u, u + (0, 1), u + (1, 0), u + (1, 1)}. The subgraph G0 of G480

is the union of all squares Su, where either (1) u1 is divisible by 4 and u2 is divisible by 2, or (2) u1 + 2 is481

divisible by 4 and u2 + 1 is divisible by 2. Note that G0 has 4n2 squares.482

We assign each square a unique identifier from the range {0, 1, . . . , 4n2 − 1}. Observe that each vertex483

u of G belongs to exactly one square in G0, and we use `0(u) to denote the identifier of the square in G0484

to which u belongs. We divide the edges of G into horizontal and vertical ones respectively, according to485

whether they connect a pair of vertices that differ in their first, resp., second coordinates. Next, we define M1486

(respectively, M2) to be the set of all horizontal (respectively, vertical) edges of G− E(G0). For i ∈ {1, 2},487

we use Mi(u) to denote the vertex matched to u in Mi. Figure 5 illustrates the graph TG8,8 (without the488

wrap-around edges, for simplicity) where the lower left endpoints of the squares in G0 are marked using black489

dots, and the edges in M1 and M2 are drawn using dotted and dashed lines, respectively.490

We now define a labeling ` of G. For each vertex u of G, define `1(u) = `0(M1(u)) and `2(u) = `0(M2(u)).491

If u ∈ Vs then define `(u) = `2(u)`1(u)`0(u); if u ∈ Vp then define `(u) = `0(u)`1(u)`2(u), i.e., the same492

characters, but in reverse order. The following claim shows that ` is an overlap labeling and, since ` has493

labels of length 3, proves the lemma.494

Claim 4. Labeling ` is an overlap labeling of G.495

Proof. First, we make three observations about G0, M1, and M2.496
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Observation 1. Each edge of G is in exactly one of E(G0),M1, and M2. Both M1 and M2 are perfect497

matchings in G.498

Observation 2. If (u, v) ∈M2 then `0(M1(u)) = `0(M1(v)), i.e., M1 matches u and v to vertices in the same499

square of G0.500

Observation 3. Any pair of squares in G0 is connected by at most one edge in M1. That is, for all pairs501

(id1, id2) of square ids, at most one edge (u, v) ∈M1 satisfies `0(u) = id1 and `0(v) = id2.502

First, we show that, for every edge (u, v) of G, where u ∈ Vs and v ∈ Vp, the label `(u) overlaps the label
`(v). By Observation 1, each edge of G is in one of G0,M1 and M2. If (u, v) is in G0, then u and v belong to
the same square of G and, by construction `0(u) = `0(v). That is,

suf1(`(u)) = `0(u) = `0(v) = pre1(`(v)).

If (u, v) ∈M1, then `1(u) = `0(v) and `1(v) = `0(u), by the definition of `1. Therefore,

suf2(`(u)) = `1(u)`0(u) = `0(v)`1(v) = pre2(`(v)).

If (u, v) ∈ M2, then `2(u) = `0(v) and `2(v) = `0(u), by the definition of `2. By Observation 2 and the
definition of `1, we get that `1(u) = `1(v). That is,

`(u) = `2(u)`1(u)`0(u) = `0(v)`1(v)`2(v) = `(v).

In all three cases `(u) overlaps `(v).503

It remains to show that if, for u ∈ Vs and v ∈ Vp, label `(u) overlaps label `(v) then (u, v) is an edge504

in G. Since labels `(u) and `(v) have length 3, the overlap from `(u) to `(v) can be of length 1, 2 or 3. If505

suf1(`(u)) = pre1(`(v)) then `0(u) = `0(v), that is, u and v are in the same square of G0. Hence, (u, v) is an506

edge in G0 and, consequently, in G.507

If suf2(`(u)) = pre2(`(v)) then `1(u) = `0(v) and `0(u) = `1(v). By the definition of `1, this implies that508

both (u,M1(u)) and (M1(v), v) connect squares of G0 with identifiers `0(u) and `0(v). By Observation 3,509

(u,M1(u)) is the same edge as (M1(v), v), namely, (u, v). Hence, (u, v) is in M1 and, consequently, in G.510

Finally, suppose `(u) = `(v). Then `2(u)`1(u)`0(u) = `0(v)`1(v)`2(v). Since `2(u) = `0(v) and `0(u) =511

`2(v), it follows that (u,M2(u)) and (M2(v), v) are vertical edges connecting the same pair of squares in512

G0. Since `1(u) = `1(v), we have that M1(u) and M1(v) belong to the same square in G0. Both conditions513

can hold only if (u,M2(u)) and (M2(v), v) are the same edge, namely, (u, v). Hence, (u, v) is in M2 and,514

consequently, in G. In all cases, we proved that (u, v) is an edge of G.515

This completes the proof of Lemma 6.516

We can now prove Theorem 5, determining the readability of Gm,n. We first recall the following simple517

observation (which follows, e.g., from [7, Theorem 4.3]).518

Lemma 7. A bipartite graph G has: (i) r(G) = 0 if and only if G is edgeless, and (ii) r(G) ≤ 1 if and only519

if G is P4-free (equivalently: a disjoint union of bicliques).520

Theorem 5. For any two positive integers m,n with m ≤ n, we have

r(Gm,n) =


3, if m ≥ 3;
2, if (m = 2 and n ≥ 3) or (m = 1 and n ≥ 4);
1, if (m,n) ∈ {(1, 2), (1, 3), (2, 2)};
0, if m = n = 1.

Proof. First, by Lemma 7, r(Gm,n) is 0 if m = n = 1 and positive, otherwise. Second, when (m,n) ∈521

{(1, 2), (1, 3), (2, 2)}, the graphs Gm,n are isomorphic to K1,1,K1,2, and K2,2, respectively. Thus, by Lemma 7,522

their readability is 1.523
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Figure 6: The graph F .

Third, when m + n ≥ 5, the grid Gm,n contains an induced P4, implying that r(Gm,n) ≥ 2. By524

Theorem 3, a twin-free bipartite graph G has readability at most 2 if and only if G has a conforming525

matching. (See Definition 3.) When m + n ≥ 5, the grid Gm,n is twin-free. If m = 2 and n ≥ 3, then526

M = {((i, j), (i, j + 1)) | i ∈ {0, 1} and j ∈ {0, . . . , n − 2} is even} is a conforming matching in Gm,n, so527

r(Gm,n) = 2. If m = 1 and n ≥ 4, then Gm,n is isomorphic to a path of length at least three. Since its528

maximum degree is 2, we get r(Gm,n) ≤ 2, by Corollary 2. Thus, r(Gm,n) = 2.529

To show that r(Gm,n) ≤ 3 for m ≥ 3 and n ≥ 3, we observe that Gm,n (for m ≤ n) is an induced subgraph530

of TG4n,4n. By Lemmas 1(a) and 6, we have that r(Gm,n) ≤ r(TG4n,4n) ≤ 3.531

To show that r(Gm,n) ≥ 3, let F be the graph obtained by taking the graph G3,2 and adding a new vertex532

adjacent to one of the degree-3 vertices of G3,2; see Figure 6.533

Clearly, F is a bipartite graph and an induced subgraph of Gm,n. Since F is also twin-free, we can prove534

that r(F ) > 2 by applying Theorem 3, provided we show that F does not have a conforming matching.535

Assume the edge labeling as in Figure 5(a) and suppose for a contradiction that F has a conforming matching536

M . The third condition in Definition 3 implies that M ∩ (E(F ) \ {e8}) ∈ {{e2, e6}, {e3, e5}}. By symmetry,537

we may assume that M ∩ (E(F ) \ {e8}) = {e2, e6}. Since M is a matching, we have e8 6∈ M . But now538

the graph F −M contains an induced P4 with edge set {e4, e5, e8}, a contradiction to the fact that M is539

conforming. This shows that r(F ) ≥ 3. By Lemma 1(a), r(Gm,n) ≥ r(F ) ≥ 3 if m ≥ 3 and n ≥ 3.540

7. Conclusion541

In this work we gave several results on families of n-vertex bipartite graphs with readability o(n). The542

results were obtained by developing new or applying a variety of known techniques to the study of readability.543

These include a graph-theoretic characterization in terms of matchings, a reduction to 2SAT, an explicit544

construction of overlap labelings analyzed via number theoretic notions, and a new lower bound applicable to545

dense graphs with a large number of distinct degrees. One of the main specific questions left open by our546

work is to close the gap between the Ω(log n) lower bound and the O(
√
n) upper bound on the readability547

of n-vertex bipartite chain graphs. For general graphs, it remains open whether the problem of computing548

the readability of a given bipartite graph is NP-hard, and whether the decision version of the problem is in549

NP. Other questions related to readability include determining the computational complexity of recognizing550

bipartite graphs of readability at most k, where k is a constant greater than 2, studying the parameter from551

an approximation point of view, and relating it to other graph invariants. For instance, for a positive integer552

k, what is the maximum possible readability of a bipartite graph of maximum degree at most k? Another553

interesting direction would be to study the complexity of various computational problems on graphs of low554

readability.555
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