
Brief Announcement:1

Erasure-Resilience Versus Tolerance to Errors2

Sofya Raskhodnikova3

Boston University, Boston, USA4

sofya@bu.edu5

Nithin Varma6

Boston University, Boston, USA7

nvarma@bu.edu8

Abstract9

We describe work in progress on providing a separation between erasure-resilient and tolerant10

property testing. Specifically, we are able to exhibit a property which is testable (with the number11

of queries independent of the length of the input) in the presence of erasures, but is not testable12

tolerantly.13

2012 ACM Subject Classification Theory of computation → Streaming, sublinear and near14

linear time algorithms15

Keywords and phrases Property testing, erasures, tolerance to errors, model separation16

Digital Object Identifier 10.4230/LIPIcs.ICALP.2018.45217

Category Brief Announcement18

Funding This material is based upon work supported by the National Science Foundation under19

Grant No. CCF-142297.20

1 Description21

In this brief announcement, we describe our recent investigation of the effects of adversarial22

corruption to inputs on the complexity of sublinear-time algorithms. Input corruption occurs23

either in the form of errors (when some values get changed) or in the form of erasures (when24

some values go missing). Understanding the relative difficulty of designing algorithms that25

work in the presence of different forms of corruption is a problem of fundamental importance.26

It is with this motivation in mind that property testing [5, 7], one of the most widely studied27

models of sublinear-time algorithms, was generalized to erasure-resilient testing [3] and (error)28

tolerant testing [6].29

Erasure-resilient property testing falls between (standard) property testing and tolerant30

testing. Specifically, an erasure-resilient tester for a property, in the special case when no31

erasures occur, is a standard tester for this property. Also, a tolerant tester for a property32

implies the existence of an erasure-resilient tester with comparable parameters for the same33

property. Dixit, Raskhodnikova, Thakurta and Varma [3] separate standard and erasure-34

resilient testing by describing a property that is easy to test in the standard model and35

hard to test in the erasure-resilient model. Their separation is based on an earlier result by36

Fischer and Fortnow [4] that separates standard property testing from tolerant property37

testing in the same sense. Their main tool is PCPs of proximity (also known as assignment38

testers) defined by Ben-Sasson, Goldreich, Harsha, Sudan and Vadhan [1] and by Dinur and39

Reingold [2]. Dixit et al. [3] asked whether it is possible to obtain a separation between40

EA
T

C
S

© Sofya Raskhodnikova and Nithin Varma;
licensed under Creative Commons License CC-BY

45th International Colloquium on Automata, Languages, and Programming (ICALP 2018).
Editors: Ioannis Chatzigiannakis, Christos Kaklamanis, Dániel Marx, and Don Sannella; Article No. 452;
pp. 452:1–452:3

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:sofya@bu.edu
mailto:nvarma@bu.edu
http://dx.doi.org/10.4230/LIPIcs.ICALP.2018.452
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


452:2

erasure-resilient and tolerant testing. Here, we announce such a separation. Specifically,41

we are able to describe a property testable in the erasure-resilient model with the query42

complexity independent of the input size, but for which the query complexity of tolerant43

testing grows with the input size.44

1.1 Erasure-Resilient and Tolerant Testing: Definitions45

We now describe the erasure-resilient and tolerant models of testing. A property P is a set of46

strings. A string is α-erased for α ∈ [0, 1) if at most an α fraction of its values are erasures47

(denoted by ⊥). A completion of an α-erased string x ∈ {0, 1,⊥}n is a string y ∈ {0, 1}n that48

agrees with x on all the positions where x is nonerased. An α-erasure-resilient ε-tester [3]49

for a property P is a randomized algorithm that, given parameters α ∈ [0, 1), ε ∈ (0, 1)50

and oracle access to an α-erased string x, accepts with probability at least 2/3 if x has a51

completion in P and rejects with probability at least 2/3 if, in every completion of x, at52

least an ε fraction of the nonerased positions has to be changed to get a string in P. The53

property P is α-erasure-resiliently ε-testable if there exists an α-erasure-resilient ε-tester54

for P with query complexity that depends only on the parameters α and ε (but not on the55

length of the input string).56

A string x ∈ {0, 1}n is ε′-far (α-close) from (to, respectively) a property P, if the57

normalized Hamming distance of x from P is at least ε′ (at most α, respectively). An (α, ε′)-58

tolerant tester [6] for P is a randomized algorithm that, given parameters α ∈ (0, 1), ε′ ∈ (α, 1)59

and oracle access to a string x, accepts with probability at least 2
3 , if x is α-close to P and60

rejects with probability at least 2
3 , if x is ε′-far from P. The property P is (α, ε′)-tolerantly61

testable if there exists an (α, ε′)-tolerant tester for P with query complexity that depends62

only on the parameters α and ε′ (but not on the length of the input string).63

1.2 Comparison of parameters64

We remark that, while comparing the above two models, it is appropriate to compare65

(α, α+ ε(1− α))-tolerant testing of a property P with α-erasure-resilient ε-testing of P for66

the same values of α and ε. The parameter α in both the models is an upper bound on67

the fraction of corruptions (erasures, or errors) that an adversary can make to an input.68

An α-erasure-resilient ε-tester rejects with probability at least 2
3 if, for for every way of69

completing an input string, one needs to change at least an ε fraction of the remaining part70

of the input to make it satisfy P. Similarly, an (α, α+ ε(1− α))-tolerant tester rejects with71

probability at least 2
3 if, for every way of correcting α fraction of the input values, one needs72

to change at least an ε fraction of the remaining (1 − α) fraction of the input to make it73

satisfy P.74

1.3 Our Results75

Our main contribution is the following theorem which states that there exists a property76

that is erasure-resiliently testable and is not tolerantly testable. This proves that tolerant77

testing is, in general, a harder problem than erasure-resilient testing.78

I Theorem 1 (Main Theorem). There exists a property P and constants ε, α ∈ (0, 1) such79

that80

P is α-erasure-resiliently ε-testable;81

P is not (α, α+ ε(1− α))-tolerantly testable.82



S. Raskhodnikova and N. Varma 452:3

2 Conclusions83

To summarize, we solve an open question proposed by Dixit et al. [3] and prove that tolerant84

testing is harder than erasure-resilient testing.85

References86

1 Eli Ben-Sasson, Oded Goldreich, Prahladh Harsha, Madhu Sudan, and Salil P. Vadhan.87

Robust PCPs of proximity, shorter PCPs, and applications to coding. SIAM J. Comput.,88

36(4):889–974, 2006.89

2 Irit Dinur and Omer Reingold. Assignment testers: Towards a combinatorial proof of the90

PCP theorem. SIAM J. Comput., 36(4):975–1024, 2006.91

3 Kashyap Dixit, Sofya Raskhodnikova, Abhradeep Thakurta, and Nithin Varma. Erasure-92

resilient property testing. SIAM Journal on Computing, 47(2):295–329, 2018.93

4 Eldar Fischer and Lance Fortnow. Tolerant versus intolerant testing for boolean properties.94

Theory of Computing, 2(9):173–183, 2006.95

5 Oded Goldreich, Shafi Goldwasser, and Dana Ron. Property testing and its connection to96

learning and approximation. J. ACM, 45(4):653–750, 1998.97

6 Michal Parnas, Dana Ron, and Ronitt Rubinfeld. Tolerant property testing and distance98

approximation. J. Comput. Syst. Sci., 72(6):1012–1042, 2006.99

7 Ronitt Rubinfeld and Madhu Sudan. Robust characterizations of polynomials with applic-100

ations to program testing. SIAM J. Comput., 25(2):252–271, 1996.101

ICALP 2018


	Description
	Erasure-Resilient and Tolerant Testing: Definitions
	Comparison of parameters
	Our Results

	Conclusions

