
ERASURE-RESILIENT PROPERTY TESTING∗

KASHYAP DIXIT† , SOFYA RASKHODNIKOVA‡ , ABHRADEEP THAKURTA§ , AND

NITHIN VARMA‡

Abstract. Property testers form an important class of sublinear-time algorithms. In the stan-
dard property testing model, an algorithm accesses the input function f : D 7→ R via an oracle. With
very few exceptions, all property testers studied in this model rely on the oracle to provide function
values at all queried domain points. However, in many realistic situations, the oracle may be unable
to reveal the function values at some domain points due to privacy concerns, or when some of the
values get erased by mistake or by an adversary. The testers do not learn anything useful about
the function by querying those erased points. Moreover, the knowledge of a tester may enable an
adversary to erase some of the values so as to increase the query complexity of the tester arbitrarily
or, in some cases, make the tester entirely useless.

In this work, we initiate a study of property testers that are resilient to the presence of adversar-
ially erased function values. An α-erasure-resilient ε-tester is given parameters α ∈ [0, 1), ε ∈ (0, 1),
along with oracle access to a function f such that at most an α fraction of function values have
been erased. The tester does not know whether a value is erased until it queries the corresponding
domain point. The tester has to accept with high probability if there is a way to assign values to
the erased points such that the resulting function satisfies the desired property P. It has to reject
with high probability if, for every assignment of values to the erased points, the resulting function
has to be changed in at least an ε fraction of the non-erased domain points to satisfy P. Erasure-
resilient testing generalizes the standard property testing model of Rubinfeld and Sudan (SIAM J.
Comput., 1996) and Goldreich, Goldwasser and Ron (J. ACM, 1998). Compared to the tolerant
testing model of Parnas, Ron and Rubinfeld (J. Comput. System Sci., 2006), our model places less
stringent requirements on the tester.

We design erasure-resilient property testers for a large class of properties. For some properties, it
is possible to obtain erasure-resilient testers by simply using standard testers as a black box. However,
for some more challenging properties, all existing algorithms are more likely to query certain points in
the domain. If these points are erased, the algorithms break. We give efficient erasure-resilient testers
for several important classes of such properties of functions including monotonicity, the Lipschitz
property, and convexity. Finally, we show a separation between the standard and erasure-resilient
testing. Specifically, we describe a property that can be ε-tested with O(1/ε) queries in the standard
model, whereas testing it in the erasure-resilient model requires a number of queries polynomial in
the input size.

Key words. sublinear algorithms, property testing, error correction, monotone, convex and
Lipschitz functions

AMS subject classifications. 68W20, 68W25, 68P10, 68Q87, 68W40

1. Introduction. In this paper, we revisit the question of how sublinear-time
algorithms access their input. With very few exceptions, all algorithms studied in the
literature on sublinear-time algorithms have oracle access to their input1. However, in

∗A preliminary version of this work has appeared in the Proceedings of the International Collo-
quium on Automata, Languages and Programming 2016 [23].
†Senior Software Engineer, Jet.com. The work was done while the author was at the Department

of Computer Science and Engineering, The Pennsylvania State University. The author was supported
in part by NSF CAREER award CCF-0845701. (dixit.kashyap@gmail.com).
‡Department of Computer Science, Boston University. These two authors were supported in

part by NSF award CCF-1320814, NSF CAREER award CCF-0845701, NSF award CCF-1422975,
Pennsylvania State University College of Engineering Fellowship and Pennsylvania State University
Graduate Fellowship. (sofya@bu.edu, nvarma@bu.edu).
§Department of Computer Science, University of California Santa Cruz. The work was done while

the author was at Yahoo! Labs. (aguhatha@ucsc.edu).
1Sublinear-time algorithms with various distributional assumptions on the input positions that

the algorithms access have been investigated, for example, in [34, 4, 37]. There is also a line of work,
initiated by [5], that studies sublinear-time algorithms that access distributions, as opposed to fixed

1

mailto:dixit.kashyap@gmail.com
mailto:sofya@bu.edu, nvarma@bu.edu
mailto:aguhatha@ucsc.edu

2 K. DIXIT, S. RASKHODNIKOVA, A. THAKURTA, N. VARMA

many applications, this assumption is unrealistic. The oracle may be unable to reveal
parts of the data due to privacy concerns, or when some of the values get erased
by mistake or by an adversary. Motivated by these scenarios, we propose to study
sublinear-time algorithms that work with partially erased data.

Formally, we view a dataset as a function over some discrete domain D, such as
[n] = {1, . . . , n} or [n]d. For example, the classical problem of testing whether a list
of n numbers is sorted in nondecreasing order can be viewed as a problem of testing
whether a function f : [n] → R is monotone (nondecreasing). Given a parameter
α ∈ [0, 1), we say that a function is α-erased if at most an α fraction of its domain
points are marked as “erased” or protected (that is, an algorithm is denied access
to these values). An algorithm that takes an α-erased function as its input does not
know which values are erased until it queries the corresponding domain points. For
each queried point x, the algorithm either learns f(x) or, if x is an erased point,
gets back a special symbol ⊥. We study algorithms that work in the presence of
adversarial erasures. In other words, the query complexity of an algorithm is the
number of queries it makes in the worst case over all α-erased input functions.

In this work, we initiate a systematic study of property testers that are resilient
to the presence of adversarial erasures. An α-erasure-resilient ε-tester for a property
P is given parameters α ∈ [0, 1), ε ∈ (0, 1), along with oracle access to an α-erased
function f . The tester has to accept with high probability if f can be completed to
a function on the whole domain that satisfies the desired property P and reject with
high probability if every completion of f is ε-far from P on the nonerased part of the
domain, that is, every completion of f needs to be changed on at least an ε fraction of
the nonerased points in its domain. We stress that the relative distance of a function
to a property is measured as a fraction of the nonerased points whose values need to
be change in order to satisfy the property. This is because one can always assume
that a function is “correct” on the erased points.

Relationships with other models. Erasure-resilient property testing model gener-
alizes the standard property testing model of Rubinfeld and Sudan [47] and Goldreich,
Goldwasser and Ron [34]. Compared to the tolerant testing model of Parnas, Ron
and Rubinfeld [44], our model places less stringent requirements on the tester. We
explore the relationship of erasure-resilient testing with these other testing models
in Section 7.

We provide (in Section 7.1) a separation between our erasure-resilient model and
the standard model, showing that erasure-resilient testing is a strict generalization of
standard testing. Specifically, we prove the existence of a property that can be tested
with O(1/ε) queries in the standard model, but requires polynomially many queries in
the length of the input in the erasure-resilient model. This result builds on the ideas
of Fischer and Fortnow [30] that separate tolerant testing from standard testing.

We discuss the relationship of erasure-resilient testing and tolerant testing in Sec-
tion 7.2. A tolerant tester for a property P, given two parameters ε1, ε2 ∈ (0, 1), where
ε1 < ε2, is required to, with probability at least 2/3, accept inputs that are ε1-close
to P and reject inputs that are ε2-far from P. We prove that the existence of tolerant
testers implies the existence of erasure-resilient testers with related parameters. Us-
ing this implication and existing tolerant testers for sortedness [48], monotonicity [28],
and convexity [27], we get erasure-resilient testers for these properties as corollaries.
We note that the erasure-resilient testers obtained this way work only for a restricted
range of erasures. However, we obtain erasure-resilient testers for the above properties

datasets. In this work, we focus on fixed datasets.

ERASURE-RESILIENT PROPERTY TESTING 3

with much better parameters in the technical sections of this article.
Intuitively, the relationship of our erasure-resilient model to tolerant testing is

akin to the relationship between error-correcting codes that withstand erasures and
error-correcting codes that withstand general errors. We conjecture that erasure-
resilient testing can be separated from tolerant testing in the same strong sense as in
our separation of standard testing from erasure-resilient testing.

Generic transformations. Our first goal while designing erasure-resilient testers is
to understand which existing algorithms in the standard property testing model can
be easily made erasure-resilient. We show (in Section 2) how to obtain erasure-resilient
testers for some properties by using standard testers for these properties as black box.
Our transformations apply to sample-based testers, which are testers that query uni-
formly and independently sampled points2. More specifically, our first transformation
works for proximity oblivious testers (POTs) [36] that are, in addition, restricted to be
sample-based. Our second transformation applies to sample-based testers for a class
of properties that we call extendable. Loosely speaking, a property is extendable if (1)
a function satisfying the property on a subdomain can be extended to a function satis-
fying the same property on the whole domain, and (2) a function that is ε-far from the
property on a subdomain cannot be extended to a function on the whole domain that
satisfies the property without changing the values on at least an ε fraction of positions
on the subdomain. Extendable properties are a generalization of a class of properties
defined by Jha and Raskhodnikova [40] and are formally defined in Definition 2.6.
Using our second transformation, we are able to obtain erasure-resilient testers for
properties such as being a low-degree univariate polynomial [47], monotonicity over
general poset domains [32], convexity of black and white images [10], and Boolean
functions over [n] with at most k runs of 0s and 1s.

Erasure-resilient testers for more challenging properties. One challenge in design-
ing erasure-resilient testers by using existing algorithms in the standard model as a
starting point is that many existing algorithms are more likely to query certain points
in the domain. Therefore, if these points are erased, the algorithms break. Specifi-
cally, the previously known optimal algorithms for testing whether a list of numbers is
sorted (and there are at least three different algorithms for this problem [26, 12, 18])
have this feature. Moreover, it is known that an algorithm that makes uniformly
random queries is far from optimal: it needs Θ(

√
n) queries instead of Θ(log n) for

n-element lists [26, 29].
There are a number of well studied properties for which all known optimal al-

gorithms heavily rely on querying specific points. Most prominent examples include
monotonicity, the Lipschitz properties and, more generally, bounded-derivative prop-
erties of real-valued functions on [n] and [n]d, as well as convexity of real-valued
functions on [n]. It is especially challenging to deal with real-valued functions in
our model, because there are many possibilities for erased values. We give efficient
erasure-resilient testers for all aforementioned properties of real-valued functions in
Sections 3-6.

1.1. The Erasure-Resilient Testing Model. We formalize our erasure-resilient
model for the case of property testing. Erasure-resilient versions of other computa-
tional models, such as tolerant testing, can be defined analogously.

2Sample-based testers were first considered by Goldreich, Goldwasser and Ron [34]. A systematic
study of sample-based testers was initiated by Goldreich and Ron [37] and continued by Fischer et
al. [31]. Sample-based testers are also called uniform testers in some other papers on testing specific
properties [10, 9, 11].

4 K. DIXIT, S. RASKHODNIKOVA, A. THAKURTA, N. VARMA

Definition 1.1 (α-erased function). Let D be a domain, R be a range, and α ∈
[0, 1). A function3 f : D 7→ R ∪ {⊥} is α-erased if f evaluates to ⊥ on at most an
α fraction of domain points. The points on which f evaluates to ⊥ are called erased.
The set of remaining (nonerased) points is denoted by N .

Note that an α-erased function has at most an α fraction of its values erased. In
particular, a function with no erasures is also an α-erased function for all α ∈ [0, 1).

A function f ′ : D → R that differs from a function f only on points erased
in f is called a completion of f . The (Hamming) distance of an α-erased function
f : D 7→ R ∪ {⊥} from a property (set) P is the minimum number of points in N on
which every completion of f needs to be changed to satisfy P. The relative Hamming
distance of f from P is the aforementioned quantity normalized by |N |. An α-erased
function f is ε-far from a property P if the relative Hamming distance of f from P is
at least ε.

Definition 1.2 (Erasure-resilient tester). An α-erasure-resilient ε-tester of prop-
erty P gets input parameters α ∈ [0, 1), ε ∈ (0, 1) and oracle access to an α-erased
function f : D → R∪ {⊥}. It outputs, with probability4 at least 2/3,

• accept if there is a completion f ′ : D → R of f that satisfies P;
• reject if every completion f ′ : D → R of f needs to be changed on at least

an ε fraction of N , the nonerased portion of f ’s domain, to satisfy P (that

is, f ′ is ε · |N ||D| -far from P).

The tester has 1-sided error if the first item holds with probability 1. The tester is
nonadaptive if the queries made by the tester do not depend on the answers to the
previous queries, and adaptive otherwise.

Let f|N denote the function f restricted to the setN of nonerased points. We show
(in Section 2) that if property P is extendable (Definition 2.6), we can define a property
PN such that the erasure-resilient tester for P is simply required to distinguish the
case that f|N satisfies PN from the case that f|N is ε-far from satisfying PN . For
example, if P is monotonicity of functions on a partially-ordered domain D then PN
is monotonicity of functions on N . (Most of the properties we consider in this article,
including monotonicity, Lipschitz properties and convexity, are extendable properties.)
Note that, even for the case of extendable properties, our problem is different from
the standard property testing problem because the tester does not know in advance
which points are erased.

1.2. Relationships With Other Testing Models. In this section, we state
our results that place erasure-resilient testing in between standard testing [47, 34] and
tolerant testing [44].

Connections to standard testing. Erasure-resilient testing is a generalization of
standard property testing [47, 34]. For functions with no erasures, we can set α =
0 in Definition 1.2 and obtain the definition of a standard tester. In Section 7.1,
we prove the following theorem which shows that erasure-resilient testing is a strict
generalization of standard testing even for properties of Boolean strings.

3Any object can be viewed as a function. E.g., an n-element array of real numbers can be viewed
as a function f : [n]→ R, an image—as a map from the plane to the set of colors, and a graph—as
a map from the set of vertex pairs to {0, 1}.

4In general, the error probability can be any δ ∈ (0, 1). For simplicity, we formulate our model
and the results with δ = 1/3. To get results for general δ, by standard arguments, it is enough to
multiply the complexity of an algorithm by log 1/δ.

ERASURE-RESILIENT PROPERTY TESTING 5

Theorem 1.3. There exists a property R on Boolean strings of length n such
that for all large enough n, the property R can be ε-tested in the standard model using
O(1/ε) queries. However, there exists some c > 0 such that for large enough n and
for all constant α ∈ (0, 1), every α-erasure-resilient 1

4 -tester for R has to make at
least nc queries.

The techniques used to prove Theorem 1.3 is nearly identical to the techniques
used by Fischer and Fortnow [30] to separate tolerant testing from standard testing.
However, our result is stronger than the result in [30], as erasure-resilient testing is
at least as easy as tolerant testing.

Connections to tolerant testing and distance approximation. Tolerant testers were
defined and studied by Parnas, Ron and Rubinfeld [44]. An algorithm is an (ε1, ε2)-
tolerant tester for a property P if, when given oracle access to a function f , the
algorithm (i) accepts with probability at least 2/3 if f is ε1-close to P and (ii) rejects
with probability at least 2/3 if f is ε2-far from P, where 0 ≤ ε1 < ε2 ≤ 1. The
algorithm is fully tolerant if it works as above for all ε1 < ε2, which are given as the
inputs. We show (in Section 7.2) that the existence of a fully tolerant tolerant tester
for a property implies the existence of an α-erasure-resilient ε-tester for that property
for some settings of ε and α.

Theorem 1.4. If A is a fully tolerant tester for a property P of functions of the
form f : D 7→ R, then there exists an α-erasure-resilient ε-tester for P that has the
same query complexity as A and works for all α ∈ [0, 1), ε ∈ (0, 1) such that α < ε

1+ε .

In Section 7.2, we apply a different version of Theorem 1.4 to algorithms that
have oracle access to a function and approximate its distances to sortedness [48],
monotonicity [28], and convexity [27], and obtain erasure-resilient testers for these
properties.

1.3. Properties That We Study. Next we define properties of real-valued
functions considered in this article and summarize previous work on testing them.
Most properties of real-valued functions studied in the property testing framework
are for functions over the line domain [n] and, more generally, the hypergrid domain
[n]d.

Definition 1.5 (Hypergrid, line). Given n, d ∈ N, the hypergrid of size n and
dimension d is the set [n]d associated with an order relation �, such that x � y for
all x, y ∈ [n]d iff xi ≤ yi for all i ∈ [d], where xi (respectively yi) denotes the ith

coordinate of x (respectively, y). The special cases [n] and [2]d are called the line and
hypercube, respectively.

We consider domains that are subsets of [n]d to be able to handle arbitrary erasures
on [n]d.

Monotonicity. Monotonicity of functions, first studied in the context of property
testing in [33], is one of the most widely investigated properties in this model [26, 24,
42, 32, 1, 29, 39, 6, 44, 2, 12, 15, 13, 18, 19, 14, 17]. A function f : D 7→ R, defined on
a partially ordered domain D with order �, is monotone if x � y implies f(x) ≤ f(y)
for all x, y ∈ D. The query complexity of testing monotonicity of functions f : [n] 7→ R
is Θ(log n/ε) [26, 29]; for functions f : [n]d 7→ R, it is Θ(d log n/ε) [18, 19], and for
functions over arbitrary partially ordered domains D, it is O(

√
|D|/ε) [32].

Lipschitz properties. Lipschitz continuity is defined for functions between arbi-
trary metric spaces, but was specifically studied for real-valued functions on hypergrid
domains [40, 3, 18, 22, 14, 17] because of applications to privacy [40, 22]. For D ⊆ [n]d

6 K. DIXIT, S. RASKHODNIKOVA, A. THAKURTA, N. VARMA

and c ∈ R, a function f : D 7→ R is c-Lipschitz if |f(x) − f(y)| ≤ c · ||x − y||1 for all
x, y ∈ D, where ||x − y||1 is the L1 distance between x and y. More generally, f is
(α, β)-Lipschitz, where α < β, if α · ||x − y||1 ≤ |f(x) − f(y)| ≤ β · ||x − y||1 for all
x, y ∈ [n]d. All (α, β)-Lipschitz properties can be tested with O(d log n/ε) queries [18].

Bounded derivative properties (BDPs). The class of BDPs, defined by Chakrabarty
et al. [17], is a natural generalization of monotonicity and the (α, β)-Lipschitz proper-
ties. An ordered set B of 2d functions l1, u1, l2, u2, . . . , ld, ud : [n− 1] 7→ R∪ {±∞} is
a bounding family if for all r ∈ [d] and y ∈ [n−1], lr(y) < ur(y). Let B be a bounding
family of functions and let er be the unit vector along dimension r. The property
P(B) of being B-derivative bounded is the set of functions f : [n]d 7→ R such that
lr(xr) ≤ f(x+ er)− f(x) ≤ ur(xr) for all r ∈ [d] and x ∈ [n]d with xr 6= n, where xr
is the rth coordinate of x.

Consider a graph H with vertex set [n]d and edges in both directions between
every pair of points in [n]d that differ in exactly one coordinate. Then the value
ur(xr) is the upper bound on the increase in function value along the edge (x, x+ er)
and −lr(xr) is the upper bound on the increase in function value along the edge
(x+ er, x). A bounding family B = {l1, u1, . . . , ld, ud} defines a quasi-metric

mB(x, y) :=
∑

r:xr>yr

xr−1∑
t=yr

ur(t)−
∑

r:xr<yr

yr−1∑
t=xr

lr(t)

over points x, y ∈ [n]d. In [17], the authors observe that for D = [n]d, a function
f : D 7→ R satisfies P(B), the bounded derivative property defined by B, iff ∀x, y ∈ D,
f(x)−f(y) ≤ mB(x, y). To get an intuition about this observation, note that mB(x, y)
is the upper bound dictated by the functions in B on the amount by which the value
of f can increase along a shortest path from y to x in the graph H. We use this
characterization as our definition of BDPs for functions over arbitrary D ⊆ [n]d.

The bounding family for monotonicity is obtained by setting lr(y) = 0 and ur(y) =
∞ for all r ∈ [d], and for the (α, β)-Lipschitz property, by setting lr(y) = α and
ur(y) = β for all r ∈ [d]. In general, different bounding families allow a function
to be monotone in one dimension, (α, β)-Lipschitz in another dimension and so on.
Chakrabarty et al. [17] showed that for every BDP P, the complexity of testing P for
functions f : [n]d 7→ R is Θ(d log n/ε).

Convexity of functions. A function f : D 7→ R is convex if f(tx + (1 − t)y) ≤
tf(x) + (1− t)f(y) for all x,y ∈ D and t ∈ [0, 1]. If D ⊆ [n], equivalently, f is convex

if f(y)−f(x)
y−x ≤ f(z)−f(y)

z−y for all x < y < z. Parnas, Ron and Rubinfeld [43] gave a

convexity tester for functions f : [n] 7→ R with query complexity O(log n/ε). Blais,
Raskhodnikova and Yaroslavtsev [14] gave an Ω(log n) bound for nonadaptive testers
for this problem.

1.4. Our Results. We give efficient erasure-resilient testers for all properties
discussed in Section 1.3. All our testers have optimal complexity for the case with no
erasures and have an additional benefit of not relying too heavily on the value of the
input function at any specific point.

Monotonicity on the line. We start by giving (in Section 3) an erasure-resilient
monotonicity tester on [n].

Theorem 1.6 (Monotonicity tester on the line). There exists a one-sided error
α-erasure-resilient ε-tester for monotonicity of real-valued functions on the line [n]

that works for all α ∈ [0, 1), ε ∈ (0, 1), with query complexity O
(

logn
ε(1−α)

)
.

ERASURE-RESILIENT PROPERTY TESTING 7

Without erasure resilience, the complexity of testing monotonicity of functions f :
[n] 7→ R is Θ(log n/ε) [26, 29]. Thus, the query complexity of our erasure-resilient
tester has optimal dependence on the domain size and on ε.

The starting point of our algorithm is the tester for sortedness from [26]. This
tester picks a random element of the input array and performs a binary search for
that element. It rejects if the binary search does not lead to the right position. The
first challenge is that the tester always queries the middle element of the array and
is very likely to query other elements that are close to the root in the binary search
tree. So, it will break if these elements are erased. To make the tester resilient to
erasures, we randomize the binary tree with respect to which it performs the binary
search. The second challenge is that the tester does not know which points are
erased. To counteract that, our tester samples points from appropriate intervals until
it encounters a nonerased point.

Bounding the expected query complexity of our tester (Claim 3.2) is the most
interesting part of the analysis. We view the tester as performing a binary search for
a uniformly random nonerased point in the array (obtained via sampling), where at
every step of the binary search, the nonerased point that guides the search at that step
is sampled uniformly at random from the interval at that step. The intuition behind
our analysis is that such a randomized binary search for a uniformly random search
point is biased towards visiting intervals containing a larger fraction of nonerased
points. In other words, conditioned on picking a specific nonerased point to split
the current interval, the probability of the search point being in the left (or right)
subinterval of the current interval is proportional to the fraction of nonerased points
in that subinterval.

BDPs on the hypergrid. In Sections 4-5, we generalize our monotonicity tester
in two ways: (1) to work over general hypergrid domains, and (2) to apply to all
BDPs. We achieve it by giving (1) a reduction from testing BDPs on the line to
testing monotonicity on the line that applies to erasure-resilient testers and (2) an
erasure-resilient version of the dimension reduction from [17].

Theorem 1.7 (BDP tester on the hypergrid). For every BDP P of real-valued
functions on the hypergrid [n]d, there exists a one-sided error α-erasure-resilient ε-
tester that works for all α ∈ [0, 1), ε ∈ (0, 1), where α ≤ ε/970d, with query complexity

O
(
d logn
ε(1−α)

)
.

Every known tester of a BDP for real-valued functions over hypergrid domains
work by sampling an axis-parallel line uniformly at random and checking for violations
on the sampled line. Our erasure-resilient testers also follow this paradigm. To check
for violations on the sampled line, we use one iteration of our BDP tester for the line.
We show (in Section 5.4) the existence of α-erased functions f : {0, 1}d 7→ R that
are ε-far from monotone for α = Θ(ε/

√
d) but do not have violations to monotonicity

along any of the axis parallel lines (which are the edges of the hypercube, in this case).
It implies that every tester for monotonicity that follows the paradigm above will fail
when α = Ω(ε/

√
d). Thus, some restriction on α in terms of d and ε is necessary for

such testers.
Convexity on the line. Finally, in Section 6, we develop additional techniques to

design a tester for convexity (which is not a BDP) on the line. The query complexity
of our tester has the same dependence on n and ε as in the standard convexity tester
of Parnas et al. [43]. The dependence on n is optimal for nonadaptive testers [14],
and the tester from [43] is conjectured to be optimal in the standard model.

8 K. DIXIT, S. RASKHODNIKOVA, A. THAKURTA, N. VARMA

Theorem 1.8 (Convexity tester on the line). There exists a one-sided error
α-erasure-resilient ε-tester for convexity of real-valued functions on the line [n] that

works for all α ∈ [0, 1), ε ∈ (0, 1), with query complexity O
(

logn
ε(1−α)

)
.

Our algorithm for testing convexity combines ideas on testing convexity from [43],
testing sortedness from [26], and our idea of randomizing the search. The tester of [43]
traverses a uniformly random path in a binary tree on the array [n] by selecting one
of the half-intervals of an interval uniformly at random at each step. Instead of doing
this, our tester samples a uniformly random nonerased search point and traverses the
path to that point in a random binary search tree just as in our modification of the
tester of [26]. This is done to bias our algorithm to traverse paths containing intervals
that have a larger fraction of nonerased points. However, instead of checking whether
the selected point can be found, as in our monotonicity tester, the convexity tester
checks a more complicated “goodness condition” in each visited interval of the binary
search tree. It boils down to checking that the slope of the functions between pairs
of carefully selected points satisfies the convexity condition. In addition to spending
queries on erased points due to sampling, like in the monotonicity tester, our tester
also performs “walking queries” to find the nearest nonerased points to the left and to
the right of the pivots in our random binary search tree. We show that the overhead in
the query complexity due to querying erased points is at most a factor of O(1/(1−α)).

2. Generic transformations. In this section, we present our transformations
that make two classes of testers erasure-resilient. Our transformations apply to (1)
Proximity Oblivious Testers (POTs) that are additionally restricted to be sample-
based (Theorem 2.3), and (2) sample-based testers for extendable properties (Theo-
rem 2.8).

Recall that a tester is called sample-based if its queries are distributed uniformly
and independently at random. A one-sided error sample-based tester always accepts
functions that satisfy the specified property. Sample-based testers were first consid-
ered by Goldreich, Goldwasser, and Ron [34] and systematically studied by Goldreich
and Ron [37] and Fischer et al. [31]. In particular, [37, 31] show that certain types of
query-based testers yield sample-based testers with sublinear (but dependent on the
size of the input) sample complexity.

2.1. Sample-based POTs. In this section, we give a simple transformation
that makes every POT that queries uniformly and independently random domain
points erasure-resilient. POTs were defined by Goldreich and Ron [36] and further
studied by Goldreich and Kaufman [35] and Goldreich and Shinkar [38]. We first
define POTs.

Definition 2.1 (POT, [38]). Let P be a property, let ρ : (0, 1] 7→ (0, 1] be a
monotone function and let c ∈ (0, 1] be a constant. A tester T is a (ρ, c)-POT for P
if

• for every function f ∈ P, the probability that T accepts f is at least c, and
• for every function f /∈ P, the probability that T accepts f is at most c−ρ(εf),

where εf denotes the relative Hamming distance of f to P.

It is important to note that POTs in general can query arbitrary domain points. Next,
we define sample-based POTs, a restriction of POTs.

Definition 2.2 (Sample-based POT). A POT whose queries are distributed uni-
formly and independently at random is called a sample-based POT.

ERASURE-RESILIENT PROPERTY TESTING 9

Erasure-resilient versions of POTs and sample-based POTs can be defined analo-
gously. Next, we state our generic transformation for sample-based POTs.

Theorem 2.3. If T is a sample-based (ρ,c)-POT for a property P that makes q
queries, then there exists a sample-based α-erasure-resilient (ρ′,c)-POT T ′ for P that
makes q queries for all α < ρ(εf · (1− α))/q, where ρ′(x) = ρ(x · (1− α))− α · q for
x ∈ (0, 1].

Proof. Let P be a property of functions over a domain D. The tester T ′ queries q
sample-based and independent points from D. It accepts if the sample has an erased
point. Otherwise, it runs T on the q sampled nonerased points and accepts if and
only if T accepts.

Consider an α-erased function f ∈ P and a completion fr ∈ P. The tester T
accepts fr with probability at least c. If T accepts fr on querying a sample S ⊆ D,
then T ′ also accepts f on S. Thus, the probability that T ′ accepts f is at least c.

A tuple W ∈ Dq is a witness for a function g /∈ P, if T rejects g upon sampling
W . Consider an α-erased function f /∈ P. Every completion fr of f is εf (1− α)-far
from P. Since T rejects fr with probability at least 1 − c + ρ(εf (1 − α)), at least
(1− c+ ρ(εf (1− α))) · |D|q tuples in Dq are witnesses for fr. Erasing one point can
affect at most q · |D|q−1 witnesses. Thus, erasing an α fraction of points can affect at
most α ·q · |D|q witnesses. At least (1− c+ρ(εf (1−α))−α ·q) · |D|q out of |D|q tuples
are witnesses with no points (in them) erased. The probability that T ′ samples such
a tuple (and rejects f) is at least 1− c+ ρ(εf (1− α))− α · q = 1− c+ ρ′(εf). Hence,
the probability that T ′ accepts f is at most c − ρ′(εf). This probability is less than
c for all α < ρ(εf (1− α))/q.

Low degree univariate polynomials. We apply Theorem 2.3 to a POT designed by
Rubinfeld and Sudan [47] for the property of being a univariate polynomial of degree
at most d over a finite field F and get an α-erasure-resilient ε-tester for this property.
Consider a function f : F 7→ F that we would like to test for being a univariate
polynomial of degree at most d. The tester from [47] selects d+2 points uniformly and
independently at random from F and checks whether there is a univariate polynomial
of degree at most d that fits all these points (by interpolation). It accepts if there
is such a polynomial and rejects otherwise. Call this tester T . It is evident that T
always accepts univariate polynomials of degree at most d. The authors of [47] also
prove that T rejects with probability at least ε if f is ε-far from being a univariate
polynomial of degree at most d. Therefore, T is a (ρ, 1)-POT for this property, where
ρ is the identity function. By Theorem 2.3, there exists an α-erasure-resilient (ρ′, 1)-
POT, say T ′, that makes d + 2 queries, where ρ′(x) = x(1 − α) − α · (d + 2). The
probability that T ′ rejects an α-erased function f that is ε-far from being a univariate
polynomial of degree at most d is at least ε(1−α)−α · (d+ 2). The corollary follows.

Corollary 2.4. There exists a sample-based α-erasure-resilient ε-tester for the
property of being a univariate polynomial of degree at most d over a finite field F
that works for all α ∈ [0, 1), ε ∈ (0, 1), where α ≤ ε

d+2+ε , with query complexity

O
(

d+2
ε(1−α)−α·(d+2)

)
.

2.2. Sample-based testers for extendable properties. In this section, we
define extendable properties and present our generic transformation for sample-based
testers of such properties. First, we define the extension of a function.

Definition 2.5 (Extension of a function). Given S ⊆ T , the extension of a
function f : S 7→ R to a domain T is a function g : T 7→ R that agrees with f on

10 K. DIXIT, S. RASKHODNIKOVA, A. THAKURTA, N. VARMA

every point in S.

Our definition of extendable properties is a generalization of the notion of edge-
transitive properties that allow extension by Jha and Raskhodnikova [40]. A property
is edge-transitive if it is fully characterized by predicates on pairs of domain points.
Such a property allows extension if every function that satisfies the property on a
subdomain can be extended to one that satisfies the property on the whole domain.
We now define extendable properties.

Definition 2.6 (Extendable property). For a domain D and all S ⊆ D, let PS
denote a set of functions over domain S. The property

⋃
S⊆D PS is extendable if, for

all S, T : S ⊆ T ⊆ D,
1. for every function f ∈ PS , there is an extension f ′ ∈ PT , and
2. for every function f that is ε-far from PS , every function f ′ ∈ PT differs

from f on at least an ε fraction of points in S.

We now give examples of some properties that are extendable and some that
are not. A lot of properties that we deal with, in this paper, are edge-transitive
properties that allow extension. Monotonicity over arbitrary partial orders, (α, β)-
Lipschitz properties over hypergrids, and more generally BDPs over hypergrids are
all edge-transitive properties that allow extension. However, the class of properties
for which we are able to design erasure-resilient testers is a strict superset of edge-
transitive properties that allow extension. One such property is convexity of real-
valued functions over the domain [n]. Another one is the property of Boolean functions
over [n] whose value alternates between 0 and 1 at most k times when moving from
domain point 1 to domain point n. Both properties are not edge-transitive, but are
extendable.

We now describe two properties defined over [n] that are not extendable. The
first among these, denoted P ′, is equal to

⋃
I⊆[n] P ′I , where P ′I for I ⊆ [n] is the

set of all integer-valued functions that are strictly increasing w.r.t. the ordering on
points in I. The property P ′ is not extendable, since it does not satisfy the first
condition in Definition 2.6. To see this, consider the function f : {1, 3} 7→ Z such that
f(1) = 1, f(3) = 2. Clearly, f belongs to P ′{1,3} and hence to P ′. But f cannot be

extended to {1, 2, 3} while satisfying P ′. The second property, denoted P̂, is equal
to
⋃
I⊆[n] P̂I . A function f : I 7→ [n] is in P̂I for I ⊆ [n], if for each i ∈ I, we have

f(i) ≤ |{j ∈ I : j ≤ i}|. In other words, a function satisfies P̂I if the value of the
function at each point i is at most the number of points j ≤ i where it is defined. It
is easy to see that this property satisfies the first condition in Definition 2.6. We will
show that it does not satisfy the second condition. Consider the function f defined
on {1, 3}, where f(1) = 1 and f(3) = 3. This function is 1/2-far from being in P̂I .
But this can be extended to the function g over [n] as g(i) = i for all i ∈ [n]. Clearly,
g satisfies P̂, violating the second condition in Definition 2.6.

We are now ready to describe our generic transformation for extendable proper-
ties. In what follows, we will be talking about functions defined over various domains,
their extensions, and completions5. The next lemma is used in the proof of our generic

5When we say that g : T 7→ R is an extension of f : S 7→ R, we mean that g and f are functions
defined on different domains T and S and that S ⊆ T . The function f is not defined on the set
T \ S and f(x) = g(x) for all x ∈ S. The functions f and/or g may or may not have some of their
function values erased. On the other hand, when we say that g is a completion of f , it must be the
case that f and g are functions defined on the same domain, say T ′, with f being (possibly) erased,
but not undefined, on some points in T ′. Also, the values of f and g must be equal on the points in

ERASURE-RESILIENT PROPERTY TESTING 11

transformation.

Lemma 2.7. Let
⋃
S⊆D PS be an extendable property. Consider an α-erased func-

tion f over domain D and let N ⊆ D be the set of nonerased points in it. If f ∈ PD,
then f|N ∈ PN . If f is ε-far from PD, then f|N is ε-far from PN .

Proof. Suppose that f ∈ PD. Let f∗ ∈ PD be a completion of f . As f∗ is a
function defined over D and f∗ has no erasures, f∗ is an extension of f|N . Therefore,
f|N ∈ PN , since

⋃
S⊆D PS is an extendable property.

Now, suppose that f is ε-far from PD. Then, every completion of f needs to be
changed in at least an ε fraction of nonerased points to satisfy PD. Assume for the
sake of contradiction that the relative Hamming distance of f|N to PN is ε′ < ε. Let
g be the function in PN closest to f|N . Let ge be an extension of g to D that satisfies
PD. Define an extension of f|N to D, say fe as follows. The function fe takes the
same values as f|N on points in N and takes the same values as ge on the remaining
points. Note that fe is a completion of f as well. Clearly, fe can be made to satisfy
PD by changing an ε′ < ε fraction of points on N , which contradicts the assumption
that f is ε-far from PD.

Our generic transformation for sample-based testers of extendable properties fol-
lows.

Theorem 2.8. Let q(·, ·) be a function that is nondecreasing in the first argument
and nonincreasing in the second argument. Let

⋃
S⊆D PS be an extendable property.

Suppose T is a one-sided error sample-based ε-tester for the property
⋃
S⊆D PS , such

that T makes q(|S|, ε) queries from S to test for PS , for every S ⊆ D. Assume also
that for every S ⊆ D, the probability that T tests PS correctly does not decrease when it
makes more queries. Then, there is a one-sided error sample-based α-erasure-resilient

ε-tester for PD that makes O
(
q(|D|,ε)
1−α

)
queries for all α ∈ [0, 1).

Proof. Let Q = 2q(|D|, ε)/(1− α). Consider the tester T ′ that samples Q points
uniformly and independently at random from D. If there are fewer than q(|D|, ε)
nonerased points in the sample, T ′ accepts. Otherwise, it runs T on the sampled
nonerased points and accepts if and only if T accepts.

The expected number of nonerased points in a uniform sample of size Q from D
is at least Q · (1 − α) = 2q(|D|, ε). By the Chernoff bound, the probability that T ′

samples fewer than q(|D|, ε) nonerased points is at most e−q(|D|,ε)/4.
Consider an α-erased function f over domain D. Let N be the set of nonerased

points. If f ∈ P, then f|N ∈ PN by Lemma 2.7, and the tester T ′ always accepts.
Assume now that f is ε-far from P. Then f|N is ε-far from PN by Lemma 2.7.
Therefore T rejects with probability at least 2/3 on a sample of size at least q(|N |, ε).
Thus, by a union bound, the probability that T ′ accepts is at most 1/3 + e−q(|D|,ε)/4.
This probability can be brought below 1/3 by repeating T ′ a small constant number
of times, whenever q(|D|, ε) ≥ 8.

In the following, we show a few applications of Theorem 2.3.
Convexity of Images. A black and white image, represented by a function f :

S 7→ {0, 1} for a subset S of [n]2, is convex if and only if for every pair of points
u, v ∈ S such that f(u) = f(v) = 1, every point t ∈ S on the line joining u and v
satisfy f(t) = 1. Convexity is an extendable property. Testing whether an image,
represented by a function f : [n]2 7→ {0, 1}, is convex has been studied by Berman,

T ′ where f is nonerased.

12 K. DIXIT, S. RASKHODNIKOVA, A. THAKURTA, N. VARMA

Murzabulatov and Raskhodnikova [10]. The authors of [10] give a one-sided error
sample-based ε-tester for this property that makes O(1/ε4/3) uniform queries. Their
proofs go through even if the domain of f is an arbitrary subset of [n]2. The corollary
now follows by applying Theorem 2.8 to the tester in [10].

Corollary 2.9. There exists a sample-based α-erasure-resilient ε-tester for con-
vexity of black and white images that works for all α ∈ [0, 1), ε ∈ (0, 1/2), with query

complexity O
(

1
(1−α)ε4/3

)
.

Monotonicity over poset domains. A real-valued function f defined on a partially
ordered domain is monotone if the function values respect the order relation of the
poset. Monotonicity is an extendable property. The tester by Fischer et al. [32] sam-
ples O(

√
N/ε) points uniformly at random and checks for violations to monotonicity

among them. The corollary follows by applying Theorem 2.8 to this tester.

Corollary 2.10. There exists a sample-based α-erasure-resilient ε-tester for mono-
tonicity of real-valued functions over N element posets that works for all α ∈ [0, 1), ε ∈
(0, 1), with query complexity O

(
1

(1−α) ·
√

N
ε

)
.

Boolean functions with k-runs. A function f : [n] 7→ {0, 1} has k runs if the list
f(1), f(2), . . . , f(n) has at most k − 1 alternations of values. The problem is to test
whether a given function f : [n] 7→ {0, 1} has k runs or is ε-far from this property.
Kearns and Ron [41] studied a relaxation of this problem. Specifically, they showed
that O(1/ε2) queries suffice to test whether a Boolean function has k runs or is ε-far
from being a k/ε-run function. They also developed a sample-based O(

√
k/ε2.5)-query

tester for this relaxation and proved that every sample-based ε-tester for the k-run
property requires Ω(

√
k) queries. Balcan et al. [4] obtained a O(1/ε4)-query tester

for this property in the active testing model. They also developed a sample-based
O(
√
k/ε6)-query tester6. Canonne et al. [16] designed a one-sided error nonadaptive

ε-tester for Boolean k-run functions that works for all k ∈ [n], ε ∈ (0, 1), with query
complexity O(k+1

ε). In addition, they also show a two-sided nonadaptive ε-tester for
Boolean k-run functions that works for all k ∈ [n], ε ∈ (0, 1) with query complexity
Õ(1/ε7). We show the following.

Theorem 2.11. There exists a sample-based ε-tester for the property of being

a Boolean function with k runs over [n] that works for all ε ∈ (k
2

n , 1), with query

complexity O
(

min
{
k·log k
ε ,

√
k
ε6

})
.

Algorithm 1 Tester for k-run Boolean functions

Input: parameters k ∈ N, ε ∈ (k
2

n , 1); oracle access to f : [n] 7→ {0, 1}

1: Query the values at 3(k+1)·log(k+1)
ε points uniformly and independently at random.

2: Reject if the values of f at these points alternate k or more times with respect
to the ordering on the domain; accept otherwise.

Our tester for being a k-run function is given in Algorithm 1. It always accepts
a function f that has at most k runs. The following lemma implies Theorem 2.11.

6Both [41] and [4] study Boolean functions over [0, 1]. We note that their algorithms also work
for Boolean functions over [n].

ERASURE-RESILIENT PROPERTY TESTING 13

Lemma 2.12. If f is ε-far from being a k-run function, Algorithm 1 rejects with
probability at least 2/3.

Proof. For j ∈ [n] and b ∈ {0, 1}, let Tb,j denote the set consisting of the smallest
dn ·ε/(k+1)e points in the set {x : j ≤ x ≤ n and f(x) = b}, that is, the set of points
between j and n where f takes the value b. For a set S ⊆ [n], let max(S) denote
the largest element in S. We will first describe a process to construct a few disjoint
subsets of [n] with some special properties.

• Let S1 = Tb,1 such that max(Tb,1) < max(T1−b,1).
• For i ≥ 2, the sets Si are defined as follows. Let the value that f takes on

the elements in Si−1 be b and let j = max(Si−1). Set Si = T1−b,j+1. Stop if
max(Si) = n or Si = ∅.

The sets that this process constructs have the following properties. All Si’s are
subsets of [n]. Each point in Si+1 is larger than every point in Si for all i. The
function f takes the same value on all points in Si for all i. The value of f on points
in Si+1 is the complement of the value of f on points in Si for all i.

Next, we show that our process constructs sets S1, S2, . . . Sk+1 each of size dn ·
ε/(k + 1)e, if f is ε-far from satisfying the property. Let the process construct
nonempty sets S1, S2, . . . St. Assume for the sake of contradiction that t ≤ k. Let
S′1 = {x : 1 ≤ x ≤ max(S1)}. Let S′i = {x : max(Si−1) < x ≤ max(Si)} for all
1 < i ≤ t. Note that for all i ∈ [t], if f takes the value b on elements in Si, then f
takes the value 1− b on elements in S′i \Si. We will describe a function f ′ that has at
most t runs. Set the values of f ′ on each x ∈ S′1 \ S1 to the value that f takes on S1.
For each 1 < i ≤ t, set the values of f ′ on Si to the value of f on S′i \ Si. On the rest
of the points, f ′ takes the same value as f . We will now show that f ′ has at most t
alternating intervals. The function f ′ takes the same value on points in S′1∪S′2. Also,
for each 1 < i ≤ t, the function f ′ is constant on S′i. Thus, f ′ has at most t runs.
Also, f ′ differs from f in at most t · dn · ε/(k + 1)e ≤ k · dn · ε/(k + 1)e ≤ nε points,
for k <

√
nε. This is a contradiction.

Using the fact that k + 1 such subsets exist, we show that the tester will detect
a violation with high probability. For a particular i, the probability that none of the
points selected by the algorithm lie in Si is at most

(1− ε/(k + 1))
3(k+1) log(k+1)/ε ≤ 1/(k + 1)3.

Therefore, by a union bound, the probability that there exists an i such that none of
the points selected by the algorithm lies in Si is at most (k + 1)−2 < 1/3 for k ≥ 1.

Since the property of being a k-run function is extendable, applying Theorem 2.8
to Theorem 2.11 yields the following corollary.

Corollary 2.13. There exists a sample-based α-erasure-resilient ε-tester for the
property of being a k-run Boolean function over [n], that works for all α ∈ [0, 1),

ε ∈
(
k2

n , 1
)

, with query complexity O
(

1
1−α ·min

{
k·log k
ε ,

√
k
ε6

})
.

3. Erasure-Resilient Monotonicity Tester for the Line. In this section, we
prove Theorem 1.6. Recall that, for a function f : [n] 7→ R∪{⊥}, the set of nonerased
points (the ones that map to R) is denoted by N . The function f is monotone if
x < y implies f(x) ≤ f(y) for all x, y ∈ N . The tester does not know N in advance.

We present our tester in Algorithm 2. It has oracle access to f and takes α and ε
as inputs. In each iteration, it performs a randomized binary search for a nonerased
index sampled uniformly at random (u.a.r.) from N and rejects if it finds violations

14 K. DIXIT, S. RASKHODNIKOVA, A. THAKURTA, N. VARMA

to monotonicity. In the description of our tester, we use I[i, j] to denote the set of
natural numbers from i until and including j. We alternatively refer to I[i, j] as the
interval from i to j.

Algorithm 2 Erasure-Resilient Monotonicity Tester for the Line

Input: parameters α ∈ [0, 1), ε ∈ (0, 1); oracle access to f : [n] 7→ R ∪ {⊥}

1: Set Q =
⌈
60 logn
ε(1−α)

⌉
.

2: Accept at any point if the number of queries exceeds Q.
3: repeat 2

ε times:
4: Sample points uniformly at random from I[1, n] and query them until we get

a point s ∈ N .
5: Set `← 1, r ← n.
6: while ` ≤ r do
7: Sample points uniformly at random from I[`, r] and query them until we

get a point m ∈ N .
8: if s < m then set r ← m− 1 and Reject if f(s) > f(m).

9: if s > m then set `← m+ 1 and Reject if f(s) < f(m).

10: if s = m then Go to Step 3. . Search completed.

11: Accept.

One of the key ideas in our analysis is to view each iteration of the loop in Step 3
as first sampling a binary search tree T on N according to a particular distribution
DT , and then traversing a uniformly random rooted path in that tree, where a rooted
path refers to a path from the root of a tree to an arbitrary node in that tree. This
view enables us to prove the correctness of the tester by generalizing an argument
from [26] for the case when Algorithm 2 manages to complete all iterations of Step 3
before it runs out of queries. The challenge is that the algorithm might get stuck
pursuing long paths in the search tree and waste many queries on erased points. To
resolve the issue of many possible queries to erased points, we prove an upper bound
on the expected number of queries made while traversing a uniformly random rooted
path in a binary search tree sampled from DT . We combine this with the fact that
the expected depth of a binary search tree sampled from DT is O(log n), in order to
obtain the final bound on the probability that the algorithm exceeds its query budget
(and wrongly accepts functions that are far from monotone).

3.1. Analysis. We analyze the tester in this section. The query complexity of
the tester is clear from its description. The main statement of Theorem 1.6 follows
from Lemma 3.1, proved next.

Lemma 3.1. Algorithm 2 accepts if f is monotone, and rejects with probability at
least 2/3 if f is ε-far from monotone.

Proof. The tester accepts whenever f is monotone. To prove the other part of
the lemma, assume that f is ε-far from monotone. Let A be the event that the tester
accepts f . Let q denote the total number of queries made. We prove that Pr[A] ≤ 1/3.
The event A occurs if either q > Q or the tester does not find a violation in any of
the 2/ε iterations of Step 3. Thus, Pr [A] ≤ Pr [A | q ≤ Q] + Pr [q > Q] .

Each iteration of Step 3 can be viewed as traversing a uniformly random search
path in a binary search tree on N , where the tree is sampled from a particular dis-
tribution. More formally, we describe a two-stage random process that provides such

ERASURE-RESILIENT PROPERTY TESTING 15

an alternate view of a single iteration of Step 3.
The first stage of the process involves constructing a binary search tree T over N

as follows. Each node of T is associated with an interval I[a, b] and has a nonerased
point from I[a, b] set as its key, where 1 ≤ a ≤ b ≤ n. The root node of T is associated
with the interval I[1, n]. Consider an arbitrary node Γ of the tree whose key has not
been set yet. Let I[a, b] be the interval associated with it. Repeatedly sample points
u.a.r. from I[a, b] and query them, until we get a point p ∈ N ∩ I[a, b]. Set the key of
the node Γ to p. If p is the leftmost nonerased point in I[a, b], then the node Γ does
not have a left child. Similarly, if p is the rightmost nonerased point in I[a, b], then
Γ does not have a right child. Otherwise, we associate the intervals I[a, p − 1] and
I[p+ 1, b] with the left and right children of Γ respectively. We use DT to denote the
distribution on binary search trees sampled in this way. Note that the leaves of T are
nodes associated with intervals containing exactly one nonerased point. Since the key
of each node in T is a unique nonerased point in N , we will henceforth refer to the
nodes of T using their keys.

A pair of points a, b ∈ N such that a < b violate the monotonicity of f if f(a) >
f(b). In the second stage of the random process, we sample a node s ∈ N of T u.a.r.
and reject if s with any one of its ancestors in T violate the monotonicity of f . In
other words, we sample a uniformly random rooted path from T and check whether
the deepest node on that path violates the monotonicity of f with any of its ancestors.

We now argue that each iteration of Step 3 of our algorithm simulates the above
random process. Consider the search path traversed by the algorithm in an iteration.
It is easy to see that there exists a binary search tree T sampled from DT such that
T contains the search path traversed by the algorithm. Each node of this binary
search tree T is a unique element of N . As the algorithm samples its search point
s u.a.r. from N , the node corresponding to s in T is a node sampled u.a.r. from the
tree T . The algorithm checks whether the monotonicity of f is violated by s and
any of the nonerased points on its search path. This is exactly the same as checking
for violations to monotonicity of f between s and its ancestors in T . The number
of queries made to the intervals associated with the nodes along the path from the
root of T to s during the random process has the same distribution as the number of
queries made by the tester while traversing the search path to s.

We are now ready to bound the probability that the tester does not reject in an
iteration of Step 3, conditioned on the event that q ≤ Q. Consider a binary search
tree T over N sampled from the distribution DT . A point s ∈ N is called searchable
with respect to T if s does not violate the monotonicity of f with any of its ancestors
in T . Consider two points i, j ∈ N , where i < j, both searchable with respect to T .
Let a ∈ N be the lowest common ancestor of the nodes i and j in T . Since i and j
are both searchable, it must be the case that f(i) ≤ f(a) and f(a) ≤ f(j) and hence,
f(i) ≤ f(j). Thus, for every tree T sampled from DT , the function f restricted to
the domain points that are searchable with respect to T is monotone. Therefore, if f
is ε-far from monotone, for every binary search tree T sampled from DT , at least an
ε-fraction of the points in N are not searchable with respect to T . Thus, the random
process, and each iteration of Step 3 of the tester, reject with probability at least ε.
Consequently,

Pr [A | q ≤ Q] ≤ (1− ε) 2
ε ≤ e−2 < 1

6
.

In the rest of the proof, we bound Pr[q > Q]. We first prove an upper bound
on the expected number of queries to traverse a uniformly random rooted path in
a binary search tree T sampled according to DT . Recall that a rooted path in a

16 K. DIXIT, S. RASKHODNIKOVA, A. THAKURTA, N. VARMA

search tree T is a path from the root to some node in T . Let I be the interval
associated with a node Γ of T and let αI denote the fraction of erased points in
I. The number of queries needed to sample a nonerased point from I with uniform
sampling is a geometric random variable with expectation 1/(1− αI). We define the
query-weight of node Γ to be this expectation. The query-weight of a path in T is the
sum of query-weights of the nodes on the path (which is equal to the expected total
number of queries made by the random process to all the intervals on that path while
constructing T).

Claim 3.2. Let f be an α-erased function, where α ∈ [0, 1). Consider a binary
search tree T of height h over N , sampled according to the distribution DT . The
expected query-weight of a uniformly random rooted path in T is at most h

1−α .

Proof. There are exactly |N | rooted paths in T . Let S denote the sum of query-
weights of all the rooted paths. The expected query-weight of a uniformly random
rooted path in T is then equal to S/|N |.

Consider a node Γ in T associated with an interval I. There are |I|(1 − αI)
nonerased points in I. The paths from the root of T to the nodes corresponding to
each of these nonerased points pass through Γ. Hence, the query-weight of Γ gets
added to the query-weights of all those paths. Therefore, the total contribution of Γ
towards S is |I|, since the query-weight of Γ is 1/(1 − αI). Note that the intervals
associated with nodes at the same level of T are disjoint from each other. Hence, the
total contribution to S from all nodes on the same level of T is at most n. Therefore,
the value of S is at most n · h, where h is the depth of T . Observe that this quantity
is independent of the fraction of erasures α. Therefore, the expected query-weight of
a search path is at most n ·h/|N |, which is at most h/(1−α), since |N | ≥ n · (1−α).

Next, we bound the expected height of a tree T sampled from DT . Consider the
following random process that constructs a binary tree T on the set S = [k]. The root
of T is associated with the set S. The key of an arbitrary node v in T associated with
a set S′ ⊆ S is a uniformly random element x ∈ S′. The left child of v is associated
with the set {y ∈ S′ : y < x} if this set is nonempty. The right child of v is associated
with the set {y ∈ S′ : y > x} if this set is nonempty. A tree constructed in this way is
called a random binary search tree on k nodes. We now state a fact on the expected
height of a random binary search tree.

Claim 3.3 ([45, 20, 25, 46]). If Hk is the random variable denoting the height
of a random binary search tree on k nodes, then E[Hk] ≤ 5 log k.

It is easy to see that the height of a tree T sampled from DT has the same distribution
as the random variable H|N |, since the key associated with each node in T is a
uniformly random nonerased point from the interval associated with that node. Hence,
the expected depth of T is at most 5 log(|N |) ≤ 5 log n. The corollary below follows
immediately.

Corollary 3.4. The expected total number of queries made to all the intervals
of a uniformly random rooted path in a random binary search tree T on N , sampled
according to DT , is at most 5 logn

1−α .

It follows from Corollary 3.4 that the expected number of queries made by Algorithm 2
in a single iteration is at most 5 log n/(1−α). Hence, by the linearity of expectation,
the expected number of queries made by the tester over all its iterations, E[q], is at

ERASURE-RESILIENT PROPERTY TESTING 17

most 10 log n/(ε · (1− α)). Applying Markov’s inequality to q, we can then see that

Pr[q > Q] ≤ 1

6
.

Therefore, the probability that the tester does not reject is

Pr[A] ≤ Pr[A | a ≤ Q] + Pr[q > Q] <
1

6
+

1

6
=

1

3
.

This completes the proof of the lemma.

4. Erasure-Resilient Monotonicity Testers for the Hypergrid. In this
section, we present our erasure-resilient tester for monotonicity over hypergrid do-
mains and prove the following theorem, which is a special case of Theorem 1.7. We
present the erasure-resilient testers for general BDPs in Section 5.

Theorem 4.1. There exists a one-sided error α-erasure-resilient ε-tester for mono-
tonicity of real-valued functions on the hypergrid [n]d that works for all α ∈ [0, 1), ε ∈
(0, 1), where α ≤ ε/250d, with query complexity O(d lognε(1−α)).

Let L denote the set of all axis-parallel lines in the hypergrid, where an axis-
parallel line is a set of n distinct points in [n]d that agree on all but one coordinate.
Our monotonicity tester, which is described in Algorithm 3, samples a uniformly
random axis-parallel line in each iteration of Step 2 and does a randomized binary
search for a uniformly random nonerased point on that line (as in Algorithm 2). It
rejects if and only if a violation to monotonicity is found within its query budget. To
analyze the tester, we first state two important properties of a uniformly random axis-
parallel line in Lemma 4.2 and Lemma 4.3, which we jointly call the erasure-resilient
dimension reduction. The statements and proofs of more general versions of these
lemmas, applicable to all BDPs, are given in Section 5.

Lemma 4.2 (Dimension reduction: distance). Let εf be the relative Hamming
distance of an α-erased function f : [n]d 7→ R∪ {⊥} from monotonicity. For an axis-
parallel line ` ∈ L, let f` : [n] 7→ R ∪ {⊥} denote the restriction of f to ` and let ε`
denote the relative Hamming distance of f` from monotonicity. Then

E`∼L[ε`] ≥
(1− α) · εf

4d
− α.

Lemma 4.3 (Dimension reduction: fraction of erasures). Consider an α-erased
function f : [n]d 7→ R ∪ {⊥}. For ` ∈ L, let α` denote the fraction of erased points in
`. Then, for every η ∈ (0, 1),

Pr
`∼L

[
α` >

α

η

]
≤ η.

The query complexity of the tester is evident from its description. We will now prove
its correctness in the following lemma, which will then imply Theorem 4.1.

Lemma 4.4. Algorithm 3 accepts if f is monotone, and rejects with probability at
least 2/3 if f is ε-far from monotone.

Proof. The tester accepts if f is monotone. So, assume that f is ε-far from
being monotone. Let A denote the event that the tester does not find a violation to
monotonicity in any of its iterations. If q denotes the total number of queries made
by the tester,

Pr[A] ≤ Pr[A|q ≤ Q] + Pr[q > Q].

18 K. DIXIT, S. RASKHODNIKOVA, A. THAKURTA, N. VARMA

Algorithm 3 Erasure-Resilient Monotonicity Tester for [n]d

Input: parameters ε ∈ (0, 1), α ∈
[
0, ε

250d

]
; oracle access to f : [n]

d 7→ R ∪ {⊥}

1: Set Q =
⌈
1200d·logn
ε(1−α)

⌉
.

2: repeat 12d
ε(1−α)−4dα times:

3: Sample a line ` ∈ L uniformly at random.
4: Sample points u.a.r. from ` and query them until we get a point s ∈ N .
5: Perform a randomized binary search for s on ` as in Algorithm 2.
6: Reject if any violation to monotonicity is found.

7: Accept at any point if the number of queries exceed Q.

Let t denote the number of iterations of Step 2 of the tester. Let Ai denote the
event that the tester does not find a violation to the monotonicity of f in its i-th
iteration. For ` ∈ L, let f` denote f restricted to the line `. Let ε` denote the relative
Hamming distance of f` from monotonicity. Let E` denote the event that the tester
samples the line ` in a particular iteration.

We then have, Pr[Ai | q ≤ Q] ≤
∑
`∈L(1 − ε`) Pr[E`] = 1 − E`∼L[ε`]. Us-

ing Lemma 4.2 and the fact that εf ≥ ε, we have,

E`∼L[ε`] ≥
(1− α) · εf

4d
− α ≥ (1− α) · ε

4d
− α.

Therefore,

Pr[A | q ≤ Q] =

t∏
i=1

Pr[Ai | q ≤ Q] ≤
(

1− (1− α) · ε− 4dα

4d

)t
<

1

10
.

It now remains to bound Pr[q > Q]. Let η stand for 1/10t. Let αi denote the
fraction of erasures in the line sampled during iteration i and let qi denote the number
of queries made by the algorithm during iteration i. Let G denote the (good) event
that αi ≤ α/η for all iterations i ∈ [t]. By Corollary 3.4, E[qi | G] ≤ 5η · log n/(η−α),
and by the linearity of expectation,

E[q | G] ≤ log n

2(η − α)
≤ 120d log n

ε(1− α)
,

where the last inequality above follows from our assumption that α ≤ ε/250d. Using
Markov’s inequality, Pr[q > Q | G] ≤ 1/10. Also, by combining Lemma 4.3 with a
union bound over the iterations of Step 2 of the tester, we can see that Pr[G] ≤ 1/10.
Therefore, Pr[q > Q] ≤ Pr[q > Q | G] + Pr[G] ≤ 1/5. Thus, the probability that the
tester does not reject f is

Pr[A] ≤ Pr[A | q ≤ Q] + Pr[q > Q] <
1

10
+

1

5
<

1

3
.

5. Erasure-Resilient BDP Testing. In this section, we discuss our erasure-
resilient testers for all bounded derivative properties over hypergrid domains and
prove Theorem 1.7. First, we show in Lemma 5.4 that testing for any BDP on [n]
reduces to testing monotonicity on [n]. Next, we prove Lemma 5.7 and Lemma 5.8
that reduces the problem of erasure-resilient testing of a BDP over hypergrid domains
to testing of the same property over the line.

ERASURE-RESILIENT PROPERTY TESTING 19

5.1. Erasure-Resilient BDP Tester for the Line. In this section, we show
that (erasure-resilient) testing of bounded derivative properties (BDPs) on the line
reduces to monotonicity testing on the line and prove Theorem 5.5. As noted in Sec-
tion 1.3, BDPs comprise of a large class of properties that have been studied in the
property testing literature.

Given a function f : [n] 7→ R ∪ {⊥}, and a bounded derivative property P, we
first define violated pairs in f with respect to P.

Definition 5.1 (Violated pair). Given a function f : [n] 7→ R∪{⊥} and bound-
ing family B consisting of functions l, u : [n − 1] 7→ R, two points x, y ∈ N such
that x < y violate the property P(B) with respect to f if f(x) − f(y) > mB(x, y) =

−
∑y−1
t=x l(t) or f(y) − f(x) > mB(y, x) =

∑y−1
t=x u(t). The pairs (x, y) and (y, x) are

called violated.

Consider a bounded derivative property P of functions defined over [n] and associated
bounding functions l, u : [n− 1] 7→ R. The following claim states that, we may assume
w.l.o.g. that l(i) = −u(i) for all i ∈ [n− 1]. We use it in the proof of Claim 5.3.

Claim 5.2. Consider a function f : [n] → R ∪ {⊥} and a bounding function
family B over [n] with l, u : [n− 1] 7→ R. Let g : [n] 7→ R ∪ {⊥} be a function that

takes the value f(i) +
∑n−1
j=i

l(j)+u(j)
2 for each i ∈ N and is erased on the remaining

points. Let B′ be a bounding function family over [n] with l′, u′ : [n − 1] 7→ R such

that u′(i) = −l′(i) = u(i)−l(i)
2 for all i ∈ [n − 1]. Then x, y ∈ N violate P(B) with

respect to f if and only if x, y violate P(B′) with respect to g.

Proof. Note that x, y ∈ N , where x < y, is not violated with respect to f if and
only if max{f(x)− f(y)−mB(x, y), f(y)− f(x)−mB(y, x)} ≤ 0. We have

g(x)− g(y)−mB′(x, y) = f(x)− f(y) +

y−1∑
i=x

u(i) + l(i)

2
−
y−1∑
i=x

u(i)− l(i)
2

= f(x)− f(y)−
y−1∑
i=x

l(i) = f(x)− f(y)−mB(x, y).

Also,

g(y)− g(x)−mB′(y, x) = f(y)− f(x)−
y−1∑
i=x

u(i) + l(i)

2
−
y−1∑
i=x

u(i)− l(i)
2

= f(y)− f(x)−
y−1∑
i=x

u(i) = f(y)− f(x)−mB(y, x).

Thus, max{g(x) − g(y) − mB′(x, y), g(y) − g(x) − mB′(y, x)} = max{f(x) − f(y) −
mB(x, y), f(y)− f(x)−mB(y, x)}. The claim follows.

The following claim shows a reduction from testing BDPs over [n] to testing
monotonicity over [n].

Claim 5.3. Consider an α-erased function f : [n] 7→ R∪{⊥} and bounding func-
tions l, u : [n− 1] 7→ R such that −l(i) = u(i) = γ(i) for all i ∈ [n− 1]. Let P be the
BDP defined by l and u. Let g, h : [n] 7→ R∪{⊥} be two functions that take the values

g(i) = f(i)−
∑n−1
r=i γ(r) and h(i) = −f(i)−

∑n−1
r=i γ(r) for all i ∈ N and are erased

on the remaining points. Then, the following conditions hold:

20 K. DIXIT, S. RASKHODNIKOVA, A. THAKURTA, N. VARMA

(1) x, y ∈ N violate P with respect to f iff x, y violate monotonicity with respect
to either g or h.

(2) If f is in P, then both g and h are both monotone.
(3) If f is ε-far from P, then either g or h is at least ε/4-far from monotonicity.

Proof. Consider a pair (i, j) ∈ N ×N where i < j. We have,

g(i)− g(j) = f(i)− f(j)−
j−1∑
r=i

γ(r);

h(i)− h(j) = f(j)− f(i)−
j−1∑
r=i

γ(r).

If (i, j) does not violate P with respect to f , we have f(j)−f(i)−
∑j−1
r=i γ(r) ≤ 0

and f(i)−f(j)−
∑j−1
r=i γ(r) ≤ 0. Thus, (i, j) satisfies the monotonicity property with

respect to g and h. On the other hand, if (i, j) violates P with respect to f , then

either f(j) − f(i) −
∑j−1
r=i γ(r) > 0 or f(i) − f(j) −

∑j−1
r=i γ(r) > 0. That is, (i, j)

violates monotonicity with respect to either g or h. Parts (1) and (2) of the lemma
follow directly from these arguments.

To prove part (3) of the lemma, assume that f is ε-far from the property P.
Define the violation graph Gf as follows. The vertex set corresponds to N . For each
(i, j) ∈ N × N such that i < j, there is an (undirected) edge between i ∈ N and
j ∈ N iff the pair (i, j) violates P with respect to f . By Lemma 2.5 in [17], the size
of every maximal matching in Gf is at least ε · |N |/2. Consider a maximal matching
M in Gf . From the discussion above, the pair of nonerased points corresponding to
each edge in M violates monotonicity with respect to either g or h. Therefore, at
least ε · |N |/4 pairs (i, j) ∈ N ×N such that i < j, violate monotonicity with respect
to at least one of g and h. Assume w.l.o.g. that at least ε · |N |/4 such pairs violate
monotonicity with respect to h. One has to change the function value of h on at least
one endpoint of each such pair to repair it. This means that h is at least ε/4-far from
monotone.

Therefore, in order to test the bounded derivative property P on f with proximity
parameter ε, one can test monotonicity on g and h with proximity parameter ε/4 and
error probability 1/6 and accept iff both tests accept.

Lemma 5.4. Let Qmon(α, ε, n) denote the query complexity of α-erasure-resilient
ε-testing of monotonicity of real-valued functions on the line. Then, for every BDP,
α-erasure-resilient ε-testing of real-valued functions on the line has query complexity
O(Qmon(α, ε/4, n)). The same statement holds for 1-sided error testing.

The following theorem is a direct consequence of Lemma 5.4 and Theorem 1.6.

Theorem 5.5 (BDP tester on the line). For every BDP P, there exists a one-
sided error α-erasure-resilient ε-tester for P of real-valued functions over [n] that

works for all α ∈ [0, 1), ε ∈ (0, 1), with query complexity O
(

1
1−α ·

logn
ε

)
.

5.2. Erasure-Resilient Dimension Reduction. In this section, we prove two
important properties of a uniformly random axis parallel line in the hypergrid [n]d. We
do this in Lemma 5.7 and Lemma 5.8, which we jointly call erasure-resilient dimension
reduction. We first introduce some notation.

Let g be an α-erased function on D, and N ⊆ D be the set of nonerased points in
g. Recall that the Hamming distance of g from P, denoted by dist(g,P), is the least

ERASURE-RESILIENT PROPERTY TESTING 21

number of nonerased points on which every completion of g needs to be changed to
satisfy P. The relative Hamming distance between g and P is dist(g,P)/|N |. We use
g|S to denote the restriction of g to a subset S ⊆ D. Note that all these definitions
make sense even for functions with no erasures in them.

Let L denote the set of all axis-parallel lines in [n]d. Let P be a bounded derivative
property of functions over [n]d defined by a bounding family B = {l1, u1, . . . , ld, ud}
where li, ui : [n − 1] 7→ R for all i ∈ [d]. For i ∈ [d], let Pi denote the set of
functions over [n]d with no violations to P along dimension i. Let Piline denote the
bounded derivative property of functions over [n] defined by the bounding functions
li, ui : [n− 1] 7→ R.

Consider an α-erased function f : [n]d 7→ R ∪ {⊥}. Let N ⊆ [n]d denote the set
of nonerased points in f . For an axis-parallel line ` ∈ L, let N` denote the set of
nonerased points on ` and f` denote the function f restricted to `.

Lemma 5.7 shows that, for a uniformly random axis-parallel line ` ∈ L, the ex-
pected relative Hamming distance of f` from Piline is roughly proportional to the
relative Hamming distance of f from P, where i is the dimension along which ` lies.
First, we prove Claim 5.6 that we use in our proof of Lemma 5.7.

Claim 5.6. Let α ∈ [0, 1). For every α-erased function f : [n]d 7→ R ∪ {⊥} and
every bounded derivative property P over [n]d, we have,

1

4
dist(f,P) ≤ α · d · nd +

d∑
i=1

dist(f,Pi).

Proof. Let g : [n]d 7→ R be a function in P such that dist(g|N , f|N) is minimum.

We define f∗ : [n]d 7→ R, a completion of f , such that f∗(x) = f(x) for all x ∈ N and
f∗(x) = g(x) for all x /∈ N . Note that g is the function closest to f∗ in P, as g is the
function that minimizes dist(g|N , f|N).

For all i ∈ [d], let gi : [n]d 7→ R in Pi be such that dist(gi|N , f|N) is minimum.

Also, for all i ∈ [d], let hi : [n]d 7→ R be defined as hi(x) = f(x) for all x ∈ N , and
hi(x) = gi(x) for x ∈ [n]d \N . Note that for all i ∈ [d], the function hi is a completion
of f . We have,

1

4
dist(f,P) ≤ 1

4
dist(f∗,P) as f∗ is a completion of f

≤
d∑
i=1

dist(f∗,Pi) by dimension reduction from [17]

≤
d∑
i=1

dist(f∗, g
i) because gi ∈ Pi

≤
d∑
i=1

dist(f∗, h
i) +

d∑
i=1

dist(hi, gi) by triangle inequality

≤ d · α · nd +

d∑
i=1

dist(f,Pi).

To see the last inequality, notice that f∗ and hi differ only on points in [n]d \ N .
Hence, for all i ∈ [d], we have, dist(f∗, h

i) ≤ α · nd. Also, for all i ∈ [d], dist(f,Pi) is
defined as the minimum number of points in N that every completion of f need to be

22 K. DIXIT, S. RASKHODNIKOVA, A. THAKURTA, N. VARMA

changed to get a function in Pi. Since hi is a completion of f for all i ∈ [d] and gi is
the function that minimizes dist(gi|N , f|N), we can see that dist(f,Pi) ≥ dist(hi, gi)

for all i ∈ [d].

We now use Claim 5.6 to prove the first part of our dimension reduction.

Lemma 5.7 (Dimension reduction: distance). Let εf be the relative Hamming
distance of f from P. Given ` ∈ L, let ε` denote the relative Hamming distance of f`
from Piline, where i ∈ [d] is the dimension along which ` lies. Then

E`∼L[ε`] ≥
(1− α) · εf

4d
− α.

Proof. There are d axis-parallel directions and, therefore, dnd−1 axis-parallel lines
in [n]d. Thus, Pr[E`] = 1/dnd−1, where E` is the event of getting a specific axis parallel
line ` while sampling u.a.r. from L. Let Li denote the set of axis parallel lines along
dimension i.

E`∼L[ε`] =
∑
`∈L

ε` · Pr[E`]

=

d∑
i=1

∑
`∈Li

ε` · Pr[E`]

=
1

dnd−1
·
d∑
i=1

∑
`∈Li

dist(f`,Piline)
|N`|

≥ 1

dnd
·
d∑
i=1

∑
`∈Li

dist(f`,Piline) since |N`| ≤ n

=
1

dnd
·
d∑
i=1

dist(f,Pi)

≥ 1

dnd
·
(

dist(f,P)

4
− αd · nd

)
by Claim 5.6

≥ 1− α
4d

· εf − α.

We conclude this section with the second part of our dimension reduction.

Lemma 5.8 (Dimension reduction: fraction of erasures). Consider an α-erased
function f : [n]d 7→ R ∪ {⊥}. Given an axis-parallel line ` ∈ L, let α` denote the
fraction of erased points in `. Then, for every η ∈ (0, 1),

Pr
`∼L

[α` > α/η] ≤ η.

Proof. Note that a uniformly randomly sampled point in [n]d is erased with prob-
ability α. We can sample a point uniformly at random by first sampling a line ` ∈ L
uniformly at random and then sampling a point uniformly randomly on `, which is
erased with probability α`. Therefore we have

α =
∑
`∈L

Pr[E`] · α` = E`∼L[α`].

The claim then follows from Markov’s inequality.

ERASURE-RESILIENT PROPERTY TESTING 23

5.3. Erasure-Resilient BDP Testers for the Hypergrids. We now present
our erasure-resilient tester for an arbitrary BDP P and complete the proof of Theo-
rem 1.7. Let B = {`i, ui : i ∈ [d]} be a bounding family for P, where `i, ui : [n− 1] 7→
R. Let Li denote the set of axis-parallel lines along dimension i. Our tester is de-
scribed in Algorithm 4.

Algorithm 4 Erasure-Resilient Tester for BDP P over [n]d

Input: parameters ε ∈ (0, 1), α ∈ [0, ε/970d]; oracle access to f : [n]
d → R ∪ {⊥}

1: Set Q =

⌈
4800d · log n

ε(1− α)

⌉
.

2: repeat
48d

ε(1− α)− 4dα
times:

3: Sample a line ` ∈ L uniformly at random.
4: Define g and h from f`, `i and ui as in Claim 5.3 if ` is sampled from Li.
5: Sample points u.a.r. from ` and query them until we get a point s ∈ N .
6: Perform a randomized binary search for s on ` as in Algorithm 2.
7: Reject if any violation to monotonicity is found in either g or h.

8: Accept at any point if the number of queries exceed Q.

The bound on the query complexity of the tester is evident from its description.
We will now prove its correctness in Lemma 5.9, which will then imply Theorem 1.7.
The proof of Lemma 5.9 is very similar to the proof of Lemma 4.4. The only difference
is that we use an additional step in the analysis to reduce BDP testing to monotonic-
ity testing over the line, given by Claim 5.3. This step introduces constant-factor
differences in the mathematical expressions.

Lemma 5.9. Algorithm 4 accepts if f is in P, and rejects with probability at least
2/3 if f is ε-far from P.

Proof. To prove the first part of the lemma, consider an α-erased function f ∈ P
and consider an arbitrary iteration of the tester. Suppose the tester samples a line
` ∈ L such that ` is along the ith dimension. Let g`, h` : [n] 7→ R denote the functions
g and h obtained by applying Claim 5.3 to f` and Piline. By Claim 5.3, we know that
f` is in Piline iff both h` and g` are monotone. As is clear from Algorithm 4, the tester
runs (one-sided error) erasure-resilient monotonicity testers for two such functions
and therefore, the tester accepts f in that iteration. Hence, the tester accepts f .

Consider an α-erased function f : [n]d 7→ R ∪ {⊥} that is ε-far from P. Let
A denote the event that the tester does not reject f in any of its iterations. If q
denotes the total number of queries made by the tester, we have, Pr[A] ≤ Pr[A | q ≤
Q] + Pr[q > Q].

Let t denote the number of iterations of the tester. Let Ai denote the event that
the tester accepts in its ith iteration. As before, let E` denote the event that the
tester gets the line ` when it samples lines u.a.r. from L. Let ε` denote the relative
Hamming distance of f` from Pjline, where j is the index of the dimension along which
` lies. By Claim 5.3, either g` or h` is ε`/4-far from monotone. Thus, the tester rejects
with probability at least ε`/4 if it samples `. We then have,

Pr[Ai | q ≤ Q] ≤
∑
`∈L

(
1− ε`

4

)
Pr[E`] = 1− 1

4
·E`∼L[ε`].

24 K. DIXIT, S. RASKHODNIKOVA, A. THAKURTA, N. VARMA

Using Lemma 5.7 and the fact that εf ≥ ε, we have,

E`∼L[ε`] ≥
(1− α) · εf

4d
− α ≥ (1− α) · ε

4d
− α.

Therefore,

Pr[A | q ≤ Q] =

t∏
i=1

Pr[Ai | q ≤ Q] ≤
(

1− (1− α) · ε− 4dα

16d

)t
<

1

10
.

It now remains to bound Pr[q > Q]. Let η stand for 1/10t. Let αi denote the
fraction of erasures in the line sampled during iteration i and let qi denote the number
of queries made by the algorithm during iteration i. Let G denote the (good) event
that αi ≤ α/η for all iterations i ∈ [t]. By Corollary 3.4, E[qi | G] ≤ 5η · log n/(η−α),
and by the linearity of expectation,

E[q | G] ≤ log n

2(η − α)
≤ 480d log n

ε(1− α)
,

where the last inequality follows from our assumption that α ≤ ε/970d. Using
Markov’s inequality,

Pr[q > Q | G] ≤ 1

10
.

Also, by combining Lemma 5.8 with a union bound, we can see that Pr[G] ≤ 1/10.
Therefore,

Pr[q > Q] ≤ Pr[q > Q | G] + Pr[G] ≤ 1

5
.

5.4. Limitations of Dimension Reduction in Erasure-Resilient Testing.
In this section, we show that when the fraction of erasures is large enough, dimen-
sion reduction based testers that sample axis parallel lines uniformly at random and
check for violations on them, are bound to fail. Axis-parallel lines in hypercubes
(Definition 1.5) are called edges. We prove the following claim.

Lemma 5.10. For all ε ∈ (0, 1/2], all large enough even d and α = Θ(ε/
√
d),

there exists an α-erased function f : {0, 1}d 7→ R ∪ {⊥}, such that f is ε-far from
monotone but f has no violations to monotonicity along the edges of the hypercube
{0, 1}d.

Proof. For the ease of exposition, we prove this lemma for ε = 1/2. We note
that similar calculations could extend this proof to any ε ∈ (0, 1/2]. Assume that d is
even. For x ∈ {0, 1}d, let ||x||0 denote the number of nonzero coordinates in x. The
function f , for x ∈ {0, 1}d is defined as:

f(x) =

 ⊥ if ||x||0 = d/2
1 if ||x||0 < d/2
0 otherwise.

Recall that the distance to monotonicity of a function f : {0, 1}d 7→ {0, 1} is the
fraction of nonerased function values that we need to change to make f monotone. As
d is even, the number of points in {0, 1}d above and below the middle layer are equal.
We need to change function values at either all the points below the middle layer,
or all the points above middle layer, to make f monotone. Hence, f , as described

ERASURE-RESILIENT PROPERTY TESTING 25

above is 1
2 -far from monotone. Also, no axis-parallel edge is violated with respect

to monotonicity as the middle layer is erased. This completes the proof for the case
when ε = 1/2, since α = Θ(1/

√
d).

For general ε, we can define the set of erased points to be the points in {0, 1}d,
such that their Hamming weight is β · d, where β = β(ε) < 1/2 is chosen so that
|S|/2d = ε, where S is the set of all points in {0, 1}d with Hamming weight less than
β · d. As in the above case, we set all points with Hamming weight smaller than β · d
to 1 and the ones with Hamming weight larger than β ·d to be 0. Similar calculations
help us prove that for large enough d, fraction of erased points is Θ(ε/

√
d). In this

case, f is ε-far from monotone, but no axis-parallel edge is violated in f with respect
to monotonicity.

6. Erasure-Resilient Convexity Tester for the Line. In this section, we
prove Theorem 1.8. Given an α-erased function f : [n] 7→ R ∪ {⊥}, let νi denote
the i-th nonerased domain point in [n]. The derivative of f at a point νi ∈ N ,

denoted by ∆f(νi), is f(νi+1)−f(νi)
νi+1−νi , whenever νi+1 ≤ n. The function f is convex iff

∆f(νi) ≤ ∆f(νi+1) for all i ∈ [|N | − 2]. In other words, a function is convex iff its
derivative is monotone.

Looking at the above definition, it would seem that testing convexity of a function
can be reduced to testing monotonicity of its derivative. However, this reduction
does not work even for the case of testing when there are no erasures, since there
are functions that are very far from convex but whose derivatives are very close to
monotone. One such example, given in [43], is the following function f : [n] 7→ R
defined for even n. For i ≤ n/2, we have f(i) = i and for i > n/2, we have f(i) = i−1.
This function is 1

2 -far from convex. But its derivative, ∆f , takes the value 1 on all
points except for a single point, where it is 0. Hence, ∆f is 1

n−1 -close to monotone.
The authors of [43] then describe a convexity tester by utilizing the relationship

between convexity of a function and the monotonicity of its derivative more cleverly.
Our tester builds upon the ideas of the convexity tester from [43].

A high-level idea of the tester is as follows. Our tester (Algorithm 5) has several
iterations. Every iteration of the tester can be thought of as a traversal of a uniformly
random rooted path in a random binary search tree T on N sampled from the dis-
tribution DT , just as Algorithm 2. For each interval on such a path, we check a set
of conditions computed based on the values at some nonerased points in the interval,
called anchor points, and two real numbers, called the left and right slopes. More
specifically, we verify that the function restricted to the sampled nonerased points
in the interval is convex, by comparing the slopes across consecutive points. The
algorithm accepts if all the intervals it sees pass these checks. The main steps in the

Algorithm 5 Erasure-Resilient Convexity Tester

Input: parameters ε ∈ (0, 1), α ∈ [0, 1); oracle access to f : [n] 7→ R ∪ {⊥}.

1: Set Q =
⌈
180 logn
ε(1−α)

⌉
.

2: Accept at any point if the number of queries exceeds Q.
3: repeat 2

ε times
4: Sample points in I[1, n] u.a.r and query them until we get a point s ∈ N .
5: Test-Interval(I[1, n], ∅,−∞,+∞, s) and Reject if it rejects.

6: Accept.

26 K. DIXIT, S. RASKHODNIKOVA, A. THAKURTA, N. VARMA

analysis of the tester follow that of the analysis of Algorithm 2. To analyze the tester,
we first prove that, with high probability, the algorithm does not run out of its budget
of queries Q. For this, we classify the queries that the tester makes into two kinds as
follows and analyze them separately.

Definition 6.1 (Sampling queries). The queries made by the tester when it re-
peatedly samples and queries points from an interval until it finds a nonerased domain
point are called sampling queries.

Definition 6.2 (Walking queries). The queries made by the tester when it keeps
querying consecutive points from intervals, starting from one nonerased point until it
finds the next nonerased point, are called walking queries.

In the proof of Lemma 6.3, we first show that the expected number of walking queries
is at most twice the number of the expected number of the sampling queries and then
use Corollary 3.4 to bound the expected number of sampling queries.

In the second part of the analysis we prove that, conditioned on the total number
of queries made by the algorithm not exceeding Q, in each iteration, with probability
at least ε, the tester rejects a function that is ε-far from being convex. This part of
the proof draws ideas from the proof of correctness of the tester in [43].

Procedure 6 Test-Interval(I[i, j],A,m`,mr, s)

Input: interval I[i, j]; a set of nonerased points A; left slope m` ∈ R; right slope
mr ∈ R; search point s ∈ N .

1: Sample points u.a.r. from I[i, j] and query them until we get a point x ∈ N .
2: Sequentially query points x+ 1, x+ 2 . . . until we get a nonerased point y.
3: . Set y ← x if there is no nonerased point in I[i, j] to the right of x.
4: Sequentially query points x− 1, x− 2 . . . until we get the nonerased point z.
5: . Set z ← x if there is no nonerased point in I[i, j] to the left of x.
6: Let (a1, a2, . . . , ak) denote the sorted list of points in the set A′ ← A∪ {x, y, z}.
7: Let mi = (f(ai+1)− f(ai))/(ai+1 − ai) for all i ∈ [k − 1].
8: Reject if m` ≤ m1 ≤ m2 ≤ · · · ≤ mk−1 ≤ mr is not true.
9: Let A′` and A′r be the sets of points in A′ that are smaller and larger than x,

respectively.
10: if s < x then
11: Reject if Test-Interval(I[i, z],A′`,m`,∆f(z), s) rejects.

12: if s > x then
13: Reject if Test-Interval(I[y, j],A′r,∆f(x),mr, s) rejects.

14: Accept.

Lemma 6.3. Algorithm 5 accepts if f is convex, and rejects with probability at
least 2/3 if f is ε-far from convex.

Proof. We first define some notation for our analysis. Consider a search path
traversed by the algorithm. Similar to the analysis of Algorithm 2, this path can
be viewed as a uniformly random rooted path in a binary tree T over N , sampled
according to DT . Let I[i, j] be an interval on the path. Consider the execution of
Test-Interval (Procedure 6) called with I[i, j] as the first argument. We call the
nonerased point x sampled in Step 1 of Procedure 6 its pivot, the set of points A′
in Step 6 of Procedure 6 its anchor set and the values m` and mr (passed to the
procedure Test-Interval) as its left and right slopes, respectively. That is, given a

ERASURE-RESILIENT PROPERTY TESTING 27

binary search tree T over N , we associate each node in the tree with an interval, a
pivot, an anchor set and two slopes. Note that the size of the anchor set A′ in Step 6
is at most 5, since each interval can have at most two anchor points of its ancestors
carried down to it (the extreme nonerased points of the interval), and also have at
most 3 of its own anchor points.

It is evident that the tester accepts whenever f is convex. To prove the other
part of the lemma, assume that f is ε-far from being convex. Let A be the event
that the tester accepts f . Let q denote the total number of queries made. We have,
Pr [A] ≤ Pr [A | q ≤ Q] + Pr [q > Q] .

We first bound Pr[q > Q]. As mentioned earlier, the queries made by the tester
can be classified into sampling queries (Definition 6.1) and walking queries (Defini-
tion 6.2). By Corollary 3.4, the expected number of sampling queries made in one
iteration of the tester is at most 5 log n/(1− α).

We will now bound the expected number of walking queries. Consider an interval
I with αI fraction of erasures in it. A point in I can get queried as part of the walking
queries if either the first nonerased point to its right or the first nonerased point to
its left on the line [n] gets sampled as the pivot of I. For a nonerased point i ∈ I, let
w(i) denote the number of walking queries to be made if the algorithm samples i as
the pivot. Therefore ∑

i∈N∩I
w(i) ≤ 2|I|,

since every point in I gets counted at most twice in this sum. There are exactly
|I|(1−αI) nonerased points in I and each of them could be the pivot in I with equal
probability. Hence, the expected number of walking queries that Algorithm 5 makes
in I is at most 2/(1 − αI). This is at most twice the expected number of sampling
queries that the algorithm makes in I.

Therefore, by the linearity of expectation, the expected number of walking queries
made in one iteration of the tester is at most 10 log n/(1 − α). Thus, the expected
value of the total number of queries made by the tester in one iteration is at most
15 log n/(1 − α) and that over all iterations is at most 30 log n/ε(1 − α). Thus, by
Markov’s inequality,

Pr[q > Q] ≤ 1

6
.

Next, we bound Pr[A | q ≤ Q]. Consider a binary search tree T over N , sam-
pled according to the distribution DT , and a function f : [n] 7→ R ∪ {⊥}. Let
Γ(I[i, j],A,m`,mr) be a node in T with interval I[i, j], anchor setA = {a1, a2, . . . , ak}
and slopes m` and mr such that ai ≤ ai+1 for all i ∈ [k − 1]. Let mi = (f(ai+1) −
f(ai))/(ai+1 − ai) ∀i ∈ [k − 1].

Definition 6.4 (Good Node, Bad Node). A node Γ(I[i, j],A,m`,mr) is good
if m` ≤ m1 ≤ m2 ≤ · · · ≤ mk−1 ≤ mr. Otherwise, it is bad.

Definition 6.5 (Violator Node). An node Γ is a violator if it is bad and all its
ancestor nodes in T are good.

Definition 6.6 (Witness). A nonerased domain point is a witness with respect
to T if it belongs the interval associated with a violator node in T .

We prove that if f is ε-far from being convex, then, for every binary search tree
T , the fraction of nonerased domain points that are witnesses is at least ε. We start
by assuming that there is a tree in which the fraction of witnesses is less than ε. We

28 K. DIXIT, S. RASKHODNIKOVA, A. THAKURTA, N. VARMA

show that we can correct the function values only on the witnesses and get a convex
function, which gives a contradiction.

Claim 6.7. If f is ε-far from convex, then the fraction of witnesses in every
binary search tree T is at least ε.

Proof. Assume for the sake of contradiction that there is a binary search tree T
such that the fraction of witnesses with respect to T is less than ε. In the following,
we will construct a convex function g : [n] 7→ R ∪ {⊥} by changing the values of f
only on witnesses with respect to T . Since the fraction of witnesses is less than ε,
functions f and g will differ on less than an ε fraction of nonerased domain points,
which will give us the desired contradiction.

Consider a violator node Γ in T and let I[i, j] be the interval associated with it. If
Γ is the root of T , every nonerased domain point in f is a witness by definition. This
contradicts our assumption that the fraction of witnesses is less than ε. Therefore, we
can assume that Γ is a non-root node in T . Let the anchor set and slopes associated
with the parent node of Γ in T be A = {a1, a2, . . . , ak}, m` and mr, respectively.
Assume without loss of generality that ai ≤ ai+1 for all i ∈ [k − 1]. Suppose that
Γ is the right child of its parent. The case when Γ is the left child of its parent is
analogous and is hence omitted. Let {au, au+1, . . . , ak} be the set of points common
to I[i, j] and A. By definition, au is the smallest nonerased domain point in I[i, j].
Also, the left slope of I[i, j] is (f(au) − f(au−1))/(au − au−1) and its right slope is
equal to mr.

Let mv = (f(av+1)− f(av))/(av+1−av) for all integers v such that v ∈ [u−1, k).
We define g as follows.

• For each t ∈ {au, au+1, . . . , ak}, set g(t) = f(t) .
• For each integer v ∈ [u, k) and t ∈ N ∩ (av, av+1), set

g(t) = f(av) +mv · (t− av)

• For each t ∈ N such that j ≥ t > ak, set

g(t) = f(ak) +mk−1 · (t− ak).

Since Γ is a violator node, the parent node of Γ is good, by definition. This implies
that mu−1 ≤ mu ≤ . . . ≤ mk−1 ≤ mr. Therefore, the derivatives of nonerased points
in I[i, j] are non-decreasing with respect to g, by virtue of our assignment.

To prove that g is convex, we first show that every node in T is good with respect
to g.

1. Consider a node Γ in T that is good with respect to f . Let I[i, j] be the
interval associated with Γ. If Γ has no ancestors or descendants that are
violators (w.r.t. f), it remains good with respect to g as well, since g(t) = f(t)
for all t ∈ I[i, j].

2. Consider a node Γ in T such that Γ and its ancestors are all good w.r.t. f .
Let I be the interval associated with Γ. To prove that Γ is good w.r.t. g, it
is enough to show that f(t) = g(t) for every anchor point t ∈ I of Γ. Note
that the only points t ∈ I for which f(t) and g(t) could be different are the
points belonging to intervals associated with violator nodes in T that are
descendants of Γ. Consider a node Γ′ in T such that (1) Γ′ is a descendant
of Γ, and (2) Γ′ is a violator node w.r.t. f . Let I ′ be the interval associated
with Γ′. The definition of g on points in I ′ ensures that g(t) = f(t) for every
point t common to the anchor sequence of Γ and the interval I ′. Thus, we

ERASURE-RESILIENT PROPERTY TESTING 29

can see that f(t) = g(t) for every anchor point t ∈ I of Γ. Hence, Γ remains
good with respect to g.

3. Consider a node Γ that is either a violator node or has a violator ancestor Γ
(w.r.t. f). Let I and I ′ be the intervals associated with Γ and Γ′ respectively.
By definition, the parent of Γ′ is good with respect to f . Therefore, by the
definition of g on I ′, we have ∆g(t− 1) ≤ ∆g(t) for all t ∈ N ∩ I ′. Therefore,
Γ′ is good with respect to g, and hence Γ is also good with respect to g.

We proved that every node in the tree T is good with respect to g. We now prove
that g is convex. Consider a point νt ∈ N such that 2 ≤ t ≤ |N |−1, where νi denotes
the ith nonerased point in [n]. This point occurs in T either as the pivot of a non-leaf
node or as the sole nonerased domain point in the interval associated with a leaf node.
In the former case, the condition ∆g(νt−1) ≤ ∆g(νt) is part of the goodness condition
of the corresponding node and is satisfied. In the latter case, ∆g(νt−1) and ∆g(νt) are
the left and right slopes of the leaf and are compared as part of the goodness condition
of the leaf. Thus, ∆g(νt−1) ≤ ∆g(νt) for all νt ∈ N such that 2 ≤ t ≤ |N | − 1. Thus,
g is convex.

We conclude our analysis by bounding the probability that the tester does not
find a violation. Since the search point s is chosen uniformly at random from the
set of nonerased domain points, the probability that it is a witness is at least ε and
thus, the tester detects a violation to convexity with probability at least ε in every
iteration. Therefore,

Pr[A | q ≤ Q] ≤ (1− ε) 2
ε <

1

6
.

7. Relations to Other Testing Models. In this section, we describe the re-
lationships between erasure-resilient testing model and the other models of property
testing. We first describe a property that is easy to test in the standard model, but
is hard to test in the erasure-resilient model. This effectively separates the erasure-
resilient testing model from the standard model. We discuss this result in Section 7.1.
Next, we study the connection of erasure-resilient testing to tolerant testing and
distance approximation algorithms and show that the existence of a distance ap-
proximation algorithm or a tolerant tester for a property implies the existence of an
erasure-resilient testing algorithm for that property. We describe it in Section 7.2.

7.1. Separation Between Erasure-Resilient and Standard Testing. In
this section, we show that erasure-resilient testing is, in general, harder than standard
testing and prove Theorem 1.3. More formally, we construct a property R such that
it only takes a constant number of queries to test R in the standard model, whereas
α-erasure-resilient 1

4 -testing of R requires polynomially many queries for all constant
α ∈ (0, 1).

Our proof of Theorem 1.3 follows closely, the proof that Fischer and Fortnow [30]
used to separate tolerant property testing [44] from standard property testing. In
fact, the property R guaranteed by Theorem 1.3 is the property constructed by [30]
for their purposes. We first give a high-level description of the property R and an
intuition of why R is easy to test in the standard property testing model (proven
by [30]) and hard to test in the erasure-resilient property testing model (proved in
this section).

Property R is constructed from another property H such that the query complex-
ity of testing H in the standard model is linear in the input size. However, H has the
feature that, given oracle access to an additional proof string, it takes only a constant

30 K. DIXIT, S. RASKHODNIKOVA, A. THAKURTA, N. VARMA

number of queries to test H. Note that the query complexity in the latter scenario
includes the number of queries made to the proof. In loose terms, the property R is
defined as the set of all strings where the first part consists of repetitions of a string
that satisfies H, and the second part is a proof of the membership of the first part in
H. It follows that R is easy to test in the standard model. However, if the proof part
of an input string is erased, then erasure-resilient testing of R reduces to testing of H
without access to a proof, which demands a high query complexity.

The following lemma from [8] shows the existence of a property H that is hard
to test in the standard model.

Lemma 7.1 ([8]). There exists a property H of m-bit strings that is decidable in
polynomial time but any 1

3 -test of which requires at least Ω(m) queries.

The main tool used in constructing the property R from the above property H
is algebraic objects called PCPs of proximity (also called assignment testers [21]),
which were defined by [7]. PCPs of proximity are proof systems for ε-testing promise
problems. We state the definition given in [30].

Definition 7.2 (PCP of proximity [7, 30]). Let P be a property of strings in
{0, 1}m and ε ∈ (0, 1) be a parameter. A (one-sided error) PCP of proximity for the
ε-testing of P is a set of Boolean functions f1, . . . , fl, where l is polynomial in m,
such that:

• For all i ∈ [l], the number of variables that fi depends on is independent of m.
The variables that fi depends on is a subset of {xi, yj : i ∈ [m], j ∈ [r]}, where
the xi’s are the variables corresponding to the positions in the input ~x (to the
ε-testing problem), yj’s are a set of auxiliary variables and r is polynomial in
m.

• For ~x ∈ {0, 1}m that is in P, there is an assignment to yj’s such that all fi’s
are satisfied.

• For ~x ∈ {0, 1}m that is ε-far from P and for every assignment of values to
yj’s, at most half of the fi’s are satisfied.

Therefore, if there exists a PCP of proximity for the problem of ε-testing H, we
can use assignments to the y variables in the PCP as a candidate proof string for
ε-testing membership in H (for the same value of ε). The following theorem from [7]
states that there exist PCPs of proximity for all properties decidable in polynomial
time and, in particular, for the property H, as by Lemma 7.1, it is polynomial time
decidable.

Lemma 7.3 (from [7], as restated by [30]). Let P be a property of strings in
{0, 1}m that is decidable by a circuit of size k, and t be such that t < log log k

log log log k .

There exists a PCP of proximity for the problem of (1/t)-testing of P. Moreover, the
number of additional variables and the number of functions in the PCP of proximity
are both bounded by k2, and each function depends on O(t) variables.

Now we describe the property R that is hard to test when there are adversarial
erasures in the input. Let p(m) be a polynomial bound on the size of a circuit deciding
H on instances of size m, where H is the property given by Lemma 7.1. Let m be

large enough such that blog log log p(m)c < log log p(m)
log log log p(m) . Let t = blog log log p(m)c.

Consider a bit string of length n = m · (p(m))2. This string satisfies the property
R if the first (m− t)(p(m))2 bits of the string are repetitions of a string ~x ∈ {0, 1}m
satisfying H, and the remaining t(p(m))2 bits are the satisfying assignments to the y
variables in the PCPs of proximity for testing H on ~x with various distance parameters

ERASURE-RESILIENT PROPERTY TESTING 31

larger than 1/t. More formally, label the first (m − t)(p(m))2 bits by xi,j where i ∈
[(m− t)(p(m))2/n] and j ∈ [m]. Label the remaining bits by yi,j where i ∈ [(p(m))2]
and j ∈ [t]. The string is said to have the property R if all of the following conditions
hold:

• x1,1 . . . x1,m is a string that satisfies the property H.
• For each 1 < i ≤ (m− t)(p(m))2/n and j ∈ [m], we have x1,j = xi,j .
• For every j ∈ [t], the sequence y1,j , . . . , y(p(m))2,j is an assignment satisfying

the PCP of proximity for (1/j)-testing of x for the property H.
As mentioned earlier, the property R described above is the property used by [30] to
separate tolerant testing from standard testing. We use the fact (from [30]) that R is
easy to test in the standard model, without a proof.

Theorem 7.4 ([30]). Property R can be ε-tested in the standard property testing
model using O(1/ε) queries.

We now prove the following theorem which, together with Theorem 7.4, im-
plies Theorem 1.3.

Theorem 7.5. There exists some c > 0 such that for all constant α ∈ (0, 1)
every α-erasure-resilient 1

4 -tester for R makes Ω(nc) queries, where n is the size of
the input.

Proof. The proof is by a simple reduction from 1
3 -testing of H in the standard

model, which, by Lemma 7.1, has a high query complexity.
Given a string x1x2 . . . xm ∈ {0, 1}m for which we need to 1

3 -test H, we can
construct a partially erased string I of length n = m(p(m))2 as follows, where
p(m) denotes the polynomial bound on the size of a circuit computing H. Let
t = blog log log p(m)c. Let xi,1xi,2 . . . xi,m be set to the string x1x2 . . . xm for all
i ∈ [(m − t)(p(m))2/m], where xi,1xi,2 . . . xi,m denotes the i-th block of m bits in I
from the left. Let the remaining bits of I be set to the erased symbol ⊥. A query
to this new string can be simulated by at most one query to the string x1x2 . . . xm
(which we have query access to).

If x1x2 . . . xm satisfies H, then the new string I satisfies R by the definition of
erasure-resilient property testing model and the fact that ε-testing of H has PCPs
of proximity for various ε > 1

t . If x1x2 . . . xm is 1
3 -far from satisfying H, then I is

(1 − t
m) · 1

3 -far from R since each m-length block among the first (m − t)(p(m))2

of I is 1
3 -far from being in H. Note that (1 − t

m) ≥ 1
4 for large enough m. The

fraction of erasures in I is t/m, which is O(log log logm
m), smaller than every constant

α. Therefore, an α-erasure resilient 1
4 -tester for R for constant α yields a 1

3 -tester for
H with the same query complexity. Since every 1

3 -tester for H requires Ω(m) queries
on inputs of length m, every α-erasure-resilient 1

4 -tester for R requires Ω(m) queries.
As n = m · (p(m))2, this implies that every α-erasure-resilient 1

4 -tester for R requires
Ω(nc) queries, where c is a constant that depends on the degree of the polynomial
p(m).

7.2. Connections to Distance Approximation Algorithms. In this sec-
tion, we show that the existence of a fully tolerant tester for a property implies the
existence of an erasure-resilient tester for that property, and prove Theorem 1.4. We
also state and prove a slightly different version of Theorem 1.4 for distance approxi-
mation algorithms, and apply that latter version to design erasure-resilient testers for
sortedness, monotonicity, and convexity.

Proof of Theorem 1.4. Let e be an arbitrary element in the range R. For an α-

32 K. DIXIT, S. RASKHODNIKOVA, A. THAKURTA, N. VARMA

erased function f , let fre denote the completion of f obtained by assigning the value
e to all the erased points.

An α-erasure-resilient ε-tester A′ for P, when given oracle access to an α-erased
function f : D 7→ R ∪ {⊥}, simulates oracle access to the the function fre , runs
algorithm A on fre with proximity parameters ε1 = α, ε2 = ε(1 − α) and accepts if
and only if A accepts. The condition ε1 < ε2 is satisfied by the restriction on α.

If f satisfies P there is a completion f ′ of f that satisfies P and every other
completion of f is α-close to f ′. Therefore, fre is α-close to P. Since ε1 = α and A
accepts with probability at least 2/3, every function that is ε1-close to P, the tester
A′ also accepts f with probability at least 2/3.

If f is ε-far from P, then every completion of f is ε(1 − α)-far from P. This is,
in particular, true for fre . As ε2 = ε(1 − α), and A rejects with probability at least
2/3, every function that is ε2-far from P, the tester A′ rejects f with probability at
least 2/3.

Tolerant testers are intimately connected to algorithms that approximate the
distance of a function to a specified property, when given oracle access to the function.
For a property P and a function f , we denote by εP(f) the relative Hamming distance
of f to P. Let η ≥ 1 and δ ∈ [0, 1). An algorithm A is a η-multiplicative δ-additive
distance approximation algorithm for P, if, given oracle access to a function f , the
algorithm outputs, with probability at least 2/3, a value ε̂ such that 1

η · εP(f)− δ ≤
ε̂ ≤ εP(f). If A works for all δ ∈ [0, 1), we call it an η- multiplicative distance
approximation algorithm.

Parnas et al. [44] prove that the existence of a distance approximation algorithm
for a property imply the existence of a tolerant tester for the same property. They also
show that the existence of a fully tolerant tester for a property implies the existence of
a distance approximation algorithm for the same property. Tolerant testers for many
of the properties discussed in Section 1.3 are usually expressed as distance approx-
imation algorithms. We now prove that the existence of a distance approximation
algorithm for a property implies the existence of an erasure-resilient tester for that
property (that works for a restricted range of parameters). Due to the equivalence
between distance approximation and tolerant testing, the following theorem can be
seen as a different version of Theorem 1.4.

Theorem 7.6. Let A be an η-multiplicative δ-additive distance approximation
algorithm for a property P of functions of the form f : D 7→ R. Then there exists an
α-erasure-resilient ε-tester A′ for P that makes the same number of queries as A and
works for all ε ∈ (0, 1), α ∈ [0, 1) satisfying α < ε−δ·η

ε+η .

Proof. Fix an element e ∈ R. As before, let fre denote the completion of an
α-erased function f where the erased points are assigned the value e.

Consider the following algorithm A′. The algorithm A′, when given oracle access
to an α-erased function f : D 7→ R ∪ {⊥}, simulates oracle access to fre and runs the
tester A on fre . Let ε̂ denote the estimate that A computes at the end of its execution.
If ε̂ ≤ α, the algorithm A′ accepts. Otherwise, it rejects.

If an α-erased function f satisfies P, then εP(fre) ≤ α. Since ε̂ ≤ εP(fre) with
probability at least 2/3, the algorithm A′ will accept f with probability at least 2/3.

If f is ε-far from P, then every completion of f is ε(1−α)-far from P, and hence

εP(fre) ≥ ε(1 − α). Since ε̂ ≥ εP(f
r
e)

η − δ ≥ ε(1−α)
η − δ > α with probability at least

2/3, the algorithm A′ will reject f with probability at least 2/3. Note that the last
inequality in the above expression follows from the restriction on α.

ERASURE-RESILIENT PROPERTY TESTING 33

We now revisit the properties discussed in Section 1.3 for which distance approxi-
mation algorithms are known and apply Theorem 7.6 to those algorithms and obtain
erasure-resilient testers. The parameters of these testers are much worse than what
we obtained in previous sections, especially in terms of the restrictions on α.

Corollary 7.7 ([48]). Let η ∈ (1, 2). There exists an α-erasure-resilient ε-tester
for monotonicity of real-valued functions over [n] that works for all α ∈ [0, 1), ε ∈ (0, 1)

such that α < ε
ε+η , with query complexity O((1

ε(η−1))
O(1

η−1) · logc n) (where c is a large

absolute constant).

Corollary 7.8 ([28]). Let δ ∈ [0, 1]. There exists an α-erasure-resilient ε-tester
for monotonicity of real-valued functions over [n]d that works for all α ∈ [0, 1), ε ∈
(0, 1) such that α < ε−5δ·d2 logn

ε+5d2 logn , with query complexity Õ
(

logn
δ4

)
.

Corollary 7.9 ([27]). There exists an α-erasure-resilient ε-tester for convexity
of real-valued functions over [n] that works for all α ∈ [0, 1), ε ∈ (0, 1) such that

α < ε
ε+25 , with query complexity Õ

(
logn
ε

)
.

8. Conclusions and Open Problems. In this paper, we initiate a study of
property testing in the presence of adversarial erasures. We design efficient erasure-
resilient testers for several important properties such as monotonicity, the Lipschitz
properties and convexity over different domains. All our testers for properties of
functions on the line domain work for an arbitrary fraction of erasures. All our testers
have only a small additional overhead of O(1/(1 − α)) in their query complexity in
comparison to the query complexity of the currently best, and, in some cases, optimal,
standard testers for the same properties. We also show that not all properties are easy
to test in the erasure-resilient testing model by proving the existence of a property
that is easy to test in the standard model but hard to test in the erasure-resilient
model even for a small fraction of erasures. We now list some open problems.

• We show that tolerant testing is at least as hard as erasure-resilient testing.
Determining if tolerant testing is strictly harder than erasure-resilient testing
is an interesting direction.

• The fraction of erasures that our monotonicity tester for hypergrid domains
([n]d) can tolerate decreases inversely with d. We also show that an inverse
dependence on

√
d is necessary for testers that work by sampling axis-parallel

lines uniformly at random and then test for the property on them. It is an
interesting combinatorial question to determine the exact tradeoff between
the fraction of erasures and the fraction of axis parallel lines that are far from
monotone.

Acknowledgments. We thank the anonymous referees for comments that helped
greatly improve the presentation of this article.

REFERENCES

[1] N. Ailon and B. Chazelle, Information theory in property testing and monotonicity testing
in higher dimension, Inf. Comput., 204 (2006), pp. 1704–1717, http://dx.doi.org/10.1016/
j.ic.2006.06.001, http://dx.doi.org/10.1016/j.ic.2006.06.001.

[2] N. Ailon, B. Chazelle, S. Comandur, and D. Liu, Estimating the distance to a monotone
function, Random Struct. Algorithms, 31 (2007), pp. 371–383, http://dx.doi.org/10.1002/
rsa.20167, http://dx.doi.org/10.1002/rsa.20167.

http://dx.doi.org/10.1016/j.ic.2006.06.001
http://dx.doi.org/10.1016/j.ic.2006.06.001
http://dx.doi.org/10.1016/j.ic.2006.06.001
http://dx.doi.org/10.1002/rsa.20167
http://dx.doi.org/10.1002/rsa.20167
http://dx.doi.org/10.1002/rsa.20167

34 K. DIXIT, S. RASKHODNIKOVA, A. THAKURTA, N. VARMA

[3] P. Awasthi, M. Jha, M. Molinaro, and S. Raskhodnikova, Testing Lipschitz functions on
hypergrid domains, Algorithmica, 74 (2016), pp. 1055–1081, http://dx.doi.org/10.1007/
s00453-015-9984-y, http://dx.doi.org/10.1007/s00453-015-9984-y.

[4] M. Balcan, E. Blais, A. Blum, and L. Yang, Active property testing, in 53rd Annual IEEE
Symposium on Foundations of Computer Science, FOCS 2012, New Brunswick, NJ, USA,
October 20-23, 2012, 2012, pp. 21–30, http://dx.doi.org/10.1109/FOCS.2012.64, http://
dx.doi.org/10.1109/FOCS.2012.64.

[5] T. Batu, L. Fortnow, R. Rubinfeld, W. D. Smith, and P. White, Testing closeness of
discrete distributions, J. ACM, 60 (2013), pp. 4:1–4:25, http://dx.doi.org/10.1145/2432622.
2432626, http://doi.acm.org/10.1145/2432622.2432626.

[6] T. Batu, R. Rubinfeld, and P. White, Fast approximate PCPs for multidimensional bin-
packing problems, Inf. Comput., 196 (2005), pp. 42–56, http://dx.doi.org/10.1016/j.ic.2004.
10.001, http://dx.doi.org/10.1016/j.ic.2004.10.001.

[7] E. Ben-Sasson, O. Goldreich, P. Harsha, M. Sudan, and S. P. Vadhan, Robust PCPs
of proximity, shorter PCPs, and applications to coding, SIAM J. Comput., 36 (2006),
pp. 889–974, http://dx.doi.org/10.1137/S0097539705446810, http://dx.doi.org/10.1137/
S0097539705446810.

[8] E. Ben-Sasson, P. Harsha, and S. Raskhodnikova, Some 3CNF properties are hard to test,
SIAM J. Comput., 35 (2005), pp. 1–21, http://dx.doi.org/10.1137/S0097539704445445,
http://dx.doi.org/10.1137/S0097539704445445.

[9] P. Berman, M. Murzabulatov, and S. Raskhodnikova, The power and limitations of uni-
form samples in testing properties of figures, in 36th IARCS Annual Conference on Foun-
dations of Software Technology and Theoretical Computer Science, FSTTCS 2016, Decem-
ber 13-15, 2016, Chennai, India, 2016, pp. 45:1–45:14, http://dx.doi.org/10.4230/LIPIcs.
FSTTCS.2016.45, https://doi.org/10.4230/LIPIcs.FSTTCS.2016.45.

[10] P. Berman, M. Murzabulatov, and S. Raskhodnikova, Testing convexity of figures under
the uniform distribution, in 32nd International Symposium on Computational Geometry,
SoCG 2016, June 14-18, 2016, Boston, MA, USA, 2016, pp. 17:1–17:15, http://dx.doi.org/
10.4230/LIPIcs.SoCG.2016.17, https://doi.org/10.4230/LIPIcs.SoCG.2016.17.

[11] P. Berman, M. Murzabulatov, and S. Raskhodnikova, Tolerant testers of image prop-
erties, in 43rd International Colloquium on Automata, Languages, and Programming,
ICALP 2016, July 11-15, 2016, Rome, Italy, 2016, pp. 90:1–90:14, http://dx.doi.org/10.
4230/LIPIcs.ICALP.2016.90, https://doi.org/10.4230/LIPIcs.ICALP.2016.90.

[12] A. Bhattacharyya, E. Grigorescu, K. Jung, S. Raskhodnikova, and D. P. Woodruff,
Transitive-closure spanners, SIAM J. Comput., 41 (2012), pp. 1380–1425.

[13] E. Blais, J. Brody, and K. Matulef, Property testing lower bounds via communication com-
plexity, Computational Complexity, 21 (2012), pp. 311–358, http://dx.doi.org/10.1007/
s00037-012-0040-x, http://dx.doi.org/10.1007/s00037-012-0040-x.

[14] E. Blais, S. Raskhodnikova, and G. Yaroslavtsev, Lower bounds for testing properties of
functions over hypergrid domains, in IEEE 29th Conference on Computational Complexity,
CCC 2014, Vancouver, BC, Canada, June 11-13, 2014, 2014, pp. 309–320.

[15] J. Briët, S. Chakraborty, D. Garćıa-Soriano, and A. Matsliah, Monotonicity testing
and shortest-path routing on the cube, Combinatorica, 32 (2012), pp. 35–53, http://dx.doi.
org/10.1007/s00493-012-2765-1, http://dx.doi.org/10.1007/s00493-012-2765-1.

[16] C. L. Canonne, E. Grigorescu, S. Guo, A. Kumar, and K. Wimmer, Testing k-
monotonicity, in 8th Innovations in Theoretical Computer Science Conference, ITCS 2017,
January 9-11, 2017, Berkeley, CA, USA, 2017, pp. 29:1–29:21, http://dx.doi.org/10.4230/
LIPIcs.ITCS.2017.29, https://doi.org/10.4230/LIPIcs.ITCS.2017.29.

[17] D. Chakrabarty, K. Dixit, M. Jha, and C. Seshadhri, Property testing on product distri-
butions: Optimal testers for bounded derivative properties, ACM Trans. Algorithms, 13
(2017), pp. 20:1–20:30, http://dx.doi.org/10.1145/3039241, http://doi.acm.org/10.1145/
3039241.

[18] D. Chakrabarty and C. Seshadhri, Optimal bounds for monotonicity and Lipschitz test-
ing over hypercubes and hypergrids, in Symposium on Theory of Computing Conference,
STOC’13, Palo Alto, CA, USA, June 1-4, 2013, 2013, pp. 419–428, http://dx.doi.org/10.
1145/2488608.2488661, http://doi.acm.org/10.1145/2488608.2488661.

[19] D. Chakrabarty and C. Seshadhri, An optimal lower bound for monotonicity testing over
hypergrids, Theory of Computing, 10 (2014), pp. 453–464, http://dx.doi.org/10.4086/toc.
2014.v010a017, http://dx.doi.org/10.4086/toc.2014.v010a017.

[20] L. Devroye, A note on the height of binary search trees, J. ACM, 33 (1986), pp. 489–498,
http://dx.doi.org/10.1145/5925.5930, http://doi.acm.org/10.1145/5925.5930.

[21] I. Dinur and O. Reingold, Assignment testers: Towards a combinatorial proof of the

http://dx.doi.org/10.1007/s00453-015-9984-y
http://dx.doi.org/10.1007/s00453-015-9984-y
http://dx.doi.org/10.1007/s00453-015-9984-y
http://dx.doi.org/10.1109/FOCS.2012.64
http://dx.doi.org/10.1109/FOCS.2012.64
http://dx.doi.org/10.1109/FOCS.2012.64
http://dx.doi.org/10.1145/2432622.2432626
http://dx.doi.org/10.1145/2432622.2432626
http://doi.acm.org/10.1145/2432622.2432626
http://dx.doi.org/10.1016/j.ic.2004.10.001
http://dx.doi.org/10.1016/j.ic.2004.10.001
http://dx.doi.org/10.1016/j.ic.2004.10.001
http://dx.doi.org/10.1137/S0097539705446810
http://dx.doi.org/10.1137/S0097539705446810
http://dx.doi.org/10.1137/S0097539705446810
http://dx.doi.org/10.1137/S0097539704445445
http://dx.doi.org/10.1137/S0097539704445445
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2016.45
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2016.45
https://doi.org/10.4230/LIPIcs.FSTTCS.2016.45
http://dx.doi.org/10.4230/LIPIcs.SoCG.2016.17
http://dx.doi.org/10.4230/LIPIcs.SoCG.2016.17
https://doi.org/10.4230/LIPIcs.SoCG.2016.17
http://dx.doi.org/10.4230/LIPIcs.ICALP.2016.90
http://dx.doi.org/10.4230/LIPIcs.ICALP.2016.90
https://doi.org/10.4230/LIPIcs.ICALP.2016.90
http://dx.doi.org/10.1007/s00037-012-0040-x
http://dx.doi.org/10.1007/s00037-012-0040-x
http://dx.doi.org/10.1007/s00037-012-0040-x
http://dx.doi.org/10.1007/s00493-012-2765-1
http://dx.doi.org/10.1007/s00493-012-2765-1
http://dx.doi.org/10.1007/s00493-012-2765-1
http://dx.doi.org/10.4230/LIPIcs.ITCS.2017.29
http://dx.doi.org/10.4230/LIPIcs.ITCS.2017.29
https://doi.org/10.4230/LIPIcs.ITCS.2017.29
http://dx.doi.org/10.1145/3039241
http://doi.acm.org/10.1145/3039241
http://doi.acm.org/10.1145/3039241
http://dx.doi.org/10.1145/2488608.2488661
http://dx.doi.org/10.1145/2488608.2488661
http://doi.acm.org/10.1145/2488608.2488661
http://dx.doi.org/10.4086/toc.2014.v010a017
http://dx.doi.org/10.4086/toc.2014.v010a017
http://dx.doi.org/10.4086/toc.2014.v010a017
http://dx.doi.org/10.1145/5925.5930
http://doi.acm.org/10.1145/5925.5930

ERASURE-RESILIENT PROPERTY TESTING 35

PCP theorem, SIAM J. Comput., 36 (2006), pp. 975–1024, http://dx.doi.org/10.1137/
S0097539705446962, https://doi.org/10.1137/S0097539705446962.

[22] K. Dixit, M. Jha, S. Raskhodnikova, and A. Thakurta, Testing the Lipschitz property over
product distributions with applications to data privacy, in TCC, 2013, pp. 418–436, http://
dx.doi.org/10.1007/978-3-642-36594-2 24, http://dx.doi.org/10.1007/978-3-642-36594-2
24.

[23] K. Dixit, S. Raskhodnikova, A. Thakurta, and N. M. Varma, Erasure-resilient property
testing, in 43rd International Colloquium on Automata, Languages, and Programming,
ICALP 2016, July 11-15, 2016, Rome, Italy, 2016, pp. 91:1–91:15, http://dx.doi.org/10.
4230/LIPIcs.ICALP.2016.91, https://doi.org/10.4230/LIPIcs.ICALP.2016.91.

[24] Y. Dodis, O. Goldreich, E. Lehman, S. Raskhodnikova, D. Ron, and A. Samorodnit-
sky, Improved testing algorithms for monotonicity, in Randomization, Approximation, and
Combinatorial Algorithms and Techniques, Third International Workshop on Randomiza-
tion and Approximation Techniques in Computer Science, and Second International Work-
shop on Approximation Algorithms for Combinatorial Optimization Problems RANDOM-
APPROX’99, Berkeley, CA, USA, August 8-11, 1999, Proceedings, 1999, pp. 97–108.

[25] M. Drmota, An analytic approach to the height of binary search trees II, J. ACM, 50
(2003), pp. 333–374, http://dx.doi.org/10.1145/765568.765572, http://doi.acm.org/10.
1145/765568.765572.

[26] F. Ergün, S. Kannan, R. Kumar, R. Rubinfeld, and M. Viswanathan, Spot-checkers,
J. Comput. Syst. Sci., 60 (2000), pp. 717–751, http://dx.doi.org/10.1006/jcss.1999.1692,
http://dx.doi.org/10.1006/jcss.1999.1692.

[27] S. Fattal and D. Ron, Approximating the distance to convexity. Unpublished manuscript.
Uploaded at http://www.eng.tau.ac.il/ danar/Public-pdf/app-conv.pdf.

[28] S. Fattal and D. Ron, Approximating the distance to monotonicity in high dimensions, ACM
Transactions on Algorithms, 6 (2010), http://dx.doi.org/10.1145/1798596.1798605, http:
//doi.acm.org/10.1145/1798596.1798605.

[29] E. Fischer, On the strength of comparisons in property testing, Inform. and Comput., 189
(2004), pp. 107–116.

[30] E. Fischer and L. Fortnow, Tolerant versus intolerant testing for Boolean properties, Theory
of Computing, 2 (2006), pp. 173–183, http://dx.doi.org/10.4086/toc.2006.v002a009, http:
//dx.doi.org/10.4086/toc.2006.v002a009.

[31] E. Fischer, O. Lachish, and Y. Vasudev, Trading query complexity for sample-based testing
and multi-testing scalability, in IEEE 56th Annual Symposium on Foundations of Computer
Science, FOCS 2015, Berkeley, CA, USA, 17-20 October, 2015, 2015, pp. 1163–1182, http:
//dx.doi.org/10.1109/FOCS.2015.75, https://doi.org/10.1109/FOCS.2015.75.

[32] E. Fischer, E. Lehman, I. Newman, S. Raskhodnikova, R. Rubinfeld, and A. Samorod-
nitsky, Monotonicity testing over general poset domains, in Proceedings of the thiry-
fourth annual ACM symposium on Theory of computing, STOC ’02, New York, NY, USA,
2002, ACM, pp. 474–483, http://dx.doi.org/10.1145/509907.509977, http://doi.acm.org/
10.1145/509907.509977.

[33] O. Goldreich, S. Goldwasser, E. Lehman, D. Ron, and A. Samorodnitsky, Testing mono-
tonicity, Combinatorica, 20 (2000), pp. 301–337.

[34] O. Goldreich, S. Goldwasser, and D. Ron, Property testing and its connection to learning
and approximation, J. ACM, 45 (1998), pp. 653–750, http://dx.doi.org/10.1145/285055.
285060, http://doi.acm.org/10.1145/285055.285060.

[35] O. Goldreich and T. Kaufman, Proximity oblivious testing and the role of invariances, in
Approximation, Randomization, and Combinatorial Optimization. Algorithms and Tech-
niques - 14th International Workshop, APPROX 2011, and 15th International Work-
shop, RANDOM 2011, Princeton, NJ, USA, August 17-19, 2011. Proceedings, 2011,
pp. 579–592, http://dx.doi.org/10.1007/978-3-642-22935-0 49, http://dx.doi.org/10.1007/
978-3-642-22935-0 49.

[36] O. Goldreich and D. Ron, On proximity-oblivious testing, SIAM J. Comput., 40 (2011),
pp. 534–566, http://dx.doi.org/10.1137/100789646, http://dx.doi.org/10.1137/100789646.

[37] O. Goldreich and D. Ron, On sample-based testers, ACM Trans. Comput. Theory, 8 (2016),
pp. 7:1–7:54, http://dx.doi.org/10.1145/2898355, http://doi.acm.org/10.1145/2898355.

[38] O. Goldreich and I. Shinkar, Two-sided error proximity oblivious testing, Random Struct.
Algorithms, 48 (2016), pp. 341–383, http://dx.doi.org/10.1002/rsa.20582, http://dx.doi.
org/10.1002/rsa.20582.

[39] S. Halevy and E. Kushilevitz, Testing monotonicity over graph products, Random Struct.
Algorithms, 33 (2008), pp. 44–67, http://dx.doi.org/10.1002/rsa.20211, http://dx.doi.org/
10.1002/rsa.20211.

http://dx.doi.org/10.1137/S0097539705446962
http://dx.doi.org/10.1137/S0097539705446962
https://doi.org/10.1137/S0097539705446962
http://dx.doi.org/10.1007/978-3-642-36594-2_24
http://dx.doi.org/10.1007/978-3-642-36594-2_24
http://dx.doi.org/10.1007/978-3-642-36594-2_24
http://dx.doi.org/10.1007/978-3-642-36594-2_24
http://dx.doi.org/10.4230/LIPIcs.ICALP.2016.91
http://dx.doi.org/10.4230/LIPIcs.ICALP.2016.91
https://doi.org/10.4230/LIPIcs.ICALP.2016.91
http://dx.doi.org/10.1145/765568.765572
http://doi.acm.org/10.1145/765568.765572
http://doi.acm.org/10.1145/765568.765572
http://dx.doi.org/10.1006/jcss.1999.1692
http://dx.doi.org/10.1006/jcss.1999.1692
http://dx.doi.org/10.1145/1798596.1798605
http://doi.acm.org/10.1145/1798596.1798605
http://doi.acm.org/10.1145/1798596.1798605
http://dx.doi.org/10.4086/toc.2006.v002a009
http://dx.doi.org/10.4086/toc.2006.v002a009
http://dx.doi.org/10.4086/toc.2006.v002a009
http://dx.doi.org/10.1109/FOCS.2015.75
http://dx.doi.org/10.1109/FOCS.2015.75
https://doi.org/10.1109/FOCS.2015.75
http://dx.doi.org/10.1145/509907.509977
http://doi.acm.org/10.1145/509907.509977
http://doi.acm.org/10.1145/509907.509977
http://dx.doi.org/10.1145/285055.285060
http://dx.doi.org/10.1145/285055.285060
http://doi.acm.org/10.1145/285055.285060
http://dx.doi.org/10.1007/978-3-642-22935-0_49
http://dx.doi.org/10.1007/978-3-642-22935-0_49
http://dx.doi.org/10.1007/978-3-642-22935-0_49
http://dx.doi.org/10.1137/100789646
http://dx.doi.org/10.1137/100789646
http://dx.doi.org/10.1145/2898355
http://doi.acm.org/10.1145/2898355
http://dx.doi.org/10.1002/rsa.20582
http://dx.doi.org/10.1002/rsa.20582
http://dx.doi.org/10.1002/rsa.20582
http://dx.doi.org/10.1002/rsa.20211
http://dx.doi.org/10.1002/rsa.20211
http://dx.doi.org/10.1002/rsa.20211

36 K. DIXIT, S. RASKHODNIKOVA, A. THAKURTA, N. VARMA

[40] M. Jha and S. Raskhodnikova, Testing and reconstruction of Lipschitz functions with appli-
cations to data privacy, SIAM J. Comput., 42 (2013), pp. 700–731, http://dx.doi.org/10.
1137/110840741, http://dx.doi.org/10.1137/110840741.

[41] M. J. Kearns and D. Ron, Testing problems with sublearning sample complexity, J. Comput.
Syst. Sci., 61 (2000), pp. 428–456, http://dx.doi.org/10.1006/jcss.1999.1656, http://dx.doi.
org/10.1006/jcss.1999.1656.

[42] E. Lehman and D. Ron, On disjoint chains of subsets, J. Combin. Theory Ser. A, 94 (2001),
pp. 399–404.

[43] M. Parnas, D. Ron, and R. Rubinfeld, On testing convexity and submodularity, SIAM J.
Comput., 32 (2003), pp. 1158–1184, http://dx.doi.org/10.1137/S0097539702414026, http:
//dx.doi.org/10.1137/S0097539702414026.

[44] M. Parnas, D. Ron, and R. Rubinfeld, Tolerant property testing and distance approximation,
J. Comput. System Sci., 6 (2006), pp. 1012–1042.

[45] B. Pittel, On growing random binary trees, Journal of Mathematical Anal-
ysis and Applications, 103 (1984), pp. 461 – 480, http://dx.doi.org/http:
//dx.doi.org/10.1016/0022-247X(84)90141-0, http://www.sciencedirect.com/science/
article/pii/0022247X84901410.

[46] B. A. Reed, The height of a random binary search tree, J. ACM, 50 (2003), pp. 306–332,
http://dx.doi.org/10.1145/765568.765571, http://doi.acm.org/10.1145/765568.765571.

[47] R. Rubinfeld and M. Sudan, Robust characterizations of polynomials with applications to
program testing, SIAM J. Comput., 25 (1996), pp. 252–271, http://dx.doi.org/10.1137/
S0097539793255151, http://dx.doi.org/10.1137/S0097539793255151.

[48] M. E. Saks and C. Seshadhri, Estimating the longest increasing sequence in polylogarithmic
time, SIAM J. Comput., 46 (2017), pp. 774–823, http://dx.doi.org/10.1137/130942152,
https://doi.org/10.1137/130942152.

http://dx.doi.org/10.1137/110840741
http://dx.doi.org/10.1137/110840741
http://dx.doi.org/10.1137/110840741
http://dx.doi.org/10.1006/jcss.1999.1656
http://dx.doi.org/10.1006/jcss.1999.1656
http://dx.doi.org/10.1006/jcss.1999.1656
http://dx.doi.org/10.1137/S0097539702414026
http://dx.doi.org/10.1137/S0097539702414026
http://dx.doi.org/10.1137/S0097539702414026
http://dx.doi.org/http://dx.doi.org/10.1016/0022-247X(84)90141-0
http://dx.doi.org/http://dx.doi.org/10.1016/0022-247X(84)90141-0
http://www.sciencedirect.com/science/article/pii/0022247X84901410
http://www.sciencedirect.com/science/article/pii/0022247X84901410
http://dx.doi.org/10.1145/765568.765571
http://doi.acm.org/10.1145/765568.765571
http://dx.doi.org/10.1137/S0097539793255151
http://dx.doi.org/10.1137/S0097539793255151
http://dx.doi.org/10.1137/S0097539793255151
http://dx.doi.org/10.1137/130942152
https://doi.org/10.1137/130942152

	Introduction
	The Erasure-Resilient Testing Model
	Relationships With Other Testing Models
	Properties That We Study
	Our Results

	Generic transformations
	Sample-based POTs
	Sample-based testers for extendable properties

	Erasure-Resilient Monotonicity Tester for the Line
	Analysis

	Erasure-Resilient Monotonicity Testers for the Hypergrid
	Erasure-Resilient BDP Testing
	Erasure-Resilient BDP Tester for the Line
	Erasure-Resilient Dimension Reduction
	Erasure-Resilient BDP Testers for the Hypergrids
	Limitations of Dimension Reduction in Erasure-Resilient Testing

	Erasure-Resilient Convexity Tester for the Line
	Relations to Other Testing Models
	Separation Between Erasure-Resilient and Standard Testing
	Connections to Distance Approximation Algorithms

	Conclusions and Open Problems
	References

