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Abstract— Lipschitz extensions were proposed as a tool
for designing differentially private algorithms for approx-
imating graph statistics. However, efficiently computable
Lipschitz extensions were known only for 1-dimensional
functions (that is, functions that output a single real value).
We study efficiently computable Lipschitz extensions for
multi-dimensional (that is, vector-valued) functions on
graphs. We show that, unlike for 1-dimensional functions,
Lipschitz extensions of higher-dimensional functions on
graphs do not always exist, even with a non-unit stretch.
We design Lipschitz extensions with small stretch for the
sorted degree list and degree distribution of a graph,
viewed as functions from the space of graphs equipped
with the node distance into real space equipped with `1.
Our extensions are from the space of bounded-degree
graphs to the space of arbitrary graphs. The extensions
use convex programming and are efficiently computable.

We also develop a new tool for employing Lipschitz
extensions in differentially private algorithms that operate
with no prior knowledge of the graph (and, in particular,
no knowledge of the degree bound). Specifically, we gener-
alize the exponential mechanism, a widely used tool in data
privacy. The exponential mechanism is given a collection of
score functions that map datasets to real values. It returns
the name of the function with nearly minimum value
on the dataset. Our generalized exponential mechanism
provides better accuracy than the standard exponential
mechanism when the sensitivity of an optimal score
function is much smaller than the maximum sensitivity
over all score functions.

We use our Lipschitz extensions and the generalized
exponential mechanism to design a node differentially
private algorithm for approximating the degree distribu-
tion of a sensitive graph. Our algorithm is much more
accurate than those from previous work. In particular,
our algorithm is accurate on all graphs whose degree
distributions decay at least as fast as those of “scale-
free” graphs. Using our methodology, we also obtain
more accurate node-private algorithms for 1-dimensional
statistics.
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I. INTRODUCTION

The area of differential privacy studies how to output
aggregate information about a database while protecting
privacy of individuals whose information it contains.
Many datasets can be represented as graphs, where
nodes correspond to individuals and edges capture rela-
tionships between them. There are two natural variants
of differential privacy that are suitable for graphs: edge
privacy and node privacy. Intuitively, the former protects
relationships among individuals, while the latter protects
each individual, together with all his/her relationships.
Edge privacy has been extensively studied, with algo-
rithms now known for the release of subgraph counts
and related scalar-valued functions [32, 33, 17, 30, 24,
18], the degree distribution [11, 12, 16, 23, 15], cut
densities [10, 3] and the parameters of generative graph
models [30, 18, 24, 15, 35]. Node privacy is a much
stronger guarantee, but is significantly harder to attain
because it guards against larger changes in the input.
Until recently, no known node private algorithms gave
accurate answers on sparse graphs, even for extremely
simple statistics. (Typically, graphs that contain sensitive
information, such as friendships, sexual relationships,
and communication patterns, are sparse.)

In 2013, Blocki et al. [4], Kasiviswanathan et al.
[19], and Chen and Zhou [6] proposed two methods for
obtaining node private algorithms: (i) using projections
whose smooth sensitivity could be bounded (combined
with mechanisms from [32] that are based on smooth
sensitivity), and (ii) computing Lipschitz extensions (and
releasing them via the Laplace mechanism of [9]).
The former method is generic, i.e., works for releasing
any graph statistics, while the latter method requires
designing an efficiently computable Lipschitz extension
for each desired graph statistics. However, the latter
method yielded much more accurate algorithms. In
particular, [19, 6] used it to obtain accurate node-
private algorithms for computing subgraph counts and



related statistics. Subsequently to the initial version
of this paper, Lipschitz extensions were also used to
design node-private algorithms for fitting a large family
of statistical models (graphons and stochastic block
models) to network data [5].

Despite the success of efficiently computable Lip-
schitz extensions, they were known only for 1-
dimensional functions (that is, functions that output a
single real value). We study efficiently computable Lip-
schitz extensions for multi-dimensional (that is, vector-
valued) functions on graphs. In the full version of this
paper, we show that, unlike for 1-dimensional functions,
Lipschitz extensions of higher-dimensional functions on
graphs do not always exist, even with a non-unit stretch.
We design Lipschitz extensions with small stretch for
the sorted degree list and degree distribution of a graph,
viewed as functions from the space of graphs equipped
with the node distance into real space equipped with `1.
Our extensions are from the space of bounded-degree
graphs to the space of arbitrary graphs. The extensions
can be computed in polynomial time.

We also develop a new tool for employing Lipschitz
extensions in differentially private algorithms that op-
erate with no a priori knowledge of the graph. The
algorithms in [4, 19] need a publicly known bound
on the degree of the input graph in order to choose
an appropriate Lipschitz extension. Chen and Zhou
[6] overcome this problem by showing how to choose
the Lipschitz extension for the special case of their
family of Lipschitz extensions for subgraph counts and
related 1-dimensional functions while paying a factor of
O(log n) for n-node graphs in the algorithm’s additive
error. We develop a general method for choosing a
good Lipschitz extension with a smaller loss in accuracy
(specifically, a factor of O(log log n) in the additive
error for subgraph counts). To achieve this, we general-
ize the exponential mechanism of McSherry and Talwar
[29], a widely used tool in data privacy. Our generalized
exponential mechanism provides better accuracy than
the standard exponential mechanism when the sensitiv-
ity of an optimal score function is much smaller than
the maximum sensitivity over all score functions.

We use our Lipschitz extension and the generalized
exponential mechanism to design a node-private al-
gorithm for releasing an approximation to the degree
distribution of a graph. Our algorithm is much more
accurate than those from previous work [19]. In par-
ticular, our algorithm is accurate on all graphs whose
degree distributions decay at least as fast as those of
“scale-free” graphs.

A. Lipschitz Extensions

Lipschitz extensions are basic mathematical objects
studied in functional analysis.

Definition I.1 (Lipschitz constant). Let f : X → Y
be a function from a domain X to a range Y with
associated distance measures dX and dY . Function f
has Lipschitz constant c (equivalently, is c-Lipschitz) if
dY (f(x), f(x′)) ≤ c · dX(x, x′) for all x, x′ ∈ X . The
smallest Lipschitz constant of f is sometimes referred
to as the (global) sensitivity of f .

Definition I.2 (Lipschitz extension). Consider a domain
X and a range Y with associated distance measures
dX and dY , and let Z ⊂ X . Fix constants c > 0 and
s ≥ 1. Given a c-Lipschitz function f : Z → Y , a
function f̂ : X → Y is a Lipschitz extension of f from
Z to X with stretch s if

1) f̂ is an extension of f , that is, f̂(x) = f(x) on all
x ∈ Z and

2) f̂ is s · c-Lipschitz.
If s = 1, then we call f̂ a Lipschitz extension of f from
Z to X (omitting the stretch).

Functional analysts have devoted considerable atten-
tion to determining, for given metric spaces X,Z and Y ,
whether Lipschitz extensions from Z to X with stretch
1 exist for all functions f : Z → Y . In contrast to
this work, the focus in functional analysis is mostly on
continuous function spaces.

We study Lipschitz extensions of multi-dimensional
functions on graphs. Let G denote the set of all finite, la-
beled, and unweighted undirected graphs. Given D ∈ N,
let GD be the set of all D-bounded graphs in G, that is,
graphs of maximum degree at most D. Two graphs are
called (node) neighbors if one can be obtained from the
other by removing a node and its adjacent edges. This
notion of neighbors induces a (node) distance measure
dnode on G. (Analogously, we define the edge distance
measure by allowing two graphs be neighbors if they
differ in exactly one edge.) We consider functions from
G, equipped with dnode, to Rp, equipped with `1. We
refer to p as the dimension of the function.

Lipschitz extensions of real-valued 1-dimensional
functions (with arbitrary domain, not just G) with stretch
1 always exist [28]. We show that it is not true, in
general, for multi-dimensional functions on graphs, even
with non-unit stretch. Our first technical contribution is
the construction of efficiently computable, small-stretch
extensions from GD to G (equipped with dnode) of two
related high-dimensional functions: the sorted degree
list and the degree distribution.

2



Lipschitz Extensions as a Privacy Tool: Functions
with low Lipschitz constant can be approximated very
accurately by differentially private algorithms. The
Laplace mechanism [9] can release a differentially
private approximation of f(G) for all functions f :
G → Rp by adding noise proportional to the Lipschitz
constant of f to each coordinate of f(G) and publishing
the result. The difficulty with employing the Laplace
mechanism directly on graph data is that many useful
functions on graphs are highly sensitive to the insertion
or removal of a well-connected vertex. For example,
the number of triangles (i.e., 3-cliques) in an n-node
graph may go up by

(
n
2

)
with the insertion of a single

vertex. The degree distribution of a graph can also
change drastically, shifting up by 1 in every coordinate
(as one vertex can increase the degree of all other
vertices). Therefore, these functions have high sensi-
tivity. Mechanisms based on local notions of sensitivity
(such as smooth sensitivity in [32]) also don’t apply
directly, since these functions are also sensitive in a
local sense (roughly, interesting graphs such as those
with low average degree are “near” other graphs with a
vastly different value of the function).

One can get around the sensitivity issue by first
considering a “nice” subset of the space G where the
function f has low sensitivity [4, 19, 6]. Many functions
of interest have low Lipschitz constant on GD, the set
of bounded-degree graphs. The number of triangles in
a graph, for instance, changes by at most

(
D
2

)
among

node-neighboring graphs of degree at most D, and the
degree list changes by at most 2D in `1. Given a func-
tion f with low Lipschitz constant on “nice” graphs, if
we find an efficiently computable Lipschitz extension f̂
of f to all of G, then we can use the Laplace mechanism
to release f̂(G) with relatively small additive noise. The
lower the stretch of the extension, the lower the noise.
The result is accurate when the input indeed falls into,
or near, the class of “nice” graphs. Interestingly, the
class of “nice” graphs need not contain the input for
the answer to be accurate—in our main application, we
use GD as the set of “nice” graphs, but D is much lower
than the maximum degree of the input (the reduction in
noise compensates for the distortion introduced by the
extension.)

Existence and Computational Complexity of Lip-
schitz Extensions: Motivated by this methodology, we
ask: when do Lipschitz extensions exist, and when do
they admit efficient algorithms? The existence question
has drawn interest from functional analysis and combi-
natorics for nearly a century [28, 20, 34, 26, 14, 27, 1, 2,
21, 31, 22, 25]; see Lee and Naor [22] for an overview.

For any real-valued function f : GD → R, there exists
an extension f̂ : G → R whose node sensitivity is
the same as that of f [28]. Kasiviswanathan et al.
[19] and Chen and Zhou [6] constructed polynomial-
time computable Lipschitz extensions from GD to G of
subgraph counts (such as the number of triangles) and
related 1-dimensional functions on graphs.

Prior constructions of higher-dimensional Lipschitz
extensions focused on extending functions on a metric
space X , where X is given explicitly as input (say, as
a distance matrix) [22, 25]. Such constructions, at best,
run in time polynomial in the size of X . The size of
GD is infinite, and even restricting to graphs on at most
n vertices leaves a set GDn that is exponentially large in
n. Moreover, generic constructions have stretch at least√
n (since the doubling dimension of GDn is large).

B. Our Contributions

Lipschitz Extension of the Degree List: Our main
technical contribution is a polynomial-time, constant-
stretch Lipschitz extension of the sorted degree list,
viewed as a function from GD to `∗1, to all of G. Here
`∗1 denotes the `1 metric on the space of finite-length
real sequences, where sequences of different length are
padded with 0’s to compute the distance.

Given any graph G = (V,E), our function f̂D(G)
outputs a nonincreasing real sequence of length |V |. If
the maximum degree of G is D or less, the output is the
sorted list of degrees in G. The output can be thought
of as a list of “fractional degrees”, where “fractional
edges” are real weights in [0, 1] and the “fractional
degree” of a vertex is the sum of the weights of its
adjacent edges. The weights are selected by minimizing
a quadratic function over the polytope of s-t flows in a
directed graph closely related to G. Previous work [19]
had shown that the value of the maximum flow in the
graph has low sensitivity; by introducing the quadratic
penalty, we give a way to select an optimal flow that
changes slowly as the graph itself changes. Introducing
a strongly convex penalty (or regularizer) to make the
solution of an optimization problem stable to changes
in the loss function is common in machine learning. In
our setting, however, it is the constraints of the convex
program that change with data, and not the loss function.

Theorem I.3. There is a Lipschitz extension of the
degree list, viewed as a function taking values in `∗1,
from GD to G with stretch 3/2 that can be computed in
polynomial time.

The sorted degree list has `1 sensitivity 2D on GD.
The extension f̂D(G) has `1 sensitivity at most 3D (the
stretch is thus at most 3/2).
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We use our Lipschitz extension of the sorted degree
list to get a Lipschitz extension of the degree distribution
(a list of counts of nodes of each degree) and the degree
CDF (a list of counts of nodes of at least each given
degree). These functions condense the information to
a D-dimensional vector (regardless of the size of the
graph), making it easier to release with node-privacy.

Generalized Exponential Mechanism for Scores of
Varying Sensitivity: One of the difficulties with using
Lipschitz extensions in differentially private algorithms
is selecting a good class of inputs from which to extend.
For example, to apply our degree distribution extension,
we need to select the degree bound D. More gener-
ally, we are given a collection of possible extensions
f̂1, ..., f̂k, each of which agrees with f on a different
set and has different sensitivity ∆i.

We can abstract the task we are faced with as a
private optimization problem: given a set of real-valued
functions q1, ..., qk, the goal is to output the index ı̂
of a function with approximately minimal value on
the dataset x (so that q̂ı(x) ≈ minki=1 qi(x)). (In our
setting, the qi functions are related to the error of the
approximation f̂i on dataset x). Suppose that each qi has
a known Lipschitz constant ∆i. The error of an output
ı̂ on input x is the difference q̂ı(x)−minki=1 qi(x).

The exponential mechanism [29] achieves error that
scales with the largest Lipschitz constant. Specifically,
for every β > 0, with probability 1 − β, the output ı̂
satisfies q̂ı(x) ≤ minki=1 qi(x) + ∆max · 2 ln(k/β)

ε where
∆max = maxki=1 ∆i.

In contrast, we give an algorithm whose accuracy
scales with the Lipschitz constant of the optimal score
function ∆i∗ where i∗ = argminki=1 qi(x). Our mech-
anism requires as input an upper bound β > 0 on the
desired probability of a “bad” outcome; the algorithm’s
error guarantee depends on this β.

Theorem I.4 (Informal). For all settings of the input
parameters β ∈ (0, 1), ε > 0, the Generalized Exponen-
tial Mechanism is ε-differentially private. For all inputs
x, with probability at least 1− β, the output ı̂ satisfies

q̂ı(x) ≤
k

min
i=1

(
qi(x) + ∆i · 4 ln(k/β)

ε

)
.

When the maximum ∆i is much larger than the
sensitivity of the optimal score function, this guarantee
is much better than that of the standard exponential
mechanism. For instance, in our setting, the ∆i’s grow
exponentially with i (that is, ∆i is roughly 2i for
i = 1, ..., k). However, on sparse graphs, the best choice
of ∆i is for relatively small i. (Also, the issue is
not merely with the error guarantee. The exponential

mechanism provides bad outputs for many inputs where
the true minimizer has low sensitivity.)

We can use our algorithm for selecting the sensitivity
parameter for the Lipschitz extensions of graph func-
tions in [4, 19, 6] and in this work. (These parameters
are sometimes interpretable as a degree bound, as in
the case of the degree distribution, but not always;
for example, when computing the number of triangles,
the parameter is a bound on the number of triangles
involving any one vertex). This allows the algorithm
to adapt to the specific input. The guarantee we get is
that the error of the overall algorithm on an n-node
graph is at most O(log log n) times higher than one
would get with the best Lipschitz constant. In contrast,
the parameter selection method of Chen and Zhou [6]
provides only a O(log n) guarantee on the error blow-up
and is specific to the extensions they construct.

Differentially Private Algorithms for Releasing the
Degree Distribution: We can combine the Lipschitz
extension of the degree list and the parameter selection
algorithm to get a differentially private mechanism
for releasing the degree distribution of a graph that
automatically adapts to the structure of the graph.

We show that our algorithm provides an accurate
estimate on a large class of graphs, including graphs
with low average degree whose degree distribution has
a heavy tail. We measure accuracy in the `1 norm,
normalized by the number of nodes in the graph—that
is, we deem the algorithm accurate if the total variation
distance between the true degree distribution and the
estimate is small.

This measure goes to 0 for graphs of low average
degree in which the tail of the degree distribution
decreases slightly more quickly than what trivially holds
for all graphs. If d̄ is the average degree in a graph,
Markov’s inequality implies that the fraction of nodes
with degree above t · d̄ is at most 1/t. We assume that
this fraction goes down as 1/tα for a constant α > 1.
The condition is called α-decay [19]. Our assumption is
satisfied by all the well-studied social network models
we know of, including scale-free graphs [7] (which sat-
isfy the assumption with α ∈ (1, 2)). Previous work [19]
provided nontrivial accuracy only for α > 2 (and, in
particular, gave no guarantees for scale-free graphs).

Our algorithm need not be given α or the average
degree of the graph; these are implicitly taken into ac-
count by parameter selection. Incontrast, the algorithm
in [19] requires a lower bound on α as input.

C. Contents of the Short and Full Versions

This short version of the document includes back-
ground information (Section II), proofs of our two
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main technical results: the Lipschitz extension of the
degree list (Section III) and the generalized exponential
mechanism (Section IV) and the statement of the utility
guarantees we obtain for our node-private algorithm for
releasing the degree distribution.

We defer to the full version our lower bounds on
the stretch of extensions from GD to G, our low-
stretch extension of the degree distribution (obtained
from our extension of the degree list) and details on
how to combine the main technical results to design
differentially private algorithms.

II. DEFINITIONS AND BASIC TOOLS

We use [n] to denote the set {1, . . . , n}. For a graph
G = (V,E), the average degree is denoted by d̄(G) =
2|E|/|V |. For simplicity of presentation, we assume that
n = |V |, the number of nodes of the input graph G, is
publicly known. This assumption is justified since, as
we will see, one can get an accurate estimate of |V | by
running a node-private algorithm. The degrees of nodes
in V are denoted by deg1(G), . . . ,degn(G). When the
graph referenced is clear, we drop G in the notation.

A. Graphs Metrics and Differential Privacy

Suppose that datasets are members of a universe
U equipped with a neighbor relation. For example, if
datasets are graphs, we could use the notion of node
or edge neighbors; for standard datasets (with no rela-
tionship information), two datasets can be considered
neighbors if they are at Hamming distance 1 or if their
set difference has size 1.

Definition II.1 (ε-differential privacy [9]). A random-
ized algorithm A is ε-differentially private (with respect
to the neighbor relation on U ) if for all events S in the
output space of A and all neighbors x, x′ ∈ U ,

Pr[A(x) ∈ S] ≤ exp(ε) · Pr[A(x′) ∈ S] .

If U = G with node (respectively, edge) neighbor
relationship, we call a differentially private algorithm
simply node-private (respectively, edge-private).

In this paper, if node or edge privacy is not specified,
we mean node privacy by default.

B. Basic Tools

Laplace Mechanism: In the most basic frame-
work for achieving differential privacy, Laplace noise is
scaled according to the sensitivity of the desired statistic
f , measured with respect to an appropriate metric on
datasets. This technique extends to node private analysis
of graphs as long as we measure sensitivity with respect
to the node distance. Let G denote the set of all graphs.

In the sequel, the sensitivity of f : G → Rp denotes the
smallest Lipschitz constant (Definition I.1) of f , viewed
as a map from (G, dnode) to `p1.

For example, the number of edges in graphs with
at most n nodes has sensitivity n − 1, since adding or
deleting a node and its adjacent edges can add or remove
at most n − 1 edges. In contrast, the number of nodes
has sensitivity 1.

A Laplace random variable with mean 0 and standard
deviation

√
2λ has density h(z) = (1/(2λ))e−|z|/λ. We

denote it by Lap(λ).

Theorem II.2 (Laplace Mechanism [9]). If f : G → Rp
is ∆-Lipschitz (i.e., has sensitivity at most ∆), the
algorithm A(G) = f(G) + Lap(∆/ε)p (which adds
i.i.d. noise Lap(∆f/ε) to each entry of f(G)) is ε-node
private.

Thus, we can release the number of nodes |V | in
a graph with noise of expected magnitude 1/ε while
satisfying node privacy. Given a public bound n on the
number of nodes, we can release the number of edges
|E| with additive noise of expected magnitude (n−1)/ε.

Exponential Mechanism: Suppose we are given
a collection of functions q1, ..., qk, from the universe
U to R such that the function qi is ∆i-Lipschitz for
each i ∈ [k]. Recall that ∆max = maxi∈[k] ∆i. The
exponential mechanism [29], denoted by EM, takes a
dataset x ∈ U and returns an index ı̂ for which q̂ı(x)
has nearly minimal value at x, that is, such that q̂ı(x) ≈
mini∈[k] qi(x). The algorithm EM has the following
parameters: ε > 0, score functions qi : U → R for
all i ∈ [k], and ∆max. On input x, the algorithm EM
samples and returns an index i from [k] with probability
proportional to exp

(
ε

2∆max
qi(x)

)
, normalized so that

probabilities for all i ∈ [k] sum to 1.

Lemma II.3 (Exponential Mechanism [29]). The algo-
rithm EM is ε-differentially private. Moreover, for every
β ∈ (0, 1), with probability at least 1 − β, its output ı̂

satisfies q̂ı(x) ≤ mini
(
qi∈[k](x)

)
+ 2∆max ln(k/β)

ε .

There is a simple, efficient implementation of the
exponential mechanism that adds exponential noise to
each score function and reports the maximizer of the
noisy scores (see, e.g., [8, Sec. 3.4]).

III. LIPSCHITZ EXTENSIONS OF THE DEGREE LIST

In this section, we give a Lipschitz extension of the
degree list. For an n-node graph G, denote the list of
degrees of G sorted in nonincreasing order by

deg-list(G) = sort(deg1(G), ..., degn(G)).
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We view the degree list as an element of R∗ (the set
of finite sequences of real numbers). We equip the space
with the `1 distance, where the sequences of different
lengths are padded with 0’s to allow comparison. This
representation is convenient for handling node additions
and deletions.

The `1 sensitivity (under node distance) of the degree
list on D-bounded graphs is 2D because the unsorted
degree list has sensitivity 2D and, as Hay et al. [11]
observed, sorting does not increase the `1 distance
between vectors. We construct a 3D-Lipschitz extension
that agrees with deg-list on GD.

Before explaining our construction, we illustrate the
difficulty of the problem with a simpler “straw man”
attempt: suppose that, given the degree list deg-list(G),
we obtain f̂D(G) by rounding all degrees above D
down to D. This will not affect the degrees in a graph
with maximum degree D, but it is not O(D)-Lipschitz:
consider an n-node star graph with one node of degree
n − 1 and n − 1 nodes of degree 1. Rounding results
in f̂(G) = (D, 1, ...., 1). But the graph has a neighbor
G′ with no edges at all, for which f̂(G′) = (0, ...., 0).
Vectors f̂(G) and f̂(G′) differ by n + D − 1 in the
`1 norm. Other simple ways of dropping very high-
degree vertices considered in [4, 19] (as part of the
method called “projection”) also yield poor bounds on
the sensitivity of the obtained degree sequence and
result in too much noise being added for privacy.

Like in [19], our starting point is the construction of
the flow graph FG(G) for graph G. In [19], it is shown
that half the value of the maximum flow in FG(G) is
a Lipschitz extension of the number of edges in G. We
will use the flow values on certain edges as a proxy for
degrees of related nodes. The main challenge is that,
whereas the value of the maximum flow in FG(G) is
unique, the flow on specific edges is not.

𝑠

1

3

𝑛

1′

3′

𝑛′

𝑡

2

4

2′

4′

𝐷

1

𝐷

⋮ ⋮

Figure 1. Flow graph illustration. Grey boxes indicate capacities.

Definition III.1 (Flow graph). Given a graph G =
(V,E), let V` = {v` | v ∈ V } and Vr = {vr | v ∈ V }
be two copies of V , called the left and the right copies,
respectively. Let D be a natural number less than n. The
flow graph of G with threshold D, a source s, and a
sink t is a directed graph on nodes V`∪Vr∪{s, t} with

the following capacitated edges: edges of capacity D
from the source s to all nodes in V` and from all nodes
in Vr to the sink t, and unit-capacity edges (u`, vr) for
all edges (u, v) of G. The flow graph of G is denoted
FG(G). See Figure 1 for an illustration.

We would like our extension function to output the
sorted list of flows leaving the source vertex in some
maximum flow. The challenge is that there may be
many maximum flows. If we select a maximum flow
arbitrarily, then the selected flow may be very sensitive
to changes in the graph, even though its value changes
little. We resolve this by selecting a flow that minimizes
a strictly convex function of the flow values.

Definition III.2 (Lipschitz extension of degree list).
Given a flow f of FG(G), let f(e) denote the flow on an
edge e. Also, let fs• be the vector of flows on the edges
leaving the source s, let f•t be the vector of flows on
the edges entering t, and let fs•,•t be the concatenation
of the two vectors. We use ~D2n to denote a vector of
length 2n, where all entries are D. Let Φ(f) be the
squared `2 distance between fs•,•t and ~D2n, that is,

Φ(f) = ‖fs•,•t − ~D2n‖22
=

∑
v∈V

(
(D − f(s, v`))

2 + (D − f(vr, t))
2
)
.

Let f be the flow that minimizes the objective function
Φ over all feasible flows in FG(G). Define f̂D(G) to
be the sorted list of flows along the edges leaving the
source, that is, f̂D(G) = sort(fs•).

Observe that for each G, there is a unique f̂D(G)
because the objective Φ is strictly convex in the values
fs•,•t. We can approximate f̂D(G) to arbitrary precision
in polynomial time, since it is the minimum of a
strongly convex function over a polytope with poly-
nomially many constraints. The approximation may
slightly increase the sensitivity; in our application, one
can account for this by adding slightly more than 3D/ε
noise in each coordinate.

Theorem I.3 follows from the following theorem.

Theorem III.3. The function f̂D(G) is a Lipschitz
extension of deg-list(G) from GD to G of stretch 3/2.
In other words,

1) If G is D-bounded, then f̂D(G) = deg-list(G).
2) For any two graphs G1, G2 (not necessarily D-

bounded) that are node neighbors,

‖f̂D(G1)− f̂D(G2)‖1 ≤ 3D .

We do not know if the bound 3D in part (2) of the
theorem is tight, even for this particular construction. It
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could be that this extension has stretch 1 (which would
correspond to a bound of 2D on the sensitivity).

Proof of Theorem III.3 (item 1): Suppose G is
D-bounded. The flow f in FG(G) that assigns 1 to all
edges (u`, vr) and deg(v) to all edges (s, v`) and (vr, t)
is feasible. Moreover, for any feasible flow f ′ and any
edge e in FG(G), we have f ′(e) ≤ f(e) because of
capacity constraints on edges between V` and Vr and
flow conservation. Finally, f minimizes Φ since, for x ∈
[0, D], function (D − x)2 is decreasing in x.

There are two distinct notions of optimality of a flow
in FG(G): optimality with respect to Φ, which we call
Φ-optimality, and optimality of the net flow form s to
t, called net flow optimality. Next, we show that Φ-
optimality implies net flow optimality.

Lemma III.4. For every graph G, if f is a feasible flow
for the flow graph FG(G) that minimizes Φ, then f is
a maximum net flow from s to t in FG(G).

Proof: Suppose f is not a maximum net flow. Let
p be a shortest augmenting s-t path and c > 0 be the
minimal residual capacity of an edge in p. Consider the
flow cp that assigns c units of flow to each edge of p
and 0 to all other edges. Since p is a shortest path, it is
simple. Thus, adding cp to f results in a feasible flow,
but does not decrease the flow along any edge leaving
s or entering t. This implies that Φ(f + cp) < Φ(f),
since Φ is strictly decreasing in each argument. That is,
f is not Φ-optimal.

The flow graph FG(G) admits a simple symmetry:
for any flow f , we can obtain a feasible flow π(f)
by swapping the roles of s and t and the roles of
left and right copies of all vertices. That is, we de-
fine π(f)(s, v`) := f(vr, t), π(f)(ur, t) := f(s, u`),
π(f)(u`, vr) := f(v`, ur) for all vertices v, u in G.
Flow f is symmetric if π(f) = f . For every graph
G, there exists a symmetric Φ-optimal flow in FG(G):
given any Φ-optimal flow f ′, the flow f ′′ = 1

2 (f ′ +
π(f ′)) is symmetric, feasible (because the set of feasible
flows is convex) and satisfies Φ(f ′′) ≤ Φ(f ′) by
convexity of Φ.

Proof of Theorem III.3 (item 2): Suppose a graph
G1 on n−1 nodes is obtained by removing a node vnew

and its associated edges from a graph G2 on n nodes.
Let f1, f2 be Φ-optimal symmetric flows for the flow

graphs FG(G1) and FG(G2), respectively.
Observe that f1 is a feasible flow in FG(G2). Con-

sider the flow ∆ = f2−f1. Note that ∆ is a flow in the
residual graph of flow f1 for FG(G2). It satisfies flow
conservation and capacity constraints, but not necessar-
ily positivity. Since ‖f̂D(G1) − f̂D(G2)‖1 = ‖∆s•‖1,
our goal is to prove ‖∆s•‖1 ≤ 3D.

Next, we decompose ∆ into three subflows. A subflow
∆′ of a flow ∆ is a flow that, for all edges e, satisfies
∆(e) · ∆′(e) ≥ 0 and |∆′(e)| ≤ |∆(e)|. We start by
decomposing ∆ into subflows that form simple s-t paths
and simple cycles. Then we group them as follows:
• Let ∆s be the sum of all flows from the initial

decomposition that form paths and cycles using the
edge (s, vnew

` ).
• Let ∆t be the sum of all flows from the initial

decomposition that form paths and cycles using the
edge (vnew

r , t), but not (s, vnew
` ).

• Let ∆0 be the sum of the remaining flows, i.e.,
∆0 = ∆−∆s −∆t.

Since, by definition of the subflow decomposition,
‖∆s•‖1 = ‖∆s

s•‖1 + ‖∆t
s•‖1 + ‖∆0

s•‖1, it remains
to bound the three values in the sum. We do it in the
following three lemmas.

Lemma III.5. ‖∆s
s•‖1 ≤ 2D.

Proof: Recall that ∆s can be decomposed into
simple s-t paths and simple cycles that use the edge
(s, vnew

` ). Each such path contributes the value of its
flow to ‖∆s

s•‖1, and each such cycle contributes at
most twice the value of its flow. Since the total flow
∆s(s, vnew

` ) is at most D, we get that ‖∆s
s•‖1 ≤ 2D.

Lemma III.6. ‖∆t
s•‖1 ≤ D.

Proof: Recall that ∆t can be decomposed into
simple s-t paths and cycles that use the edge (vnew

r , t),
but not (s, vnew

` ). Each such path contributes the value
of its flow to ‖∆s

s•‖1. Any such cycle contributes 0 to
‖∆s

s•‖1 if it does not pass through s. We will show
that no simple cycle in the initial decomposition of ∆t

passes through s.
Consider, for the sake of contradiction, a simple cycle

that passes through s in the initial decomposition of ∆t.
By definition of ∆t, the cycle uses the edge (vnew

r , t).
So, it is of the form s, vi`, . . . , v

new
r , t, vjr , . . . , v

k
` , s for

some nodes i, j, k in G1. Since ∆t is a subflow of
δ = f2 − f1 and f1 cannot use the edge (vnew

r , t), the
cycle has positive flow on (vnew

r , t). So, the cycle has
positive flow on s, vi`, . . . , v

new
r , t and negative flow on

s, vk` , . . . , v
j
r , t. But this implies that s, vk` , . . . , v

j
r , t is

an augmenting path in FG(G2) with respect to flow
f2, that is, f2 is not net flow optimal in FG(G2).
By Lemma III.4, it contradicts Φ-optimality of f2 in
FG(G2). Therefore, no simple cycle passes through s
in the initial decomposition of ∆t.

Since the total flow ∆t(vnew
r , t) is at most D, we get

that ‖∆t
s•‖1 ≤ D.
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Lemma III.7. ‖∆0
s•‖1 = 0.

Proof: In this proof, to make notation less cum-
bersome, we think of flows for FG(G1) as flows of
FG(G2), i.e., living in a higher-dimensional space than
necessary to represent them.

The flow ∆0 does not use the edges (s, vnew
` ) and

(vnew
r , t) since all flow in ∆ along (s, vnew

` ) and (vnew
r , t)

has been used by ∆s + ∆t. Recall that ∆0 is a subflow
of f2 − f1, so it must carry nonnegative flow along all
edges that are in FG(G2), but not in FG(G1), that is,
edges adjacent to vnew

` and vnew
r . Consequently, ∆0 has

no flow passing through vnew
` and vnew

r . Therefore, ∆0 is
a feasible flow for the residual graph of f1 in FG(G1).
We conclude that f1 + ∆0 is feasible in FG(G1).

Assume for the sake of contradiction that ‖∆0
s•‖1 >

0. Then we can use the convexity of Φ to prove the
following inequalities:

〈∆0
s•,•t , ~D2n − (f1)s•,•t〉 ≤ 0. (1)

〈∆0
s•,•t , ~D2n − (f2 −∆0)s•,•t〉 > 0. (2)

To prove (1), consider the polytope P1 of feasible flows
in FG(G1). Both f1 and f1 + ∆0 are in P1. Let P ′1
be the polytope obtained by projecting P1 onto the
2n coordinates corresponding to flows out of s and
flows into t. Then (f1)s•,•t is the unique vector in
P ′1 corresponding to Φ-optimal flows in FG(G1). Since
Φ is minimized at ~D2n, a tiny step from (f1)s•,•t in
the direction of (f1 + ∆0)s•,•t takes us further from
~D2n. In other words, the angle between the vectors
~D2n−(f1)s•,•t and (f1 + ∆0)s•,•t−(f1)s•,•t is at least
90◦, implying (1).

To prove (2), consider the polytope P2 of feasible
flows in FG(G2). Both f2 and f2−∆0 are in P2. Let P ′2
be the polytope obtained by projecting P2 onto the 2n
coordinates corresponding to flows out of s and into t.
Then (f2)s•,•t is the unique vector in P ′2 corresponding
to Φ-optimal flows in FG(G2). Since Φ is minimized
at ~D2n, a tiny step from (f2 −∆0)s•,•t in the direction
of (f2)s•,•t takes us closer to ~D2n. In other words, the
angle between the vectors (f2)s•,•t−(f2 −∆0)s•,•t and
~D2n − (f2 −∆0)s•,•t is less than 90◦, implying (2).

Subtracting (1) from (2) and using the fact that ∆ =
f2 − f1 = ∆s + ∆t + ∆0, we get

〈∆0
s•,•t , ~D2n − (f2 −∆0)s•,•t〉
−〈∆0

s•,•t , ~D2n − (f1)s•,•t〉 > 0;

〈∆0
s•,•t,−(f2 − f1 −∆0)s•,•t〉 > 0;

〈∆0
s•,•t, (∆

s + ∆t)s•,•t〉 < 0. (3)

But ∆0 and ∆s + ∆t are both subflows of ∆, so they
cannot have opposite signs on any edge, contradicting
(3). Therefore, ‖∆0

s•‖1 = 0.
We now complete the proof of Theorem III.3 (Item

2). Recall that ∆ = ∆s + ∆t + ∆0 and that ∆s,∆t,
and ∆0 are subflows of ∆. From Lemmas III.5–III.7,
we get ‖f̂D(G1)− f̂D(G2)‖1 = ‖∆s•‖1 = ‖∆s

s•‖1 +
‖∆t

s•‖1 + ‖∆0
s•‖1 ≤ 3D, as desired.

IV. EXPONENTIAL MECHANISM FOR SCORES WITH
VARYING SENSITIVITY

In this section, we generalize the exponential mech-
anism and prove Theorem I.4. A limitation of the
utility guarantee of the exponential mechanism, stated
in Lemma II.3, is that it depends on the maximum
sensitivity of the score functions qi. In the context
of threshold selection for graph algorithms, such a
guarantee is meaningless for sparse graphs. This poor
utility bound is not merely an artifact of the analysis.
The problem is inherent in the algorithm. For example,
consider the setting with k = 2, where the two score
functions have sensitivity ∆1 = 1 and ∆2 � 1. Further,
consider a dataset x with q1(x) = 0 and q2(x) = ∆2/ε.
On input x, the exponential mechanism selects ı̂ = 2
with constant probability, resulting in error of ∆2/ε,
which may be arbitrarily larger than ∆1.

In contrast, we give an algorithm whose error scales
with the sensitivity of the optimal score function ∆i∗ ,
where i∗ = argmini∈[k] qi(x). Our mechanism requires
as input an upper bound β on the desired probability of
a bad outcome; the algorithm’s error guarantee depends
on β.

Theorem I.4 (Formal). For all parameters β ∈ (0, 1),
ε > 0, the generalized exponential mechanism (Al-
gorithm 1) is ε-differentially private (with respect to
the neighbor relation on U ). For all inputs x, with
probability at least 1− β, the output ı̂ satisfies

q̂ı(x) ≤ min
i∈[k]

(
qi(x) + ∆i · 4 ln(k/β)

ε

)
. (4)

In particular, our algorithm is competitive with the
sensitivity of the true minimizer i∗ = argmini∈[k] qi(x)
(since the right-hand side of (4) is at most qi∗(x)+∆i∗ ·
4 ln(k/β)

ε ). When all the ∆i’s are the same, our algorithm
simplifies to running the usual exponential mechanism
with ε′ = ε/2; this justifies the “generalized” name.

The intuition behind the algorithm is as follows: since
the score function qi has different sensitivity for each i,
we would like to find an alternative score function which
is less sensitive. One simple score would be to compute,
for each j, the distance, in the space of datasets, from
the input x to the nearest dataset y in which qj(y) is
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Algorithm 1: Generalized Exponential Mechanism
Input: Dataset x from universe U ,
Parameters: ε > 0 and β ∈ (0, 1),
∀i ∈ [k], a ∆i-Lipschitz score qi : U → R.

1 Set t = 2 ln(k/β)
ε ;

2 ∀i ∈ [k], define

si(x)← max
j∈[k]

(qi(x) + t∆i)− (qj(x) + t∆j)

∆i + ∆j

/* si is 1-Lipschitz. */
3 Run the exponential mechanism EM(x) with

parameters ε,∆max = 1, and score functions si,
i.e., sample an index i from [k] with probability
proportional to exp (ε · si(x)/2);

4 return ı̂, the output of EM.

smallest among the values {qi(y)}i∈[k]. (This idea is
inspired by the GWAS algorithms of [13].) This score
has two major drawbacks: first, it is hard to compute
in general; second, more subtly, it will tend to favor
indices j with very high sensitivity (since they become
optimal with relatively few changes to the data).

Instead, we use a substitute measure that (i) is easy
to compute given the scores qi(x) for i ∈ [k] and
(i) appropriately penalizes scores with large sensitivity.
Given a value t > 0 (to be set later), define the
normalized score as

si(x) = max
j∈[k]

(qi(x) + t∆i)− (qj(x) + t∆j)

∆i + ∆j

= max
j∈[k]

(
qi(x)− qj(x)

∆i + ∆j
+ t · ∆i −∆j

∆i + ∆j

)
.

The first term inside the maximum on the right-hand
side is an approximation to the Hamming distance from
x to the nearest dataset y where score qj(·) becomes
smaller than qi(·). The second term (containing t and
independent of the dataset) penalizes indices i with
larger sensitivity.

We obtain an index ı̂ by running the usual exponential
mechanism on the normalized scores si. The privacy of
the mechanism follows from the fact that the new scores
have sensitivity at most 1.

Lemma IV.1. For all i ∈ [k] and all t ∈ R, the
normalized score si(·) has sensitivity at most 1.

Proof of Theorem I.4: Regardless of the dataset
x, Algorithm 1 uses t = 2 ln(k/β)/ε. By Lemma IV.1,
each new score si(·) is 1-Lipschitz. Thus, the applica-
tion of the usual exponential mechanism (or its efficient
implementation, “report noisy min”) is ε-differentially
private.

To analyze utility, let m denote the index that mini-
mizes the penalized score qi(x) + t∆i. Then

sm(x) = 0,

since each of the terms in the maximum defining s is
nonpositive for m (and the term for j = m is 0). By the
usual analysis of the exponential mechanism, we have
that with probability at least 1− β,

ŝı(x) ≤ sm(x)︸ ︷︷ ︸
0

+
2 ln(k/β)

ε
.

Now consider an arbitrary index j. Since

ŝı(x) ≥ (q̂ı(x) + t∆ı̂)− (qj(x) + t∆j)

∆ı̂ + ∆j
,

we can multiply by ∆ı̂ + ∆j to obtain:

q̂ı(x) ≤ qj(x) + t (∆j −∆ı̂) + 2 ln(k/β)
ε · (∆ı̂ + ∆j)

= qj(x) + ∆j

(
2 ln(k/β)

ε + t
)

+ ∆ı̂

(
2 ln(k/β)

ε − t
)
.

Substituting t = 2 ln(k/β)
ε yields the desired result.

In the full version, we provide several applications of
the generalized exponential mechanism.

V. DEGREE DISTRIBUTIONS AND α-DECAY

Our techniques provide a significantly more accurate
way to release the degree distributions of graphs while
satisfying node privacy. To illustrate this, we study the
accuracy of our method on graphs that satisfy α-decay,
a mild condition on the tail of the degree distribution.

Recall that d̄(G) denotes the average degree of G.

Assumption V.1. Fix α ≥ 1. A graph G satisfies α-
decay if for all real numbers t > 1, PG(t· d̄(G)) ≤ t−α.

All graphs satisfy 1-decay (by Markov’s inequal-
ity). The assumption is nontrivial for α > 1, but it
is nevertheless satisfied by almost all widely studied
classes of graphs. So-called “scale-free” networks (those
that exhibit a heavy-tailed degree distribution) typically
satisfy α-decay for α ∈ (1, 2). Regular graphs satisfy
α-decay for all α > 1.

Kasiviswanathan et al. [19] gave algorithms for re-
leasing the degree distribution using a projection-based
technique. Their algorithm required knowledge of the
decay parameter α (which was used to select the projec-
tion threshold). They bounded the `1 error of their algo-
rithm in estimating the degree distribution, and showed
that it went to 0 as long as α > 2 and d̄ was polylog-
arithmic in n. More precisely, they gave an expected
error bound of E ‖p̂− pG‖1 = Õ

(
d̄

3α
α+1 /

(
ε2n

α−2
α+1

))
.
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Combining the techniques of the previous sections
with some additional tools, we design an algorithm
Acombo which improves on the previous bound.

Theorem V.2. Given inputs G ∈ G and ε > 0, the
algorithm Acombo produces an estimate p̂ such that, if
G satisfies α-decay for α > 1, then

E ‖p̂− pG‖1 = O
(
d̄(G)

2α
α+1 / (εn)

α−1
α+1

)
.

This error is o(1) as n→∞ if d̄(G) = o(εn)
α−1
2α .
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