
Published by Algorithmica February 22, 2012

Sublinear Algorithms for Approximating String
Compressibility

Sofya Raskhodnikova · Dana Ron · Ronitt
Rubinfeld · Adam Smith

the date of receipt and acceptance should be inserted later

Abstract We raise the question of approximating the compressibility of a string with
respect to a fixed compression scheme, in sublinear time. We study this question in
detail for two popular lossless compression schemes: run-length encoding (RLE) and
a variant of Lempel-Ziv (LZ77), and present sublinear algorithms for approximating
compressibility with respect to both schemes. We also give several lower bounds that
show that our algorithms for both schemes cannot be improved significantly.

Our investigation of LZ77 yields results whose interest goes beyond the initial
questions we set out to study. In particular, we prove combinatorial structural lem-
mas that relate the compressibility of a string with respect to LZ77 to the number
of distinct short substrings contained in it (its `th subword complexity, for small `).
In addition, we show that approximating the compressibility with respect to LZ77 is
related to approximating the support size of a distribution.

A preliminary version of this paper appeared in the proceedings of RANDOM 2007 [36].
This research was done while S.R. was at the Hebrew University of Jerusalem, Israel, supported by the
Lady Davis Fellowship, and while both S.R. and A.S. were at the Weizmann Institute of Science, Israel.
A.S. was supported at Weizmann by the Louis L. and Anita M. Perlman Postdoctoral Fellowship. Cur-
rently, S.R. is supported by NSF/CCF CAREER award 0845701 and A.S., by NSF/CCF CAREER award
0747294. D.R. is supported by the Israel Science Foundation (grant number 89/05).

S. Raskhodnikova
Pennsylvania State University, USA.
Tel.: +1-814-863-0608
Fax: +1-814-865-7647
E-mail: sofya@cse.psu.edu

D. Ron
Tel Aviv University, Israel.
E-mail: danar@eng.tau.ac.il

R. Rubinfeld
MIT, USA.
E-mail: ronitt@csail.mit.edu

A. Smith
Pennsylvania State University, USA.
E-mail: asmith@cse.psu.edu

2 Sofya Raskhodnikova et al.

Keywords Sublinear algorithms · Lossless compression · Run-length encoding ·
Lempel-Ziv

1 Introduction

Given an extremely long string, it is natural to wonder how compressible it is. This
question is fundamental to several disciplines, including information theory, compu-
tational complexity theory, machine learning, storage systems, and communications.
As massive data sets become commonplace, the ability to estimate compressibility
with extremely efficient, even sublinear time, algorithms, is gaining importance. The
most general measure of compressibility, Kolmogorov complexity, is not computable
(see [30] for a textbook treatment), nor even approximable. Even under restrictions
which make it computable (such as a bound on the running time of decompression),
it is probably hard to approximate in polynomial time, since an algorithm with non-
trivial approximation guarantees would allow one to distinguish random from pseu-
dorandom strings and, hence, invert one-way functions. Nevertheless, the question of
how compressible a long string is with respect to a specific compression scheme may
be tractable, depending on the particular scheme.

We raise the question of approximating the compressibility of a string with re-
spect to a fixed compression scheme, in sublinear time, and give algorithms and
nearly matching lower bounds for several versions of the problem. We consider al-
gorithms with worst-case approximation guarantees. That is, we do not assume any
particular distribution over inputs; instead, our algorithms are randomized and, for
every input, produce an output within a specified range with high probability over the
coins of the algorithm.

Although our question is new, for one compression scheme, namely Huffman
coding (applied to individual symbols as opposed to blocks of symbols), answers
follow from previous work. Compressibility under Huffman encoding is determined
by the entropy of the symbol frequencies. Given an arbitrary input string w, sampling
symbols uniformly with replacement from w provides a sequence of independent
observations from a distribution with probabilities given by the symbol frequencies.
Approximating the entropy of a distribution based on i.i.d. observations is a well-
studied problem1, and the existing results immediately imply algorithms and lower
bounds for sublinear-time algorithms that approximate the compressibility of a string
under Huffman encoding.

In this work we study the compressibility approximation question in detail for two
popular lossless compression schemes: run-length encoding (RLE) and a variant of
Lempel-Ziv (LZ77) [42]. In the RLE scheme, each run, or a sequence of consecutive
occurrences of the same character, is stored as a pair: the character, and the length
of the run. Run-length encoding is used to compress black and white images, faxes,
and other simple graphic images, such as icons and line drawings, which usually

1 When the sample size is much larger than the alphabet size, then the frequency of each individual
symbol (and hence the entropy) can be estimated accurately. When the alphabet is larger than the sample
size, then the approximability of the entropy depends on several features of the distribution; see, e.g., Batu
et al. [4], Cai et al. [9], Paninski [33,34], Brautbar and Samorodnitsky [6].

Sublinear Algorithms for Approximating String Compressibility 3

contain many long runs. In the LZ77 scheme, a left-to-right pass of the input string is
performed and at each step, the longest sequence of characters that has started in the
previous portion of the string is replaced with the pointer to the previous location and
the length of the sequence (for a formal definition, see Section 4). The LZ77 scheme
and other variants of Lempel-Ziv have been studied extensively in information theory,
as well as in machine learning, in part because they compress strings generated by
an ergodic source to the shortest possible representation (given by the entropy) in the
asymptotic limit (cf. [16]). Many popular archivers, such as gzip, use variations on the
Lempel-Ziv scheme. In this work we present sublinear algorithms and corresponding
lower bounds for approximating compressibility with respect to both schemes, RLE
and LZ77.

Motivation. Computing the compressibility of a long string with respect to spe-
cific compression schemes may be done in order to decide whether or not to compress
the file, to choose which compression method is the most suitable, or check whether
a small modification to the file (e.g., a rotation of an image) will make it significantly
more compressible2. Moreover, compression schemes are used as tools for measuring
properties of strings such as similarity and entropy. As such, they are applied widely
in data-mining, natural language processing and genomics (the literature on this topic
is too vast to survey here; see, for example, Lowenstern et al. [31], Witten et al. [41],
Frank et al. [18], Kukushkina et al. [26], Benedetto et al. [5], Li et al. [29], Calibrasi
and Vitányi [12,13], Keogh et al. [24], Sculley and Brodley [38], Ferragina et al. [17]
and the survey of Keogh et al. [25]). In these applications, one usually needs only the
length of the compressed version of a file, not the output itself; a fast and accurate ap-
proximation algorithm for compressibility could speed up the computations in these
applications significantly.

Roughly, our results show that for RLE one can get a good approximation to the
compressibility using very few queries to the input string. In contrast, we show that
approximating LZ77 compressibility, even within a constant factor, provably requires
reading a much larger fraction of the input string.

Worst-case Multiplicative and Additive Approximation. We consider three
approximation notions: additive, multiplicative, and the combination of additive and
multiplicative. On inputs of length n, the quantities we approximate range from 1
to n. An additive approximation algorithm is allowed an additive error of εn, where
ε ∈ (0,1) is a parameter. The output of a multiplicative approximation algorithm is
within a factor A > 1 of the correct answer. The combined notion allows both types
of error: the algorithm should output an estimate Ĉ of the compression cost C such
that C

A − εn≤ Ĉ ≤ A ·C+ εn.
Our algorithms are randomized and, for every input, the approximation guaran-

tee holds with probability at least 2
3 over the coins of the algorithm. We stress that

we do not make any probabilistic assumptions concerning the way the input string w
is generated. Our claims hold for every string w, and the running time of the algo-

2 For example, a variant of the RLE scheme, typically used to compress images, runs RLE on the
concatenated rows of the image and on the concatenated columns of the image, and stores the shorter of
the two compressed files.

4 Sofya Raskhodnikova et al.

rithms may depend on the compressibility of w in addition to the given approximation
parameters.

We are interested in sublinear approximation algorithms, which read few posi-
tions of the input strings. For the schemes we study, purely multiplicative approxima-
tion algorithms must (in the worst case) read almost the entire input. Nevertheless,
algorithms with additive error guarantees, or a possibility of both multiplicative and
additive error are often sufficient for distinguishing very compressible inputs from
inputs that are not well compressible. For both the RLE and LZ77 schemes, we give
algorithms with combined multiplicative and additive error that make few queries to
the input. When it comes to additive approximations, however, the two schemes differ
sharply: sublinear additive approximations are possible for the RLE compressibility,
but not for LZ77 compressibility.

We summarize our results in Sections 1.1 and 1.2, then interpret them and discuss
their implications in Section 1.3. We describe additional related work in Section 1.4
and mention potential research directions in Section 1.5.

1.1 Results for Run-Length Encoding

For RLE, we present sublinear algorithms for all three approximation notions defined
above, providing a trade-off between the quality of approximation and the running
time. The algorithms with an additive approximation guarantee run in time indepen-
dent of the input size. Specifically, an εn-additive estimate can be obtained in time3

Õ(1/ε3), and a combined estimate, with a multiplicative error of 3 and an additive
error of εn, can be obtained in time Õ(1/ε). As for a strict multiplicative approxima-
tion, we give a simple 4-multiplicative approximation algorithm that runs in expected
time Õ(n

CRLE(w)
), where CRLE(w) denotes the compression cost of the string w, that

is, the number of symbols w compresses to under RLE. For any γ > 0, the multiplica-
tive error can be improved to 1+ γ at the cost of multiplying the running time by
poly(1/γ). Observe that the algorithm is more efficient when the string is less com-
pressible, and less efficient when the string is more compressible. One of our lower
bounds justifies such a behavior and, in particular, shows that a constant factor ap-
proximation requires linear time for strings that are very compressible. We also give
a lower bound of Ω(1/ε2) for εn-additive approximation.

1.2 Results for Lempel-Ziv

We prove that approximating compressibility with respect to LZ77 is related to its
`th subword complexity (that is, the number of distinct substrings of length ` that it
contains) for small `. In turn, this problem reduces to the following problem, which
we call DISTINCT ELEMENTS (DE):

3 The notation Õ(g(k)) for a function g of a parameter k means O(g(k) · polylog(g(k)) where
polylog(g(k)) = logc(g(k)) for some constant c.

Sublinear Algorithms for Approximating String Compressibility 5

Definition 1 (DE Problem) Given access to a string τ over alphabet Ψ , approxi-
mate the number of distinct elements (that is, symbols) in τ .

This is essentially equivalent to estimating the support size of a distribution [37].
Variants of this problem have been considered under various guises in the literature:
in databases it is referred to as approximating distinct values (Charikar et al. [10]),
in statistics as estimating the number of species in a population (see the over 800 ref-
erences maintained by Bunge [7]), and in streaming as approximating the frequency
moment F0 (Alon et al. [2], Bar-Yossef et al. [3]). Most of these works, however,
consider models different from ours. For our model, there is an A-multiplicative ap-
proximation algorithm of [10], that runs in time O

(
n

A2

)
, matching the lower bound

in [10,3]. There is also an almost linear lower bound for approximating DE with
additive error [37].

We give a reduction from LZ77 compressibility to DE and vice versa. These re-
ductions allow us to employ the known results on DE to give algorithms and lower
bounds for this problem. Our approximation algorithm for LZ77 compressibility
combines a multiplicative and additive error. The running time of the algorithm is
Õ
(

n
A3ε

)
where A is the multiplicative error and εn is the additive error. In particular,

this implies that for any α > 0, we can distinguish, in sublinear time Õ(n1−α), strings
compressible to O(n1−α) symbols from strings only compressible to Ω(n) symbols.4

The main tool in the algorithm consists of two combinatorial structural lemmas
that relate compressibility of a string to its `th subword complexity for small `, that
is, the number of distinct substrings of length ` that it contains (when considering
all n− `+1 possible overlapping substrings). Roughly, the lemmas say that a string
is well compressible with respect to LZ77 if and only if its `th subword complexity
is small for all small `. The simpler of the two lemmas was inspired by a structural
lemma for grammars by Lehman and Shelat [27]. The combinatorial lemmas allow
us to establish a reduction from LZ77 compressibility to DE and employ a (simple)
algorithm for approximating DE in our algorithm for LZ77.

Interestingly, we can show that there is also a reduction in the opposite direc-
tion: namely, approximating DE reduces to approximating LZ77 compressibility. The
lower bound of [37], combined with the reduction from DE to LZ77, implies that our
algorithm for LZ77 cannot be improved significantly. In particular, our lower bound
implies that for any B= no(1), distinguishing strings compressible by LZ77 to Õ(n/B)
symbols from strings compressible to Ω̃(n) symbols requires n1−o(1) queries.

1.3 Discussion of the Results

We stress again that our results are worst-case over inputs; see the discussion under
“Worst-case Multiplicative and Additive Approximation”, above. Nevertheless, it is
natural to ask what our results imply for typical inputs. For many of the sources
studied in the information theory literature, the compressibility of typical inputs of
length n scales as Hn, where H is a constant depending on the source. Thus, we might

4 To see this, set A = o(nα/2) and ε = o(n−α/2).

6 Sofya Raskhodnikova et al.

ask how well our algorithms approximate the constant H on such inputs. The answers
are drastically different for the two compression schemes that we study.

Our positive results for RLE are stronger than our positive result for LZ77. As
noted previously, if we are interested in a (1+ γ)-factor approximation for RLE, for
any γ > 0, then the complexity of the algorithm is poly(1/γ) when CRLE(w) = Ω(n),
and in general it depends (roughly) linearly on n/CRLE(w). Thus, we can obtain a very
precise estimate of CRLE(w) in sublinear time as long as CRLE(w) is not negligible
compared to n. Stating the problem slightly differently, that is, as a decision problem
(and using our first, purely additive approximation algorithm), for any δ (that may be
a constant, or a function of n) and ε < δ , we can distinguish between the case that
CRLE(w)≥ δn and the case that CRLE(w)< (δ − ε)n in time Õ(1/ε3). Alternatively
(using our second result), we can distinguish between the case that CRLE(w) ≥ δn
and the case that CRLE(w)< (δ/9− (2/3)ε)n in time Õ(1/ε).

In contrast, as stated in Section 1.2, for LZ77, such precise estimates cannot be
obtained in sublinear time. One can view our results for LZ77 (unlike for RLE) as
being mainly negative. Indeed, we establish the limitations of any algorithm that ap-
proximates CLZ77(w), and in particular we show that, for constant δ , no algorithm can
distinguish between the case that CLZ77(w)≥ δn and the case that CLZ77(w)< (δ/B)n
in time Õ(n/B). (CLZ77(w) denotes the number of symbols w compresses to under
LZ77.) Thus, when dealing only with highly incompressible strings (e.g., typical se-
quences from a memoryless source), we do not, and cannot, get a sublinear algorithm.
However, our algorithm can be useful in scenarios where some strings are highly
compressible, and we want to detect this (with high probability) without reading the
whole input and running the compression algorithm.

1.4 Additional Related Work

As noted previously, at the core of our result for LZ77 are two combinatorial struc-
tural lemmas that relate compressibility of the string to its `th-subword complexity
(for small `). Both the total subword complexity (the total number of distinct sub-
strings in a string) and the `-subword complexity (the number of substrings of length
`) have been studied extensively in the past.

Much of the existing work focuses on understanding how the subword complexi-
ties of a string w behave when w is chosen randomly according to various memoryless
and stationary sources (Janson et al. [21], Gheorghiciuc and Ward [19], Kása [22] and
Léve and Séébold [28]). Those results are not directly relevant to our work, given our
focus on worst-case analysis.

Combinatorial results are fewer, and focus mostly on the total subword complex-
ity. Shallit [39] and de Luca [32] study the maximum possible subword complexity of
strings, and Gheorghiciuc and Ward [19] show relationships between the `-subword
complexity and the total subword complexity. The most similar in flavor to our work
is that of Ilie et al. [20]. They relate the Lempel-Ziv compressibility to the total sub-
word complexity for extremely compressible strings: specifically, they show that the
total subword complexity of an infinite string’s prefixes scales linearly if and only if
the prefixes compress to a constant number of symbols under LZ77 (these two condi-

Sublinear Algorithms for Approximating String Compressibility 7

tions are equivalent to the string being periodic). It is not clear what their techniques
imply for strings with superconstant compressibility.

Finally, we note that approximation algorithms for compressibility and “general-
ized” compressibility (in which one looks at how compressible a string x is given
another string y as a reference) have been considered before (e.g., Cormode and
Muthukrishnan [15], Keller et al. [23]). However, those algorithms process (or pre-
process) the entire string, and thus run in at least linear time overall; in contrast, our
goal is to understand when sublinear algorithms are possible.

1.5 Further Research

It would be interesting to extend our results for estimating the compressibility un-
der LZ77 to other variants of Lempel-Ziv, such as dictionary-based LZ78 [43]. Com-
pressibility under LZ78 can be drastically different from compressibility under LZ77:
e.g., for 0n they differ roughly by a factor of

√
n. (Other, less degenerate examples for

which there is a gap appear in [35].) Another open question is approximating com-
pressibility for schemes other than RLE and Lempel-Ziv, e.g., based on the Burrows-
Wheeler transform (BTW) [8], prediction by partial matching (PPM) [14] and the
context tree weighting method (CTW) [40]. It would also be interesting to design
approximation algorithms for lossy compression schemes, e.g., schemes based on a
discrete cosine transform [1], such as JPEG, MPEG and MP3, and schemes based on
wavelets [11], such as JPEG-2000. One lossy scheme to which our results extend di-
rectly is a commonly used variant of RLE, where some distinct symbols, e.g., pixels
of similar color, are treated as the same character.

1.6 Organization

We start with establishing common notation and defining our notions of approxima-
tion in Section 2. Section 3 presents algorithms and lower bounds for RLE. The al-
gorithmic results are summarized in Theorem 1 and the lower bounds, in Theorem 2.
Section 4 deals with the LZ77 scheme: it starts with the structural lemmas, explains
the approximation algorithm for compressibility with respect to LZ77 and finishes
with the reduction from DE to LZ77 compressibility. Subsection 4.3 describes a sim-
ple algorithm for DE.

2 Preliminaries

Our algorithms are given query access to a string w of length n over a finite alphabet
Σ . That is, they may ask what is wt for any t ∈ [n] of their choice (where [n] def

=
{1, . . . ,n}). Let C(w) denote the length of the compressed version of w according
to some fixed compression scheme. We consider estimates to C(w) that have both
multiplicative and additive error. We call Ĉ an (A,ε)-estimate for C(w) if

C(w)
A
− εn ≤ Ĉ ≤ A ·C(w)+ εn ,

8 Sofya Raskhodnikova et al.

and say an algorithm (A,ε)-estimates C (or is an (A,ε)-approximation algorithm for
C) if, for each input w, it produces an (A,ε)-estimate for C(w) with probability at
least 2

3 over the coins of the algorithm.
When the error is purely additive or multiplicative, we use the following short-

hand: εn-additive estimate stands for (1,ε)-estimate and A-multiplicative estimate,
or A-estimate, stands for (A,0)-estimate. An algorithm computing an εn-additive es-
timate with probability at least 2

3 is an εn-additive approximation algorithm, and if
it computes an A-multiplicative estimate then it is an A-multiplicative approximation
algorithm, or A-approximation algorithm.

For some settings of parameters, obtaining a valid estimate is trivial. For a quan-
tity in [1,n], for example, n

2 is an n
2 -additive estimate,

√
n is a

√
n-estimate and εn is

an (A,ε)-estimate whenever A≥ 1
2ε

.
When measuring running time, we use a random access memory model: we

charge one time unit for every symbol of the input which is read, regardless of its
position in the input string.

3 Run-Length Encoding

Every n-character string w over alphabet Σ can be partitioned into maximal runs of
identical characters of the form σ `, where σ is a symbol in Σ and ` is the length of
the run, and consecutive runs are composed of different symbols. In the Run-Length
Encoding of w, each such run is replaced by the pair (σ , `). The number of bits needed
to represent such a pair is dlog(`+1)e+ dlog |Σ |e plus the overhead which depends
on how the separation between the characters and the lengths is implemented. One
way to implement it is to use prefix-free encoding for lengths. For simplicity we
ignore the overhead in the above expression, but our analysis can be adapted to any
implementation choice. The cost of the run-length encoding, denoted by CRLE(w), is
the sum over all runs of dlog(`+1)e+ dlog |Σ |e.

We assume that the alphabet Σ has constant size. This is a natural assumption
when using run-length encoding, but the analysis of our algorithms can be extended
in a straightforward manner to alphabets whose size is a function of n. The complexity
of the algorithms will grow polylogarithmically with |Σ |.

We first present an algorithm that, given a parameter ε , outputs an εn-additive
estimate to CRLE(w) with high probability and makes Õ(1/ε3) queries. We then re-
duce the query complexity to Õ(1/ε) at the cost of incurring a multiplicative ap-
proximation error in addition to the additive one: the new algorithm (3,ε)-estimates
CRLE(w). We later discuss how to use approximation schemes with multiplicative
and additive error to get a purely multiplicative approximation, at a cost on the query
complexity that depends on n/CRLE(w). That is, the more compressible the string w
is, the higher the query complexity of the algorithm. These results are summarized in
Theorem 1, stated next. The algorithms referred to by the theorem are presented in
Subsections 3.1–3.3.

Theorem 1 Let w ∈ Σ n be a string to which we are given query access.

1. Algorithm I gives an εn-additive approximation to CRLE(w) in time Õ(1/ε3).

Sublinear Algorithms for Approximating String Compressibility 9

2. Algorithm II (3,ε)-estimates CRLE(w) in time Õ(1/ε).

3. Algorithm III 4-estimates CRLE(w) and runs in expected time Õ
(

n
CRLE(w)

)
. More-

over, a slight modification of Algorithm III (1+γ)-estimates CRLE(w) in expected

time Õ
(

n
CRLE(w)

·poly(1/γ)
)

.

We note that though the (expected) running time of Algorithm III depends on CRLE(w),
the algorithm needs no prior knowledge of CRLE(w). The same is true of the variant
of the algorithm that obtains a (1+ γ)-estimation.

We also give two lower bounds, for multiplicative and additive approximation,
respectively, which establish that the running times in Items 1 and 3 of Theorem 1
are essentially tight.

Theorem 2

1. For all A > 1, any A-approximation algorithm for CRLE requires Ω

(
n

A2 logn

)
queries. Furthermore, if the input is restricted to strings with compression cost
CRLE(w)≥C, then Ω

(
n

CA2 log(n)

)
queries are necessary.

2. For all ε ∈
(
0, 1

2

)
, any εn-additive approximation algorithm for CRLE requires

Ω(1/ε2) queries.

In the next subsections we prove Theorems 1 and 2.

3.1 An εn-Additive Estimate with Õ(1/ε3) Queries

Our first algorithm for approximating the cost of RLE is very simple: it samples a
few positions in the input string uniformly at random and bounds the lengths of the
runs to which they belong by looking at the positions to the left and to the right of
each sample. If the corresponding run is short, its length is established exactly; if it is
long, we argue that it does not contribute much to the encoding cost. For each index
t ∈ [n], let `(t) be the length of the run to which wt belongs. The cost contribution of
index t is defined as

c(t) =
dlog(`(t)+1)e+ dlog |Σ |e

`(t)
.

By definition, CRLE(w)/n = Et∈[n][c(t)], where Et∈[n] denotes expectation over a uni-
formly random choice of t. The algorithm, presented below, estimates the encoding
cost by the average of the cost contributions of the sampled short runs, multiplied
by n.

10 Sofya Raskhodnikova et al.

ALGORITHM I: AN εn-ADDITIVE APPROXIMATION FOR CRLE(w)

1. Select q =Θ

(
1
ε2

)
indices t1, . . . , tq uniformly and independently at random.

2. For each i ∈ [q] :
(a) Query ti and up to `0 =

8log(4|Σ |/ε)
ε

positions in its vicinity to bound `(ti).
(b) Set ĉ(ti) = c(ti) if `(ti)< `0 and ĉ(ti) = 0 otherwise.

3. Output ĈRLE = n · E
i∈[q]

[ĉ(ti)].

Proof of Theorem 1, Item 1. We first prove that the algorithm is an εn-additive
approximation algorithm. The error of the algorithm comes from two sources: from
ignoring the contribution of long runs and from sampling. The ignored indices t, for
which `(t) ≥ `0, do not contribute much to the cost. Since the cost assigned to the
indices monotonically decreases with the length of the run to which they belong, for
each such index,

c(t)≤ dlog(`0 +1)e+ dlog |Σ |e
`0

≤ ε

2
.

Therefore,
CRLE(w)

n
− ε

2
≤ 1

n
· ∑

t:`(t)<`0

c(t) ≤ CRLE(w)
n

.

Equivalently, CRLE(w)
n − ε

2 ≤ Ei∈[n][ĉ(ti)]≤
CRLE(w)

n .
By an additive Chernoff bound, with high constant probability, the sampling error

in estimating E[ĉ(ti)] is at most ε/2. Therefore, ĈRLE is an εn-additive estimate of
CRLE(w), as desired.

We now turn to the query complexity and running time, where recall that we
assume that |Σ | is constant. Since the number of queries performed for each selected
ti is O(`0) = O(log(1/ε)/ε), the total number of queries, as well as the running time,
is O(log(1/ε)/ε3). ut

3.2 A (3,ε)-Estimate with Õ(1/ε) Queries

If we are willing to allow a constant multiplicative approximation error in addition
to εn-additive, we can reduce the query and time complexity to Õ(1/ε). The idea
is to partition the positions in the string into buckets according to the length of the
runs they belong to. Each bucket corresponds to runs of the same length up to a small
constant factor. For the sake of brevity of the analysis, we take this constant to be 2.
A smaller constant results in a better multiplicative factor. Given the definition of the
buckets, for every two positions t1 and t2 from the same bucket, c(t1) and c(t2) differ
by at most a factor of 2. Hence, good estimates of the sizes of all buckets would yield
a good estimate of the total cost of the run-length encoding.

The algorithm and its analysis build on two additional observations: (1) Since the
cost, c(t), monotonically decreases with the length of the run to which t belongs, we
can allow a less precise approximation of the size of the buckets that correspond to

Sublinear Algorithms for Approximating String Compressibility 11

longer runs. (2) A bucket containing relatively few positions contributes little to the
run-length encoding cost. Details follow.

ALGORITHM II: A (3,ε)-APPROXIMATION FOR CRLE(w)

1. Select q =Θ

(
log(1/ε)·log log(1/ε)

ε

)
indices t1, . . . , tq uniformly and independently

at random.
2. For h = 1, . . . ,h0 = dlog`0e where `0 =

8log(4|Σ |/ε)
ε

(as defined in Algorithm I),
do
(a) Consider the first qh = min

{
q,q · h+s

2h−1

}
indices t1, . . . , tqh .

(b) For each i = 1, . . . ,qh, set Xh,i = 1 if ti ∈ Bh and set Xh,i = 0 otherwise.

3. Output ĈRLE =
h0

∑
h=1

(
n
qh
·

qh

∑
i=1

Xh,i

)
· h+ s

2h−1 .

Proof of Theorem 1, Item 2. Observe that by the definition of h0 and `0, we have
that h0 = O(log(1/ε)). For each h ∈ [h0], let Bh = {t : 2h−1 ≤ `(t)< 2h}. That is, the
bucket Bh contains all indices t that belong to runs of length approximately 2h. Let
s def
= dlog |Σ |e and

CRLE(w,h)
def
= ∑

t∈Bh

c(t) .

Then

|Bh| ·
h+ s

2h ≤ CRLE(w,h) ≤ |Bh| ·
h+ s
2h−1 ,

which implies that

CRLE(w,h) ≤ |Bh| ·
h+ s
2h−1 ≤ 2 ·CRLE(w,h) . (1)

Our goal is to obtain (with high probability), for every h, a relatively accurate estimate
βh of |Bh|

n . Specifically, let

Hbig =

{
h :

|Bh|
n
≥ 1

2
· ε

h0
· 2h−1

h+ s

}
and

Hsmall =

{
h :

|Bh|
n

<
1
2
· ε

h0
· 2h−1

h+ s

}
.

Then we would like βh to satisfy the following:

1
3
· |Bh|

n
≤ βh ≤ 3

2 ·
|Bh|

n if h ∈ Hbig;

0≤ βh ≤ ε

h0
· 2h−1

h+s otherwise (h ∈ Hsmall) . (2)

12 Sofya Raskhodnikova et al.

Given such estimates β1, . . . ,βh0 , approximate the encoding cost by ĈRLE = ∑
h0
h=1 βh ·

n · h+s
2h−1 . Then

ĈRLE = ∑
h∈Hbig

βh ·n ·
h+ s
2h−1 + ∑

h∈Hsmall

βh ·n ·
h+ s
2h−1

≤ ∑
h∈Hbig

3
2
· |Bh| ·

h+ s
2h−1 +h0 ·

ε

h0
· 2h−1

h+ s
·n · h+ s

2h−1

≤ ∑
h∈Hbig

3 ·CRLE(w,h)+ εn < 3 ·CRLE(w)+ εn .

The last inequality uses the upper bound from (1). Similarly,

ĈRLE ≥ ∑
h∈Hbig

βh ·n ·
h+ s
2h−1

≥ 1
3
· ∑

h∈Hbig

CRLE(w,h)

=
1
3
·

(
CRLE(w)− ∑

h∈Hsmall

CRLE(w,h)

)

>
1
3
·CRLE(w)− εn .

Let βh be a random variable equal to 1
qh

∑
qh
i=1 Xh,i. We show that with high proba-

bility, βh satisfies (2) for every h ∈ [h0]. For each fixed h we have that Pr[Xh,i = 1] =
|Bh|

n for every i ∈ [qh]. Hence, by a multiplicative Chernoff bound,

Pr
[∣∣∣∣βh−

|Bh|
n

∣∣∣∣≥ 1
2
|Bh|

n

]
< exp

(
−c · |Bh|

n
·qh

)
(3)

for some constant c∈ (0,1). Recall that h0 =O(log(1/ε)) and that qh =Θ(q · h+s
2h−1) =

Ω
(
ε−1 ·h0 · log(h0) · h+s

2h−1

)
. Hence, for h ∈ Hbig (and for a sufficiently large constant

in the Θ(·) notation in the definition of q), the probability in (3) is at most 1
3 ·

1
h0

, and
so (2) holds with probability at least 1− 1

3 ·
1
h0

. On the other hand, for h ∈ Hsmall, the

probability that βh ≥ ε

h0
· 2h−1

h+s is bounded above by the probability of this event when
|Bh|

n = 1
2 ·

ε

h0
· 2h−1

h+s . By (3), this is at most 1
3 ·

1
h0

, and so in this case too (2) holds with
probability at least 1− 1

3 ·
1
h0

. Taking a union bound over all h ∈ [h0] completes the
analysis.

We now turn to the query complexity and running time. For a given index ti,
deciding whether ti ∈ Bh requires O(2h) queries. (More precisely, we need at most
2h−1 queries in addition to the queries from the previous iterations.) Hence, the total
number of queries is

O

(
h0

∑
h=1

qh ·2h

)
= O

(
q ·h2

0
)
= O

(
log3(1/ε) · log log(1/ε)

ε

)
.

ut

Sublinear Algorithms for Approximating String Compressibility 13

3.3 A 4-Multiplicative Estimate with Õ(n/CRLE(w)) Queries

In this subsection we “get-rid” of the εn additive error by introducing a dependence
on the run-length encoding cost (which is of course unknown to the algorithm). First,
assume a lower bound CRLE(w)≥ µn for some µ > 0. Then, by running Algorithm II
(the (3,ε)-approximation algorithm) with ε set to µ/2, and outputting ĈRLE+εn, we
get a 4-multiplicative estimate with Õ(1/µ) queries.

We can search for such a lower bound µn, as follows. Suppose that Algorithm II
receives, in addition to the additive approximation parameter ε , a confidence parame-
ter δ , and outputs a (3,ε)-estimate with probability at least 1−δ instead of 2/3. This
can easily be achieved by increasing the query complexity of the algorithm by a fac-
tor of log(1/δ). By performing calls to Algorithm II with decreasing values of ε and
δ , we can maintain a sequence of intervals of decreasing size, that contain CRLE(w)
(with high probability). Once the ratio between the extreme points of the interval is
sufficiently small, the algorithm terminates. Details follow.

ALGORITHM III: A 4-APPROXIMATION FOR CRLE(w)

1. Set j = 0, lb0 = 0 and ub0 = 1.
2. While ub j

lb j
> 16 do:

(a) j = j+1, ε j = 2− j, δ j =
1
3 ·2

− j.
(b) Call Algorithm II with ε = ε j and δ = δ j, and let Ĉ j

RLE be its output.

(c) Let ub j = 3(Ĉ j
RLE + ε jn) and lb j = max

{
0, 1

3 (Ĉ
j
RLE− ε jn)

}
.

3. Output
√

lb j ·ub j.

Proof of Theorem 1, Item 3. For any given j, Algorithm II outputs Ĉ j
RLE ∈ [

1
3CRLE(w)−

ε jn, 3CRLE(w)+ε jn], with probability at least 1− 1
3 ·δ j. Equivalently, lb j ≤CRLE(w)≤

ub j. By the union bound, with probability at least 2/3, lb j ≤CRLE(w) ≤ ub j for all
j. Assume this event in fact holds. Then, upon termination (when ub j/lb j ≤ 16), the
output is a 4-multiplicative estimate of CRLE(w). It is not hard to verify that once
ε j ≤ CRLE(w)

24n , then the algorithm indeed terminates with probability at least 1−δ j.
The query complexity of the algorithm is dominated by its last iteration. As stated

above, for each ε j ≤ CRLE(w)
24n , conditioned on the algorithm not terminating in iteration

j− 1, the probability that it does not terminate in iteration j is at most δ j =
1
3 2− j.

Since the query complexity of Algorithm II is Õ(1/ε), the expected query complexity
of Algorithm III is Õ(n/CRLE(w)). ut

Improving the multiplicative approximation factor. The 4-multiplicative esti-
mate of CRLE(w) can be improved to a (1+ γ)-multiplicative estimate for any γ > 0.
This is done by refining the buckets defined in Subsection 3.2 so that Bh = {t :
(1+ γ

2)
h−1 ≤ `(t) < (1+ γ

2)
h} for h = 1, . . . , log1+ γ

2
`0 (=O(log(1/ε)/γ)), and set-

ting ε = γ · µ/8. The query complexity remains linear in 1/µ = n/CRLE(w) (up to
polylogarithmic factors), and is polynomial in 1/γ .

14 Sofya Raskhodnikova et al.

3.4 A Multiplicative Lower Bound

The proof of Theorem 2, Item 1, follows from the next lemma, where we set k = C
and k′ = A2C logn.

Lemma 1 For every n ≥ 2 and every integer 1 ≤ k ≤ n/2, there exists a family of
strings, denoted Wk, for which the following holds: (1) CRLE(w) = Θ

(
k log(n

k)
)

for
every w ∈Wk; (2) Distinguishing a uniformly random string in Wk from one in Wk′ ,
where k′ > k, requires Ω

(n
k′
)

queries.

Proof: Let Σ = {0,1} and assume for simplicity that n is divisible by k. Every string
in Wk consists of k blocks, each of length n

k . Every odd block contains only 1s and
every even block contains a single 0. The strings in Wk differ in the locations of the
0s within the even blocks. Every w ∈Wk contains k/2 isolated 0s and k/2 runs of 1s,
each of length Θ(n

k). Therefore, CRLE(w) = Θ
(
k log(n

k)
)
. To distinguish a random

string in Wk from one in Wk′ with probability 2/3, one must make Ω(n
max(k,k′)) queries

since, in both cases, with asymptotically fewer queries the algorithm sees only 1’s
with high probability. ut

3.5 An Additive Lower Bound

Proof of Theorem 2, Item 2. For any p ∈ [0,1] and sufficiently large n, let Dn,p be
the following distribution over n-bit strings. For simplicity, consider n divisible by 3.
The string is determined by n

3 independent coin flips, each with bias p. Each “heads”
extends the string by three runs of length 1, and each “tails”, by a run of length 3.
Given the sequence of run lengths, dictated by the coin flips, we output the unique
binary string that starts with 0 and has this sequence of run lengths.5

Let W be a random variable drawn according to Dn,1/2 and W ′, according to
Dn,1/2+ε . It is well known that Ω(1/ε2) independent coin flips are necessary to dis-
tinguish a coin with bias 1

2 from a coin with bias 1
2 + ε . Therefore, Ω(1/ε2) queries

are necessary to distinguish w from w′.
We next show that with very high probability the encoding costs of w and w′ differ

by Ω(εn). Runs of length 1 contribute 1 to the encoding cost, and runs of length 3
cost dlog(3+1)e = 2. Therefore, each “heads” contributes 3 · 1, while each “tails”
contributes 2. Hence, if we get α · n

3 “heads”, then the encoding cost of the resulting
string is n

3 ·(3α+2(1−α))= n
3 ·(2+α). The expected value of α is p. By an additive

Chernoff bound, |α − p| ≤ ε/4 with probability at least 1− 2exp(−2(ε/4)2). With
this probability, the encoding cost of the selected string is between n

3 ·
(
2+ p− ε

4

)
and n

3 ·
(
2+ p+ ε

4

)
. The theorem (for the case n mod 3 = 0) follows, since with

very high probability, CRLE(w′)−CRLE(w) = Ω(εn).
If n mod 3 = b for some b > 0 then we make the following minor changes in the

construction and the analysis: (1) The first b bits in the string are always set to 0. (2)
This adds b to the encoding cost. (3) Every appearance of n

3 in the proof is replaced
by
⌊ n

3

⌋
. It is easy to verify that the lower bound holds for any sufficiently large n. ut

5 Let bi be a boolean variable representing the outcome of the ith coin. Then the output is
0b101b210b301b41 . . .

Sublinear Algorithms for Approximating String Compressibility 15

4 Lempel Ziv Compression

In this section we consider a variant of Lempel and Ziv’s compression algorithm [42],
which we refer to as LZ77. In all that follows we use the shorthand [n] for {1, . . . ,n}.
Let w ∈ Σ n be a string over an alphabet Σ . Each symbol of the compressed represen-
tation of w, denoted LZ77(w), is either a character σ ∈ Σ or a pair (p, `) where p∈ [n]
is a pointer (index) to a location in the string w and ` is the length of the substring of
w that this symbol represents. To compress w, the algorithm works as follows. Start-
ing from t = 1, at each step the algorithm finds the longest substring wt . . .wt+`−1
for which there exists an index p < t, such that wp . . .wp+`−1 = wt . . .wt+`−1. (The
substrings wp . . .wp+`−1 and wt . . .wt+`−1 may overlap.) If there is no such substring
(that is, the character wt has not appeared before) then the next symbol in LZ77(w)
is wt , and t = t + 1. Otherwise, the next symbol is (p, `) and t = t + `. We refer to
the substring wt . . .wt+`−1 (or wt when wt is a new character) as a phrase. Clearly,
compression takes time O(n2), and decompression, time O(n).

Let CLZ77(w) denote the number of symbols in the compressed string LZ77(w).
(We do not distinguish between symbols that are characters in Σ , and symbols that
are pairs (p, `).) Given query access to a string w ∈ Σ n, we are interested in comput-
ing an estimate ĈLZ77 of CLZ77(w). As we shall see, this task reduces to estimating
the number of distinct substrings in w of different lengths, which in turn reduces to
estimating the number of distinct symbols in a string. The actual length of the binary
representation of the compressed substring is at most a factor of 2 logn larger than
CLZ77(w). This is relatively negligible given the quality of the estimates that we can
achieve in sublinear time.

Our results on approximating LZ77 compressibility can be summarized suc-
cinctly:

Theorem 3 For any alphabet Σ :

1. Algorithm IV (A,ε)-estimates CLZ77(w) and runs in time Õ
(

n
A3ε

)
.

2. For any B = no(1), distinguishing strings with LZ77 compression cost Ω̃(n) from
strings with cost Õ(n/B) requires n1−o(1) queries.

The first bound states that non-trivial approximation guarantees are indeed pos-
sible. For example, by setting A = o(nα/2) and ε = o(n−α/2), we get an algorithm
which distinguishes incompressible strings (CLZ77 = Ω(n)) from partly compressible
strings (CLZ77 = O(nα)) in sublinear time Õ(n1−α). The lower bound states that in
some sense this is tight: no approximation algorithm with a purely additive approxi-
mation guarantee can run in time which is significantly sublinear.

In the remainder of this section we develop the tools necessary to prove the the-
orem. We begin by relating LZ77 compressibility to DE (Section 4.1), then use this
relation to discuss algorithms (Section 4.2) and lower bounds (Section 4.4) for com-
pressibility.

16 Sofya Raskhodnikova et al.

4.1 Structural Lemmas

Our algorithm for approximating the compressibility of an input string with respect
to LZ77 uses an approximation algorithm for DE (defined in the introduction) as a
subroutine. The main tool in the reduction from LZ77 to DE is the relation between
CLZ77(w) and the number of distinct substrings in w, formalized in the two structural
lemmas. In what follows, d`(w) denotes the number of distinct substrings of length `
in w. Unlike phrases in w, which are disjoint, these substrings may overlap.

Lemma 2 (Structural Lemma 1) For every ` ∈ [n], CLZ77(w)≥ d`(w)
` .

Lemma 3 (Structural Lemma 2) Let `0 ∈ [n]. Suppose that for some integer m and
for every ` ∈ [`0], d`(w)≤ m · `. Then

CLZ77(w)≤ 4(m log`0 +n/`0).

Proof of Lemma 2. This proof is similar to the proof of a related lemma concerning
grammars from [27]. First note that the lemma holds for ` = 1, since each character
wt in w that has not appeared previously (that is, wt ′ 6= wt for every t ′ < t) is copied
by the compression algorithm to LZ77(w).

For the general case, fix ` > 1. Recall that wt . . .wt+k−1 of w is a phrase if it is
represented by one symbol (p,k) in LZ77(w). Any substring of length ` that occurs
within a phrase must have occurred previously in the string. Such substrings can
be ignored for our purposes: the number of distinct length-` substrings is bounded
above by the number of length-` substrings that start inside one phrase and end in
another. Each phrase (except the last) contributes (`−1) such substrings. Therefore,
d`(w)≤ (CLZ77(w)−1)(`−1)<CLZ77(w) · ` for every ` > 1. ut

Proof of Lemma 3. Let n`(w) denote the number of phrases of length ` in w, not
including the last phrase. We use the shorthand n` for n`(w) and d` for d`(w). In order
to prove the lemma we shall show that for every 1≤ `≤ b`0/2c,

`

∑
k=1

nk ≤ 2(m+1) ·
`

∑
k=1

1
k
. (4)

For all `≥ 1, since the phrases in w are disjoint,

n

∑
k=`+1

nk ≤
n

`+1
. (5)

If we substitute `= b`0/2c in (4) and (5), and sum the two inequalities, we get:

n

∑
k=1

nk ≤ 2(m+1) ·
b`0/2c

∑
k=1

1
k
+

2n
`0
≤ 2(m+1)(ln`0 +1)+

2n
`0

.

Since CLZ77(w) = ∑
n
k=1 nk +1, the lemma follows.

It remains to prove (4). We do so below by induction on `, using the following
claim.

Sublinear Algorithms for Approximating String Compressibility 17

Claim 4 For every 1≤ `≤ b`0/2c ,
`

∑
k=1

k ·nk ≤ 2`(m+1) .

Proof: We show that each position j ∈{`, . . . ,n−`} that participates in a compressed
substring of length at most ` in w can be mapped to a distinct length-2` substring of
w. Since ` ≤ `0/2, by the premise of the lemma, there are at most 2` ·m distinct
length-2` substrings. In addition, the first `−1 and the last ` positions contribute less
than 2` symbols. The claim follows.

We call a substring new if no instance of it started in the previous portion
of w. Namely, wt . . .wt+`−1 is new if there is no p < t such that wt . . .wt+`−1 =
wp . . .wp+`−1. Consider a compressed substring wt . . .wt+k−1 of length k ≤ `. The
substrings of length greater than k that start at wt must be new, since LZ77 finds the
longest substring that appeared before. Furthermore, every substring that contains
such a new substring is also new. That is, every substring wt ′ . . .wt+k′ where t ′ ≤ t
and k′ ≥ k+(t ′− t), is new.

Map each position j ∈ {`, . . . ,n− `} in the compressed substring wt . . .wt+k−1
to the length-2` substring that ends at w j+`. Then each position in {`, . . . ,n− `} that
appears in a compressed substring of length at most ` is mapped to a distinct length-2`
substring, as desired. ut (Claim 4)

Establishing Equation (4). We prove (4) by induction on `. Claim 4 with ` set to
1 gives the base case, i.e., n1 ≤ 2(m+1). For the induction step, assume the induction
hypothesis for every j ∈ [`−1]. To prove it for `, add the equation in Claim 4 to the
sum of the induction hypothesis inequalities (in (4)) for every j ∈ [`− 1]. The left
hand side of the resulting inequality is

`

∑
k=1

k ·nk +
`−1

∑
j=1

j

∑
k=1

nk =
`

∑
k=1

k ·nk +
`−1

∑
k=1

`−k

∑
j=1

nk

=
`

∑
k=1

k ·nk +
`−1

∑
k=1

(`− k) ·nk

= ` ·
`

∑
k=1

nk .

The right hand side, divided by the factor 2(m+1), which is common to all inequal-
ities, is

`+
`−1

∑
j=1

j

∑
k=1

1
k
= `+

`−1

∑
k=1

`−k

∑
j=1

1
k

= `+
`−1

∑
k=1

`− k
k

= `+ ` ·
`−1

∑
k=1

1
k
− (`−1)

= ` ·
`

∑
k=1

1
k
.

18 Sofya Raskhodnikova et al.

Dividing both sides by ` gives the inequality in (4). ut

Tightness of Lemma 3. The following lemma shows that Lemma 3 is asymptot-
ically tight.

Lemma 5 For all positive integers m and `0 ≤ m, there is a string w of length n
(n ≈ m(`0 + ln`0)) with O(`m) distinct substrings of length ` for each ` ∈ [`0], such
that CLZ77(w) = Ω(m log`0 +n/`0).

Proof: We construct such bad strings over the alphabet [m]. A bad string is con-
structed in `0 phases, where in each new phase, `, we add a substring of length
between m and 2m that might repeat substrings of length up to ` that appeared in
the previous phases, but does not repeat longer substrings. Phase 1 contributes the
string ‘1 . . .m’. In phase ` > 1, we list characters 1 to m in the increasing order, re-
peating all characters divisible by `− 1 twice. For example, phase 2 contributes the
string ‘11 22 33 . . .mm’, phase 3 the string ‘122 344 566 . . .m’, phase 4 the string
‘1233 4566 7899 . . .m’, etc. The spaces in the strings are introduced for clarity.

First observe that the length of the string, n, is at most 2m`0. Next, let us calculate
the number of distinct substrings of various sizes. Since the alphabet size is m, there
are m length-1 substrings. There are at most 2m length-2 substrings: ‘i i’ and ‘i (i+1)’
for every i in [m−1], as well as ‘m m’ and ‘m 1’. We claim that for 1 < `≤ `0, there
are at most 3`m length-` substrings. Specifically, for every i in [m], there are at most
3` length-` substrings that start with i. This is because each of the first ` phases
contributes at most 2 such substrings: one that starts with ‘i (i+ 1)’, and one that
starts with ‘i i’. In the remaining phases a length-` substring can have at most one
repeated character, and so there are ` such substrings that start with i. Thus, there are
at most ` ·3m distinct length-` substrings in the constructed string.

Finally, let us look at the cost of LZ77 compression. It is not hard to see that
`th phase substring compresses by at most a factor of `. Since each phase introduces
a substring of length at least m, the total compressed length is at least m(1+ 1/2+
1/3+ ...+1/`0) =Ω(m log`0) =Ω(m log`0+n/`0). The last equality holds because
n≤ 2m`0 and, consequently, n

`0
= o(m log`0). ut

In the proof of Lemma 5 the alphabet size is large. It can be verified that by
replacing each symbol from the large alphabet [m] with its binary representation, we
obtain a binary string of length Θ(m logm`0) with the properties stated in the lemma.

4.2 An Algorithm for LZ77

This subsection describes an algorithm for approximating the compressibility of an
input string with respect to LZ77, which uses an approximation algorithm for DE
(Definition 1) as a subroutine. The main tool in the reduction from LZ77 to DE
consists of structural lemmas 2 and 3, summarized in the following corollary.

Corollary 4 For any `0 ≥ 1, let m = m(`0) = max`0
`=1

d`(w)
` . Then

m ≤ CLZ77(w) ≤ 4 ·
(

m log`0 +
n
`0

)
.

Sublinear Algorithms for Approximating String Compressibility 19

The corollary allows us to approximate CLZ77 from estimates for d` for all ` ∈ [`0].
To obtain these estimates, we use the algorithm for DE, described in Subsection 4.3,
as a subroutine. Recall that an algorithm for DE approximates the number of distinct
symbols in an input string. We denote the number of distinct symbols in an input
string τ by CDSS(τ). To approximate d`, the number of distinct length-` substrings in
w, using an algorithm for DE, we view each length-` substring as a separate symbol.
Each query of the algorithm for DE can be implemented by ` queries to w.

Let ESTIMATE(`,B,δ) be a procedure that, given access to w, an index ` ∈ [n],
an approximation parameter B = B(n, `) > 1 and a confidence parameter δ ∈ [0,1],
computes a B-estimate for d` with probability at least 1− δ . It can be implemented
using an algorithm for DE, as described above, and employing standard amplification
techniques to boost success probability from 2

3 to 1−δ : running the basic algorithm
Θ(logδ−1) times and outputting the median. By Lemma 7, the query complexity of
ESTIMATE(`,B,δ) is O

(
n

B2 ` logδ−1
)

. Using ESTIMATE(`,B,δ) as a subroutine, we
get the following approximation algorithm for the cost of LZ77.

ALGORITHM IV: AN (A,ε)-APPROXIMATION FOR CLZ77(w)

1. Set `0 =
⌈ 2

Aε

⌉
and B = A

2
√

log(2/(Aε))
.

2. For all ` in [`0], let d̂` = ESTIMATE(`,B, 1
3`0

).
(N.B.: One can use the same queries for all `0 executions of ESTIMATE. See proof of Lemma 6.)

3. Combine the estimates to get an approximation of m from Corollary 4: set

m̂ = max
`

d̂`
`

.

4. Output ĈLZ77 = m̂ · A
B + εn.

Lemma 6 (Theorem 3, part 1, restated) Algorithm IV (A,ε)-estimates CLZ77(w).
With a proper implementation that reuses queries and an appropriate data structure,
its query and time complexity are Õ

(
n

A3ε

)
.

Proof: By the union bound, with probability ≥ 2
3 , all values d̂` computed by the al-

gorithm are B-estimates for the corresponding d`. When this holds, m̂ is a B-estimate
for m from Corollary 4, which implies that

m̂
B
≤ CLZ77(w) ≤ 4 ·

(
m̂B log`0 +

n
`0

)
.

Equivalently,
CLZ77−4(n/`0)

4B log`0
≤ m̂≤ B ·CLZ77. Multiplying all three terms by A

B and

adding εn to them, and then substituting parameter settings for `0 and B, specified in
the algorithm, shows that ĈLZ77 is indeed an (A,ε)-estimate for CLZ77.

As explained before the algorithm statement, each call to ESTIMATE(`,B, 1
3`0

)

costs O
(

n
B2 ` log`0

)
queries. Since the subroutine is called for all ` ∈ [`0], the

straightforward implementation of the algorithm would result in O
(

n
B2 `

2
0 log`0

)

20 Sofya Raskhodnikova et al.

queries. Our analysis of the algorithm, however, does not rely on independence of
queries used in different calls to the subroutine, since we employ the union bound
to calculate the error probability. It will still apply if we first run ESTIMATE to ap-
proximate d`0 and then reuse its queries for the remaining calls to the subroutine,
as though it queried only the length-` prefixes of the length-`0 substrings queried in
the first call. With this implementation, the query complexity is O

(
n

B2 `0 log`0

)
=

O
(

n
A3ε

log2 1
Aε

)
. To get the same running time, one can maintain counters for all

` ∈ [`0] for the number of distinct length-` substrings seen so far and use a trie to
keep the information about the queried substrings. Every time a new node at some
depth ` is added to the trie, the `th counter is incremented. ut

4.3 A Simple Algorithm for DE

Here we describe a simple approximation algorithm for DE. The Guaranteed-Error
estimator of Charikar et al. has the same guarantees as our approximation algorithm.
Our algorithm is (even) simpler, and we present it here for completeness.

ALGORITHM V: AN A-APPROXIMATION FOR DE

1. Take 10n
A2 samples from the string τ .

2. Let Ĉ be the number of distinct symbols in the sample; output Ĉ ·A.

Lemma 7 Let A=A(n). Algorithm V is an A-approximation algorithm for DE whose

query complexity and running time are O
(

n
A2

)
.

Proof: Let C be the number of distinct symbols in the string τ . We need to show that
C
A ≤ Ĉ ·A≤C ·A, or equivalently, C

A2 ≤ Ĉ≤C, with probability at least 2
3 . The sample

always contains at most as many distinct symbols as there are in τ: Ĉ ≤C. Claim 8,
stated below and applied with s = 10n

A2 , shows that Ĉ ≥ C
A2 with probability ≥ 2

3 . To

get the running time O
(

n
A2

)
one can use a random 2-universal hash function. ut

Claim 8 Let s = s(n)≤ n. Then s independent samples from a distribution with C =
C(n) elements, where each element has probability ≥ 1

n , yield at least Cs
10n distinct

elements, with probability ≥ 3
4 .

Proof: For i ∈ [C], let Xi be the indicator variable for the event that color i is selected
in s samples. Then X = ∑

C
i=1 Xi is a random variable for the number of distinct colors.

Since each color is selected with probability at least 1
n for each sample,

E[X] =
C

∑
i=1

E[Xi]≥C
(

1−
(

1− 1
n

)s)
≥ C

(
1− e−(s/n)

)
≥ (1− e−1)

Cs
n
. (6)

Sublinear Algorithms for Approximating String Compressibility 21

The last inequality holds because 1− e−x ≥ (1− e−1) · x for all x ∈ [0,1].
We now use Chebyshev’s inequality to bound the probability that X is far from its

expectation. For any distinct pair of colors i, j, the covariance E(XiX j)−E(Xi)E(X j)
is negative (knowing that one color was not selected makes it more likely for any
other color to be selected). Since X is a sum of Bernoulli variables, Var[X] ≤ E[X].
For any δ > 0,

Pr [X ≤ δ E[X]] ≤ Pr [|X−E[X]| ≥ (1−δ)E[X]]

≤ Var[X]

((1−δ)E[X])2

≤ 1
(1−δ)2E[X]

. (7)

Set δ = 3−
√

8. If E[X] ≥ 4
(1−δ)2 , then by (7) and (6), with probability ≥ 3

4 ,

variable X ≥ δ E[X] ≥ δ (1− e−1)Cs
n > Cs

10n , as stated in the claim. Otherwise, that
is, if E[X] < 4

(1−δ)2 , Equation (6) implies that 4δ

(1−δ)2 > δ (1− e−1)Cs
n . Substituting

3−
√

8 for δ gives 1 > Cs
10n . In other words, the claim for this case is that at least one

color appears among the samples, which, clearly, always holds. ut

4.4 Lower Bounds: Reducing DE to LZ77

We have demonstrated that estimating the LZ77 compressibility of a string reduces
to DE. As shown in [37], DE is quite hard, and it is not possible to improve much on
the simple approximation algorithm in Subsection 4.3, on which we base the LZ77
approximation algorithm in the previous subsection. A natural question is whether
there is a better algorithm for the LZ77 estimation problem. That is, is the LZ77
estimation strictly easier than DE? As we shall see, it is not much easier in general.

Lemma 9 (Reduction from DE to LZ77) Suppose there exists an algorithm ALZ77
that, given access to a string w of length n over an alphabet Σ , performs q =
q(n, |Σ |,α,β) queries and with probability at least 5/6 distinguishes between the
case that CLZ77(w)≤ αn and the case that CLZ77(w)> βn, for some α < β .

Then there is an algorithm for DE taking inputs of length n′ = Θ(αn) that per-
forms q queries and, with probability at least 2/3, distinguishes inputs with at most
α ′n′ distinct symbols from those with at least β ′n′ distinct symbols, α ′ = α/2 and

β ′ = β ·2 ·max
{

1, 4logn′
log |Σ |

}
.

Two notes are in place regarding the reduction. The first is that the gap be-
tween the parameters α ′ and β ′ that is required by the DE algorithm obtained in
Lemma 9, is larger than the gap between the parameters α and β for which the
LZ77-compressibility algorithm works, by a factor of 4 ·max

{
1, 4logn′

log |Σ |

}
. In particu-

lar, for binary strings β ′

α ′ = O
(

logn′ · β

α

)
, while if the alphabet is large, say, of size

at least n′, then β ′

α ′ = O
(

β

α

)
. In general, the gap increases by at most O(logn′). The

22 Sofya Raskhodnikova et al.

second note is that the number of queries, q, is a function of the parameters of the
LZ77-compressibility problem and, in particular, of the length of the input strings,
n. Hence, when writing q as a function of the parameters of DE and, in particular,
as a function of n′ = Θ(αn), the complexity may be somewhat larger. It is an open
question whether a reduction without such increase is possible.

Prior to proving the lemma, we discuss its implications. [37] give a strong lower
bound on the sample complexity of approximation algorithms for DE. An interest-
ing special case is that a subpolynomial-factor approximation for DE requires many
queries even with a promise that the strings are only slightly compressible: for any
B = no(1), distinguishing inputs with n/11 distinct symbols from those with n/B dis-
tinct symbols requires n1−o(1) queries. Lemma 9 extends that bound to estimating
LZ77 compressibility, as stated in Theorem 3. In fact, the lower bound for DE in [37]
applies to a broad range of parameters, and yields the following general statement
when combined with Lemma 9:

Corollary 5 (LZ77 is Hard to Approximate with Few Samples) For sufficiently
large n, all alphabets Σ and all B ≤ n1/4/(4logn3/2), there exist α,β ∈ (0,1)
where β = Ω

(
min

{
1, log |Σ |

4logn

})
and α = O

(
β

B

)
, such that every algorithm that

distinguishes between the case that CLZ77(w)≤ αn and the case that CLZ77(w)> βn

for w ∈ Σ n, must perform Ω

((n
B′
)1− 2

k

)
queries for B′ = Θ

(
B ·max

{
1, 4logn

log |Σ |

})
and k =Θ

(√
logn

logB′+ 1
2 log logn

)
.

Proof of Lemma 9. Suppose we have an algorithm ALZ77 for LZ77-compressibility
as specified in the premise of Lemma 9. Here we show how to transform a DE in-
stance τ into an input for ALZ77, and use the output of ALZ77 to distinguish τ with
at most α ′n′ distinct symbols from τ with at least β ′n′ distinct symbols, where α ′

and β ′ are as specified in the lemma. We shall assume that β ′n′ is bounded below by
some sufficiently large constant. Recall that in the reduction from LZ77 to DE, we
transformed substrings into single symbols. Here we perform the reverse operation.

Given a DE instance τ of length n′, we transform it into a string of length n= n′ ·k
over Σ , where k = d 1

α
e. We then run ALZ77 on w to obtain information about τ . We

begin by replacing each distinct symbol in τ with a uniformly selected substring in
Σ k. The string w is the concatenation of the corresponding substrings (which we call
blocks). We show that:

1. If τ has at most α ′n′ distinct symbols, then CLZ77(w)≤ 2α ′n;
2. If τ has at least β ′n′ distinct symbols, then

Prw[CLZ77(w)≥
1
2
·min

{
1,

log |Σ |
4logn′

}
·β ′n]≥ 7

8
.

That is, in the first case we get an input w such that CLZ77(w) ≤ αn for α = 2α ′,
and in the second case, with probability at least 7/8, CLZ77(w) ≥ βn for β =
1
2 ·min

{
1, log |Σ |

4logn′

}
·β ′. Recall that the gap between α ′ and β ′ is assumed to be suf-

ficiently large so that α < β . To distinguish the case that CDSS(τ) ≤ α ′n′ from the

Sublinear Algorithms for Approximating String Compressibility 23

case that CDSS(τ)> β ′n′, we can run ALZ77 on w and output its answer. Taking into
account the failure probability of ALZ77 and the failure probability in Item 2 above,
the Lemma follows.

Before we prove these two claims, we observe that in order to run the algorithm
ALZ77, there is no need to generate the whole string w. Rather, upon each query
of ALZ77 to w, if the index of the query belongs to a block that has already been
generated, the answer to ALZ77 is determined. Otherwise, we query the symbol in τ

that corresponds to the block. If this symbol was not yet observed, then we set the
block to a uniformly selected substring in Σ k. If this symbol was already observed in
τ , then we set the block according to the substring that was already selected for the
symbol. In either case, the query to w can now be answered. Thus, each query to w is
answered by performing at most one query to τ .

It remains to prove the two items concerning the relation between the number of
colors in τ and CLZ77(w). If τ has at most α ′n′ distinct symbols then w contains at
most α ′n′ distinct blocks. Since each block is of length k, at most k phrases start in
each new block. By definition of LZ77, at most one phrases starts in each repeated
block. Hence,

CLZ77(w)≤ α
′n′ · k+(1−α

′)n′ ≤ α
′n+n′ ≤ 2α

′n.

If τ contains β ′n′ or more distinct symbols, w is generated using at least β ′n′ ·
log(|Σ |k) = β ′n log |Σ | random bits. Hence, with high probability (e.g., at least 7/8)
over the choice of these random bits, any lossless compression algorithm (and in
particular LZ77) must use at least β ′n log |Σ |−3 bits to compress w. Each symbol of
the compressed version of w can be represented by max{dlog |Σ |e,2dlogne}+1 bits,
since it is either an alphabet symbol or a pointer-length pair. Since n = n′d1/α ′e, and
α ′ > 1/n′, each symbol takes at most max{4logn′, log |Σ |}+2 bits to represent. This
means the number of symbols in the compressed version of w is

CLZ77(w)≥
β ′n log |Σ |−3

max{4logn′, log |Σ |})+2
≥ 1

2
·β ′n ·min

{
1, log |Σ |

4logn′

}
where we have used the fact that β ′n′, and hence β ′n, is at least some sufficiently
large constant. ut

Acknowledgements We would like to thank Amir Shpilka, who was involved in a related paper on distri-
bution support testing [37] and whose comments greatly improved drafts of this article. We would also like
to thank Eric Lehman for discussing his thesis material with us and Oded Goldreich and Omer Reingold
for helpful comments. Finally, we thank several anonymous reviewers for helpful comments, especially
regarding previous work.

References

1. Ahmed, N., Natarajan, T., Rao, K.R.: Discrete cosine transform. IEEE Transactions on Computers
23(1), 90–93 (1974)

2. Alon, N., Matias, Y., Szegedy, M.: The space complexity of approximating the frequency moments.
Journal of Computer and System Sciences 58(1), 137–147 (1999)

24 Sofya Raskhodnikova et al.

3. Bar-Yossef, Z., Kumar, R., Sivakumar, D.: Sampling algorithms: lower bounds and applications. In:
Proceedings of the Thirty-Third Annual ACM Symposium on the Theory of Computing (STOC), pp.
266–275 (2001)

4. Batu, T., Dasgupta, S., Kumar, R., Rubinfeld, R.: The complexity of approximating the entropy. SIAM
Journal on Computing 35(1), 132–150 (2005)

5. Benedetto, D., Caglioti, E., Loreto, V.: Language trees and zipping. Physical Review Letters 88(4),
048,702 (2002). See comment by Khmelev DV, Teahan WJ, in Physical Review Letters, 90(8), 089803
(2003) and the reply in Physical Review Letters, 90(8), 089804 (2003).

6. Brautbar, M., Samorodnitsky, A.: Approximating entropy from sublinear samples. In: Proceedings
of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 366–375
(2007)

7. Bunge, J.: Bibliography on estimating the number of classes in a population.
www.stat.cornell.edu/∼bunge/bibliography.htm

8. Burrows, M., Wheeler, D.: A block sorting lossless data compression algorithm. Tech. Rep. 124,
Digital Equipment Corporation (1994)

9. Cai, H., Kulkarni, S.R., Verdú, S.: Universal entropy estimation via block sorting. IEEE Transactions
on Information Theory 50(7), 1551–1561 (2004)

10. Charikar, M., Chaudhuri, S., Motwani, R., Narasayya, V.R.: Towards estimation error guarantees for
distinct values. In: Proceedings of the Nineteenth ACM SIGMOD-SIGACT-SIGART Symposium on
Principles of Database Systems (PODS), pp. 268–279. ACM (2000)

11. Chui, C.K.: An Introduction to Wavelets. San Diego: Academic Press (1992)
12. Cilibrasi, R., Vitányi, P.M.B.: Clustering by compression. IEEE Transactions on Information Theory

51(4), 1523–1545 (2005)
13. Cilibrasi, R., Vitányi, P.M.B.: Similarity of objects and the meaning of words. In: J. Cai, S.B. Cooper,

A. Li (eds.) Proceedings of the Third International Conference on Theory and Applications of Models
of Computation (TAMC), Lecture Notes in Computer Science, vol. 3959, pp. 21–45. Springer (2006)

14. Cleary, J., Witten, I.: Data compression using adaptive coding and partial string matching. IEEE
Transactions on Communications 32(4), 396–402 (1984)

15. Cormode, G., Muthukrishnan, S.: Substring compression problems. In: Proceedings of the Thirty-
Third Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 321–330 (2005)

16. Cover, T., Thomas, J.: Elements of Information Theory. Wiley & Sons (1991)
17. Ferragina, P., Giancarlo, R., Greco, V., Manzini, G., G.Valiente: Compression-based classification

of biological sequences and structures via the universal similarity metric: Experimental assessment.
BMC Bioinformatics 8(252) (2007)

18. Frank, E., Chui, C., Witten, I.H.: Text categorization using compression models. In: Proceedings of
the Data Compression Conference (DCC), p. 555 (2000)

19. Gheorghiciuc, I., Ward, M.: On correlation polynomials and subword complexity. In: Discrete Math
and Theoretical Computer Science (DMTCS) Proceedings of the Conference on Analysis of Algo-
rithms (AofA), pp. 1–18 (2007)

20. Ilie, L., Yu, S., Zhang, K.: Repetition complexity of words. In: O.H. Ibarra, L. Zhang (eds.) Pro-
ceedings of the 8th Annual International Conference on Computing and Combinatorics (COCOON),
Lecture Notes in Computer Science, vol. 2387, pp. 320–329. Springer (2002)

21. Janson, S., Lonardi, S., Szpankowski, W.: On average sequence complexity. Theoretical Computer
Science 326(1–3), 213–227 (2004)

22. Kása, Z.: On the d-complexity of strings. Pure Mathematics and Application 9(1–2), 119–128 (1998)
23. Keller, O., Kopelowitz, T., Landau, S., Lewenstein, M.: Generalized substring compression. In:

Proceedings of the 20th Annual Symposium on Combinatorial Pattern Matching (CPM), pp. 26–38
(2009)

24. Keogh, E., Lonardi, S., Ratanamahatana, C.: Towards parameter-free data mining. In: Proceedings of
ACM Conference on Knowledge Discovery and Data Mining (KDD), pp. 206–215 (2004)

25. Keogh, E.J., Keogh, L., Handley, J.: Compression-based data mining. In: J. Wang (ed.) Encyclopedia
of Data Warehousing and Mining, pp. 278–285. IGI Global (2009)

26. Kukushkina, O.V., Polikarpov, A.A., Khmelev, D.V.: Using literal and grammatical statistics for au-
thorship attribution. Problemy Peredachi Infformatsii 37(2), 96–98 (2000). [Problems of Information
Transmission (Engl. Transl.) 37, 172–184 (2001)]

27. Lehman, E., Shelat, A.: Approximation algorithms for grammar-based compression. In: Proceedings
of the Thirteenth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 205–212
(2002)

Sublinear Algorithms for Approximating String Compressibility 25

28. Levé, F., Séébold, P.: Proof of a conjecture on word complexity. Bull. Belg. Math. Soc. 8(2), 277–291
(2001)

29. Li, M., Chen, X., Li, X., Ma, B., Vitányi, P.M.B.: The similarity metric. IEEE Transactions on Infor-
mation Theory 50(12), 3250–3264 (2004)

30. Li, M., Vitányi, P.: An Introduction to Kolmogorov Complexity and Its Applications. Springer (1997)
31. Loewenstern, D., Hirsh, H., Noordewier, M., Yianilos, P.: DNA sequence classification using

compression-based induction. Tech. Rep. 95-04, Rutgers University, DIMACS (1995)
32. de Luca, A.: On the combinatorics of finite words. Theoretical Computer Science 218(1), 13–39

(1999)
33. Paninski, L.: Estimation of entropy and mutual information. Neural Computation 15(6), 1191–1253

(2003)
34. Paninski, L.: Estimating entropy on m bins given fewer than m samples. IEEE Transactions on Infor-

mation Theory 50(9), 2200–2203 (2004)
35. Pierce II, L., Shields, P.C.: Sequences incompressible by SLZ (LZW), yet fully compressible by ULZ.

In: Numbers, Information and Complexity, I, pp. 385–390. Norwell, MA: Kluwer (2000)
36. Raskhodnikova, S., Ron, D., Rubinfeld, R., Smith, A.: Sublinear algorithms for approximating string

compressibility. In: Proceedings of the Eleventh International Workshop on Randomization and Com-
putation (RANDOM), pp. 609–623 (2007)

37. Raskhodnikova, S., Ron, D., Shpilka, A., Smith, A.: Strong lower bounds for approximating distri-
bution support size and the distinct elements problem. SIAM Journal on Computing 39(3), 813–842
(2009)

38. Sculley, D., Brodley, C.E.: Compression and machine learning: A new perspective on feature space
vectors. In: Proceedings of the Data Compression Conference (DCC), pp. 332–341 (2006)

39. Shallit, J.: On the maximum number of distinct factors of a binary string. Graphs and Combinatorics
9(2), 197–200 (1993)

40. Willems, F.M.J., Shtarkov, Y.M., Tjalkens, T.J.: The context-tree weighting method: basic properties.
IEEE Transactions on Information Theory 41(3), 653–664 (1995)

41. Witten, I.H., Bray, Z., Mahoui, M., Teahan, W.J.: Text mining: A new frontier for lossless compres-
sion. In: Proceedings of the Data Compression Conference (DCC), pp. 198–207 (1999)

42. Ziv, J., Lempel, A.: A universal algorithm for sequential data compression. IEEE Transactions on
Information Theory 23, 337–343 (1977)

43. Ziv, J., Lempel, A.: Compression of individual sequences via variable-rate coding. IEEE Transactions
on Information Theory 24, 530–536 (1978)

