
SIAM J. COMPUT. c© 2009 Society for Industrial and Applied Mathematics
Vol. 39, No. 3, pp. 813–842

STRONG LOWER BOUNDS
FOR APPROXIMATING DISTRIBUTION SUPPORT SIZE

AND THE DISTINCT ELEMENTS PROBLEM∗

SOFYA RASKHODNIKOVA† , DANA RON‡ , AMIR SHPILKA§ , AND ADAM SMITH†

Abstract. We consider the problem of approximating the support size of a distribution from a
small number of samples, when each element in the distribution appears with probability at least 1

n
.

This problem is closely related to the problem of approximating the number of distinct elements in
a sequence of length n. Charikar, Chaudhuri, Motwani, and Narasayya [in Proceedings of the Nine-
teenth ACM SIGMOD–SIGACT–SIGART Symposium on Principles of Database Systems, 2000,
pp. 268–279] and Bar-Yossef, Kumar, and Sivakumar [in Proceedings of the Thirty-Third Annual
ACM Symposium on Theory of Computing, ACM Press, New York, 2001, pp. 266–275] proved that
multiplicative approximation for these problems within a factor α > 1 requires Θ( n

α2 ) queries to
the input sequence. Their lower bound applies only when the number of distinct elements (or the
support size of a distribution) is very small. For both problems, we prove a nearly linear in n lower
bound on the query complexity, applicable even when the number of distinct elements is large (up
to linear in n) and even for approximation with additive error. At the heart of the lower bound is
a construction of two positive integer random variables, X1 and X2, with very different expectations
and the following condition on the first k moments: E[X1]/E[X2] = E[X2

1]/E[X2
2] = · · · = E[Xk

1 ]/ E[Xk
2 ].

It is related to a well-studied mathematical question, the truncated Hamburger problem, but differs
in the requirement that our random variables have to be supported on integers. Our lower bound
method is also applicable to other problems and, in particular, gives a new lower bound for the
sample complexity of approximating the entropy of a distribution.

Key words. approximation algorithms, distinct elements problem, distribution support size,
lower bounds, Poissonization

AMS subject classifications. 68Q17, 68Q25

DOI. 10.1137/070701649

1. Introduction. In this work we consider the following problem, which we call
Distribution-Support-Size:

Given a parameter n and access to independent samples from a dis-
tribution where each element appears with probability at least 1

n , ap-
proximate the distribution support size.

This problem is closely related to another natural problem, known as Distinct-

Elements:
Given access to a sequence of length n, approximate the number of
distinct elements in the sequence.

∗Received by the editors August 30, 2007; accepted for publication (in revised form) May 15,
2009; published electronically August 6, 2009. A preliminary version of this paper appeared in the
proceedings of FOCS 2007 [RRSS07].

http://www.siam.org/journals/sicomp/39-3/70164.html
†Department of Computer Science and Engineering, Pennsylvania State University, University

Park, PA 16802 (sofya@cse.psu.edu, asmith@cse.psu.edu). The research of these authors was partly
supported by the National Science Foundation (NSF/CCF grant 0729171) and was partly done
while at the Weizmann Institute of Science, Israel. The fourth author’s research was supported at
Weizmann by the Louis L. and Anita M. Perlman Postdoctoral Fellowship.

‡Department of Electrical Engineering Systems, Tel Aviv University, Ramat Aviv, Israel (danar@
eng.tau.ac.il). This author’s research was supported by the Israel Science Foundation (grant 89/05).

§Department of Computer Science, Technion, Haifa, 32000, Israel (shpilka@cs.technion.ac.il).
This author’s research was supported by the Israel Science Foundation (grant 439/06).

813



814 S. RASKHODNIKOVA, D. RON, A. SHPILKA, AND A. SMITH

Both of these fundamental problems arise in many contexts and have been exten-
sively studied. In statistics, Distribution-Support-Size is known as estimating
the number of species in a population (see the list of hundreds of references in [Bun]).
Typically, the input distribution is assumed to come from a specific family. Distinct-

Elements arises in databases and data mining, for example, in the design of query
optimizers, and the detection of denial-of-service attacks (see [CCMN00, ABRS03]
and the references therein). Because of the overwhelming size of modern databases,
a significant effort has focused on solving Distinct-Elements with extremely ef-
ficient classes of algorithms: streaming algorithms [FM85, AMS99, GT02, BKS02,
BJK+02, IW03, BHR+07], which make a single pass through the data and use very
little memory, and sampling-based algorithms [CCMN00, BKS01], which query only
a small number of positions in the input.

This paper looks at the complexity of sampling-based approximation algorithms
for Distribution-Support-Size and Distinct-Elements. Previous works con-
sider multiplicative approximation for these problems. Charikar et al. [CCMN00]
give an algorithm for approximating Distinct-Elements within a factor α with
O
(

n
α2

)
queries into the input sequence.1 Charikar et al. and Bar-Yossef, Kumar, and

Sivakumar [BKS01] prove a matching lower bound of Ω
(

n
α2

)
queries. Its proof boils

down to the observation that every algorithm requires Ω
(

n
α2

)
queries to distinguish

a sequence of n identical elements from the same sequence with α2 unique elements
inserted in random positions. Stated in terms of the Distribution-Support-Size

problem, the difficulty is in distinguishing a distribution with a single element in its
support from a distribution with support size α2, where all but one of the elements
have weight 1/n. A good metaphor for the distinguishing task in this argument is
finding a needle in a haystack.

This needle-in-a-haystack lower bound leaves open the question of the complexity
of Distribution-Support-Size when the support size is a nonnegligible fraction of
n. In other words, is it possible to obtain efficient algorithms for Distribution-

Support-Size and Distinct-Elements that have additive error at most βn, where
β ∈ (0, 1

2 )? Since additive approximation for these problems has not been explicitly
studied before this work, the only known algorithm with additive error2 follows di-
rectly from the multiplicative approximation algorithm of Charikar et al. [CCMN00]
and runs in time Θ ((1−2β)n). In contrast, the “needle-in-a-haystack” multiplicative
lower bound arguments [CCMN00, BKS01] imply only that algorithms with additive
error βn require Ω(1/β) samples (by setting α =

√
βn). We give a strong lower bound

for the sample (and hence, time) complexity of such algorithms. Our techniques also
lead to lower bounds on the sample complexity of approximating the compressibility
of a string and the entropy of a distribution. We describe our results in more detail
in the rest of this section.

1.1. An almost linear lower bound for approximation with an additive
error. First we discuss how Distribution-Support-Size and Distinct-Elements

are related. An instance of Distribution-Support-Size where all probabilities are
multiples of 1

n is equivalent to a Distinct-Elements instance that can be accessed
only by taking independent uniform samples with replacement. Thus, the follow-

1We say an algorithm approximates a function f within a factor α > 1 if for every input x, with

probability at least 2/3, the algorithm’s output lies between
f(x)

α
and αf(x).

2This algorithm works by setting α2 = 1/(1 − 2β), running a multiplicative approximation

algorithm to get an output ĉ, and outputting
min(α·ĉ,n)+ĉ/α

2
.



STRONG LOWER BOUNDS FOR DISTRIBUTION SUPPORT SIZE 815

ing problem is a special case of Distribution-Support-Size and a restriction of
Distinct-Elements: Given n balls, each of a single color, approximate the number
of distinct colors by taking independent uniform samples of the balls with replacement.

We show that this restriction of Distinct-Elements can be made without loss
of generality. In principle, an algorithm for Distinct-Elements is allowed to make
arbitrary adaptive queries to the input. However, Bar-Yossef, Kumar, and Sivaku-
mar [BKS01] and Bar-Yossef [Bar02] show that algorithms that (a) take uniform
random samples with replacement and (b) see the input positions corresponding to
the samples, are essentially as good for solving Distinct-Elements as general algo-
rithms. We strengthen their result to algorithms that sample uniformly with replace-
ment but are oblivious to the input positions corresponding to the samples. Hence, to
obtain lower bounds for both Distribution-Support-Size and general Distinct-

Elements, it suffices to prove bounds for the restriction of Distinct-Elements

above.
Main lower bound. We prove that even if we allow additive error which is a

constant fraction of n, so that the multiplicative lower bound [CCMN00, BKS01] im-
plies only that a constant number of queries are necessary, approximating Distinct-

Elements (and hence Distribution-Support-Size) requires an almost linear num-
ber of queries. Specifically, n1−o(1) queries are necessary to distinguish an input with
n
11 colors from an input with n

d colors, for any d = no(1). In particular, obtaining ad-
ditive error n

23 requires n1−o(1) samples. If we restrict our attention to algorithms that
sample balls uniformly with replacement (or if we consider Distribution-Support-

Size), then the bound can be strengthened: n1−o(1) samples are necessary to distin-
guish an input with n − n

d colors from an input with n
d colors, for any d = no(1). In

particular, obtaining additive error (1
2 −δ)n requires n1−o(1) samples for any constant

δ > 0. (Note that one can obtain additive error n
2 without taking any samples at

all, since the number of distinct colors is always between 1 and n.) In the above
statements and in all that follow, distinguishing means distinguishing with success
probability at least 2/3. It is an open question to close the gap between our lower
bounds and the trivial O(n) upper bound.

To contrast our result with previous bounds, consider a scenario where we receive
a petition with n signatures and at least n/15 distinct people need to have signed
in order for the petition to be valid. Our results imply that even if only n/100
people actually signed the petition, convincing ourselves that the petition is invalid
requires reading a nearly linear number of signatures. Previous results are based on
the difficulty of distinguishing petitions with a single distinct signer from petitions
with many signers; in our scenario, they yield only a constant lower bound on the
query complexity. More generally, needle-in-a-haystack lower bound techniques are
very weak in the scenario of distinguishing a valid petition from a petition with n/100
distinct signers: These techniques rely on constructing positive and negative instances
for the problem that differ in very few entries, while in our scenario, the instances
being distinguished must have linear Hamming distance.

We note that it is easy to prove an Ω (
√

n) bound on the query complexity of ap-
proximating Distinct-Elements with an additive error (recall that we may assume
without loss of generality that the algorithm samples uniformly with replacement):
With fewer queries it is hard to distinguish an instance with n colors, where each
color appears once, from an instance with n

2 colors, where each color appears twice.
In both cases an algorithm taking o (

√
n) samples is likely to see only unique colors

(no collisions). With Ω (
√

n) samples, 2-way collisions become likely even if all colors
appear only a constant number of times in the input. In general, with Ω

(
n1−1/k

)



816 S. RASKHODNIKOVA, D. RON, A. SHPILKA, AND A. SMITH

samples, k-way collisions become likely. One might hope to use statistics on the num-
ber of collisions to efficiently distinguish an input with n

d1
colors from an input with

n
d2

colors, where d1 and d2 are different constants. However, we show that looking at
k-way collisions, for constant k (and even k that is a slowly growing function of n),
does not help.

1.2. Techniques.
Moments condition and frequency variables. To prove our lower bound, we con-

struct two input instances that are hard to distinguish, where the inputs have n
d1

and
n
d2

colors, respectively, and d2 � d1. The requirements on the number of colors imply
that, unlike in the needle-in-a-haystack lower bound of [CCMN00, BKS01], the in-
stances being distinguished must have linear Hamming distance. Previous techniques
do not apply here, and we need a more subtle argument to show that they are indistin-
guishable. At the heart of the construction are two positive integer random variables,
X1 and X2, that correspond to the two input instances. These random variables have
very different expectations (which translate to different numbers of colors) and many
proportional moments ; that is,

(1)
E[X1]
E[X2]

=
E[X2

1]
E[X2

2]
= · · · =

E[Xk−1
1 ]

E[Xk−1
2 ]

for some k = ω(1). The construction of these random variables proceeds by formu-
lating the problem in terms of polynomials and bounding their coefficients, and it is
the most technically delicate step of our lower bound. The problem of constructing
two such random variables is related to the “truncated moments problem” (see, e.g.,
[And70, CF91]), and the similarities and differences between the two problems are
further discussed in section 4 (after the statement of Theorem 4.5).

Let F� be the number of �-way collisions, that is, the number of colors that appear
exactly � times in the random sample obtained by an algorithm that samples the input
positions uniformly with replacement (recall that such algorithms are essentially as
good as general algorithms for solving Distinct-Elements). As explained in the
discussion of the main lower bound, computing F� for small � gives a possible strategy
for distinguishing two Distinct-Elements instances. Intuitively, we will ensure that
this strategy fails for the instances we construct, by requiring that the expected value
of F� is the same for both instances. To this end, for each instance of Distinct-

Elements we define its frequency variable to be the outcome of a mental experiment
where we choose a color uniformly at random and count how many times it occurs
in the instance. We prove that the expectation of F� is the same for two instances
if their frequency variables X1 and X2 have at least � proportional moments. Thus,
the construction mentioned above leads to a pair of instances where F� has the same
expectation for small values of �.

Instances that have frequency variables with proportional moments are indistin-
guishable. Our second technical contribution is to show that constructing frequency
variables with proportional moments is sufficient for proving lower bounds on sam-
ple complexity: Namely, the corresponding instances are indistinguishable given few
samples. (This actually gives a general technique for proving lower bounds on sample
complexity; we illustrate this generality by also deriving bounds for entropy estima-
tion, discussed in section 1.3.)

To prove a lower bound, it suffices to consider algorithms that have access only to
the histogram (F1, F2, F3, . . . ) of the selected sample. Namely, the algorithm is only
given the number of colors in the sample that appear once, twice, thrice, etc. The



STRONG LOWER BOUNDS FOR DISTRIBUTION SUPPORT SIZE 817

restriction to histograms was also applied in [BFR+00, BFF+01]. The difficulty of
proving indistinguishability based on proportional moments lies in translating guaran-
tees of equal expectations of the variables F� to a guarantee of close distributions on the
vectors (F1, F2, F3, . . . ). The main idea is to show that (a) the variables F1, . . . , Fk−1

can each be faithfully approximated by a Poisson random variable with the same ex-
pectation and (b) they are close to being independent. The explanation for the latter,
possibly counterintuitive, statement comes from the following experiment: Consider
many independent rolls of a biased k-sided die. If one side of the die appears with
probability close to 1, then the variables counting the number of times each of the
other sides appears are close to being independent. In our scenario, side � of the die
(for 0 ≤ � < k) occurs when a particular color appears � times in the sample. Any
given color is most likely not to appear at all, so side 0 of the die is overwhelmingly
likely and the counts of the remaining outcomes are nearly independent.

The proofs use a technique called Poissonization [Szp01], in which one modifies a
probability experiment to replace a fixed quantity (e.g., the number of samples) with
a variable quantity which follows a Poisson distribution. This breaks up dependencies
between variables and makes the analysis tractable.

1.3. Results for other problems.
Compressibility. As shown in [RRRS07], Distinct-Elements is closely related

to the problem of approximating how well the Lempel–Ziv compression scheme, de-
fined in [ZL77], compresses an input string x. Let CLZ(x) denote the length of the com-
pressed version of x. An approximation algorithm for CLZ with multiplicative factor
α ≥ 1 and additive error βn, where β ∈ [0, 1], has to produce, given input x of length
n, an estimate Ĉ that with probability 2

3 satisfies CLZ(x)
α −βn ≤ Ĉ ≤ α ·CLZ(x)+βn.

While [RRRS07] shows that analogous problems for other compression schemes (such
as run-length encoding) have time complexity independent of n, their approximation
algorithm for CLZ runs in time Õ

(
n

α3β

)
. This implies that for all ε > 0, one can distin-

guish, in sublinear time Õ(n1−ε), the case that CLZ(x) = O(n1−ε) from the case that
CLZ(x) = Ω(n) (by setting α = c1n

ε/2 and β = c2n
−ε/2 for an appropriate choice of c1

and c2). In conjunction with the reduction from Distinct-Elements to approximat-
ing CLZ, presented in [RRRS07], the lower bound we give for Distinct-Elements

implies that the algorithm for CLZ cannot be improved significantly. In particular,
distinguishing the case that CLZ(x) = O(n1−ε) from the case that CLZ(x) = Ω̃(n) re-
quires reading Ω(n1−c

√
ε) symbols of x (where c is a constant). For more precise details

(on the reduction and the exact form of the resulting lower bound), see [RRRS07].
Entropy estimation. Our methodology yields a general technique for proving lower

bounds on the sample complexity for other problems where one needs to compute
quantities invariant under permutation of the balls and the colors. Namely, if the
quantity to be approximated can be expressed in terms of the distribution of an
input’s frequency variable, then it suffices to construct two integer variables with
proportional moments for which the quantity differs significantly.

We apply the technique to estimating the entropy of an unknown distribution. In
section 7, we give a lower bound of Ω(n

2
6α2−3+o(1) ) for approximating the entropy of

a distribution over n elements to within a multiplicative factor of α. When α is close
to 1, this bound is close to Ω(n2/3). It can be combined with the Ω(n

1
2α2 ) bound of

Batu et al. [BDKR05] to give Ω(nmax{ 1
2α2 , 2

6α2−3+o(1)
}).

1.4. Subsequent research. Subsequent to our work, Valiant [Val08] provided
a novel, generic lower bound for testing symmetric properties of distributions, using



818 S. RASKHODNIKOVA, D. RON, A. SHPILKA, AND A. SMITH

a generalization of the techniques in this paper. In particular, for estimating entropy,
[Val08] provides a lower bound of n( 1

α2 −o(1)) samples, a significant strengthening of
the bound provided here. For distribution support, [Val08] provides a slightly weaker
statement than ours, but with the same qualitative interpretation: Namely, for any
constants d1 and d2, distinguishing distributions with at least n

d1
from those with at

most n
d2

colors requires n1−o(1) samples.3

2. Main results. As noted in the introduction, Distinct-Elements with al-
gorithms that sample uniformly with replacement is a special case of Distribution-

Support-Size where all probabilities are integer multiples of 1
n . Theorem 2.1, stated

next, gives a lower bound on Distinct-Elements algorithms, first for the restricted
case of uniform sampling (and hence also for Distribution-Support-Size), and
then for the general case.

Theorem 2.1. For all T ≥ 2n3/4
√

log n, if we set

k = k(n, T ) =

⌊√
log n

log n − log T + 1
2 log log n + 1

⌋
,

then the following hold.
1. Every algorithm for Distinct-Elements that takes uniform samples with-

out replacement needs to perform Ω
(
n1− 2

k

)
queries to distinguish inputs with

at least n − T colors from inputs with at most T colors.
The same bound holds for algorithms for Distribution-Support-Size, even
under the promise that probabilities are integer multiples of 1/n.

2. Every algorithm for Distinct-Elements, regardless of how it accesses the
input, needs to perform Ω

(
n1− 2

k

)
queries to distinguish inputs with at least

n
11

colors from inputs with at most T colors.
The next corollary provides a simpler form of the lower bound for T that is not

too large and not too small, and another simple form for sufficiently large T . The
corollary is obtained by setting T = n1−ε in the main theorem.

Corollary 2.2. The following hold:
• If 5 log log n+10

log n ≤ ε ≤ 1/16, then distinguishing inputs of Distinct-Elements

with at least n
11 colors from inputs with at most n1−ε colors requires Ω(n1−3

√
ε)

queries.
• If ε < 5 log log n+10

log n , then distinguishing inputs of Distinct-Elements with at

least n
11 colors from inputs with at most n1−ε colors requires n1−O(

√
log log n/ log n)

queries.
In both statements, the input with n/11 colors may be taken to have n − n1−ε colors
when the algorithm is restricted to uniform samples without replacement or when the
problem to be solved is Distribution-Support-Size.

To prove Theorem 2.1 we construct a pair of Distinct-Elements instances
that are hard to distinguish (though they contain a very different number of colors).
Section 3 shows that to obtain a lower bound on Distinct-Elements it suffices
to consider algorithms that take uniform samples with replacement. We use this
to deduce part 2 of Theorem 2.1 from part 1. In section 4, we construct integer
random variables that satisfy the moments condition, as described in the introduction
(equation (1)). Section 5 shows that frequency variables with proportional moments

3The result for distribution support requires a slight extension of the techniques in the conference
paper [Val08]. The extension will appear in the forthcoming full version.



STRONG LOWER BOUNDS FOR DISTRIBUTION SUPPORT SIZE 819

lead to indistinguishable instances of Distinct-Elements. Section 6 culminates in
the proof of Theorem 2.1. Finally, in section 7, we apply our techniques to the sample
complexity of approximating the entropy.

3. Algorithms for DISTINCT-ELEMENTS with uniform samples. In this
section we show that restricted algorithms that take samples uniformly at random with
replacement are essentially as good for Distinct-Elements as general algorithms.

First, consider algorithms that take their samples uniformly at random without
replacement from [n]. The following lemma by Bar-Yossef, Kumar, and Sivakumar
[BKS01, Lemma 9] shows that such algorithms are essentially as good for solving
Distinct-Elements as general algorithms.

Lemma 3.1 (see [BKS01]). For any function invariant under permutations of
input elements (ball positions), any algorithm that makes s queries can be simulated
by an algorithm that takes s samples uniformly at random without replacement and
has the same guarantees on the output as the original algorithm.

The main idea in the proof of the lemma is that the new algorithm, given input
w, can simulate the old algorithm on π(w), where π is a random permutation of the
input, dictated by the random samples chosen by the new algorithm. Since the value
of the function (in our case, the number of colors) is the same for w and π(w), the
guarantees on the old algorithm hold for the new one.

Next, we would like to go from algorithms that sample uniformly without replace-
ment to ones that sample uniformly with replacement and find out the corresponding
color, but not the input position that was queried. Bar-Yossef, Kumar, and Sivaku-
mar [BKS01, full version, Lemma 4.17] (also in [Bar02, Lemma 4.19]) proved that
for all functions invariant under permutations, algorithms that take O(

√
n) uniform

samples without replacement can be simulated by algorithms that take the same num-
ber of samples with replacement. The idea is that with so few samples, an algorithm
sampling with replacement is likely to never look at the same input position twice.
To prove a statement along the same lines for algorithms that take more samples,
Bar-Yossef allows them to see not only the color of each sample, but also which input
position was queried (this allows the algorithm to ignore replaced samples). One can
avoid giving this extra information to an algorithm for Distinct-Elements, with a
slight loss in the approximation factor.

Definition 3.2 (uniform algorithm). An algorithm is uniform if it takes inde-
pendent samples with replacement and gets to see only the colors of the samples, but
not the input positions corresponding to them.

As noted in the introduction, a uniform algorithm for Distinct-Elements is
equivalent to an algorithm for the special case of Distribution-Support-Size where
all probabilities are integer multiples of 1

n .
Lemma 3.3. Let α = α(n) such that

√
0.1 · α ≥ 1. For every algorithm A

that makes s queries and provides, with probability at least 11
12 , an approximation for

Distinct-Elements within a factor of (
√

0.1 · α), there is a uniform algorithm A′

that takes s samples and provides, with probability at least 2
3 , an approximation for

Distinct-Elements within a factor of α.
Proof. We define algorithm A′ as follows. It simulates algorithm A. Whenever

A makes a query to a new position of the input, A′ takes a uniform sample with
replacement from its input and records its color. This color is used in the simulation
as an answer to A’s current query and all subsequent queries to the same position.
A′ returns the output of A, multiplied by

√
10. Note that the randomness that A′

uses for sampling is independent of the coins of A.



820 S. RASKHODNIKOVA, D. RON, A. SHPILKA, AND A. SMITH

Clearly, if A makes s queries, then A′ takes at most s samples. To analyze its
accuracy, consider algorithm A′′ that first runs A′ and then completes its record to
a full Distinct-Elements instance with n colors by taking (at least n− s) uniform
samples with replacement from its input and recording their colors for the positions
that A did not query. A′′ outputs the same answer as A′. Thus, it is enough to
analyze the accuracy of A′′.

If there are C = C(n) colors in the input of A′′, the recorded instance has at
most C colors. However, some of the colors might be missing. We will show later (see
Claim 3.5 with s set to n) that with probability ≥ 3

4 at least 0.1 · C colors appear
in the instance. That is, with probability ≥ 3

4 , the recorded instance has between
0.1 · C and C colors. Because the coins of A are independent of those used by A′

for sampling, we can apply A’s accuracy guarantee: When A is run on the recorded
instance, with probability ≥ 11

12 , it outputs an answer between 0.1·C√
0.1·α =

√
0.1 · C

α and√
0.1 ·α ·C. Thus, since A′′ runs A on this instance and multiplies its answer by

√
10,

it will get an α-multiplicative approximation to C with probability ≥ 1− 1
4 − 1

12 ≥ 2
3 ,

as promised.
Rephrasing Lemma 3.3, using a few details from the reduction in the proof, we

obtain Lemma 3.4.
Lemma 3.4. Let C1 = C1(n) and C2 = C2(n), where 0.1 · C1 > C2. If every

uniform algorithm needs at least s queries to distinguish Distinct-Elements in-
stances with at least C1 colors from Distinct-Elements instances with at most C2

colors, then every algorithm needs Ω(s) queries to distinguish Distinct-Elements

instances with at least 0.1 · C1 colors from Distinct-Elements instances with at
most C2 colors.

The following claim was used in the proof of Lemma 3.3.
Claim 3.5. Let s = s(n) ≤ n. Then s independent samples from a distribution

with C = C(n) elements, where each element has probability ≥ 1
n , yield at least Cs

10n
distinct elements, with probability ≥ 3

4 .
Proof. For i ∈ [C], let Xi be the indicator variable for the event that color i is

selected in s samples. Then X =
∑C

i=1 Xi is a random variable for the number of
distinct colors. Since each color is selected with probability at least 1

n for each sample,

(2) E[X ] =
C∑

i=1

E[Xi] ≥ C

(
1 −

(
1 − 1

n

)s)
≥ C

(
1 − e−(s/n)

)
≥ (1 − e−1

) Cs

n
.

The last inequality holds because 1 − e−x ≥ (1 − e−1) · x for all x ∈ [0, 1].
We now use Chebyshev’s inequality to bound the probability that X is far from

its expectation. For any distinct pair of colors i, j, the covariance Cov[Xi, Xj ] =
E[XiXj ] − E[Xi] E[Xj ] is negative (if color i was not selected, it is more likely that
color j was selected). Therefore,

Var[X ] = Var

[
C∑

i=1

Xi

]

=
C∑

i=1

Var[Xi] + 2
∑

i,j:1≤i<j≤C

Cov[Xi, Xj ]

≤
C∑

i=1

Var[Xi]



STRONG LOWER BOUNDS FOR DISTRIBUTION SUPPORT SIZE 821

≤
C∑

i=1

E[Xi] = E[X ].

The last inequality holds because Xi is a Bernoulli variable for each color i, and,
consequently, Var[Xi] = E[Xi](1 − E[Xi]) ≤ E[Xi]. By Chebyshev’s inequality and
since Var[X ] ≤ E[X ], for any fixed δ < 1,

Pr [X ≤ δ E[X ]] ≤ Pr [|X − E[X ]| ≥ (1 − δ)E[X ]]

≤ Var[X ]
((1 − δ)E[X ])2

≤ 1
(1 − δ)2 E[X ]

.(3)

Set δ = 3 −√
8. If E[X ] ≥ 4

(1−δ)2 , then by (2) and (3), with probability ≥ 3
4 ,

X ≥ δ E[X ] ≥ δ(1 − e−1)
Cs

n
>

Cs

10n
,

as stated in the claim. Otherwise, that is, if E[X ] < 4
(1−δ)2 , equation (2) implies that

4δ
(1−δ)2 > δ(1 − e−1)Cs

n . Substituting 3 − √
8 for δ gives 1 > Cs

10n . In other words,
the claim for this case is that at least one color appears among the samples, which,
clearly, always holds.

4. Frequency variables and the moments condition. This section defines
and constructs the frequency variables needed for the main lower bound, as described
in the introduction. To begin, note that permuting color names in the input (e.g.,
painting all pink balls orange and vice versa) clearly does not change the number of
colors. Intuitively, all colors play the same role, and the only useful information in
the sample is the number of colors that appear exactly once, exactly twice, etc. This
motivates the following definition.

Definition 4.1 (collisions and histograms). Consider s samples taken by an
algorithm. An �-way collision occurs if a color appears exactly � times in the sample.
For � = 0, 1, . . . , s, let F� be the number of �-way collisions in the sample. The
histogram F of the sample is the vector (F1, . . . , Fs), indicating for each nonzero �
how many colors appear exactly � times in the sample.

One can prove that any uniform algorithm for Distinct-Elements can be sim-
ulated by a uniform algorithm that sees only a histogram of the sample. (We omit
the proof since it follows from the formal argument provided subsequently.)

To prove our lower bound, we will define a pair of Distinct-Elements instances
that contain a significantly different number of colors, but for which the corresponding
distributions on histograms are indistinguishable. In what follows we provide an
intuitive discussion that will lead us to our main formal definitions and claims.

First, observe that if the algorithm takes o
(
n1−1/k

)
samples, and each color

appears at most a constant number of times, then with high probability no k-way col-
lisions occur. Hence, it suffices to restrict our attention to �-way collisions for � < k.
Next we consider the following notion, closely related to �-way collisions: A monochro-
matic �-tuple is a set of � samples that have the same color. Notice that the number
of �-way collisions can be obtained from the number of monochromatic �′-tuples for



822 S. RASKHODNIKOVA, D. RON, A. SHPILKA, AND A. SMITH

all �′ ≥ � by applying a simple recursive formula.4 Therefore, if for two instances
the expected number of monochromatic �-tuples is the same for all �, then so is the
expected number of �-way collisions. In this section, we show how to construct pairs
of instances with the same expectations on the number of monochromatic �-tuples, for
every � < k. (Section 5 proves that equal expectations imply that the distributions
themselves are close.) To express requirements on the instances concisely, we define,
for each instance of Distinct-Elements, a corresponding frequency variable.

Definition 4.2 (frequency variable). Suppose we are given an instance of
Distinct-Elements with n

d colors. Group colors into types according to how many
times they appear in the input: say, a pi fraction of the colors are of type i and each
of them appears ai times. Consider a mental experiment where we choose a color uni-
formly at random and count how many times it occurs in the instance. The frequency
variable X is a random variable representing the number of balls of a color chosen
uniformly at random, as described in the experiment.

By definition, Pr[X = ai] = pi. Since, on average, each color appears d times,

(4) E[X] =
∑

i

piai = d.

Conversely, for any integer random variable X which takes value ai with probability
pi, if the numbers pi

n
d are integers, we can easily construct a Distinct-Elements

instance with frequency variable X.
Suppose an algorithm takes s uniform samples with replacement from an instance

with n
d colors, as described in Definition 4.2. The probability that a particular �-tuple

is monochromatic is
∑

i pi
n
d

(
ai

n

)�, since there are pi
n
d colors of type i and each gets

sampled with probability ai

n . The expected number of monochromatic �-tuples in s
samples is thus (

s

�

)∑
i

pi
n

d

(ai

n

)�

=
(

s

�

)
1

nt−1

1
d

∑
i

pia
�
i

=
(

s

�

)
1

n�−1

E[X�]
E[X]

.

The last equality follows from (4) and from the fact that Pr[X = ai] = pi. We
consider s for which this expression goes to 0 when � is at least some fixed k. We want
to construct a pair of instances such that for the remaining � (which are smaller than
k), the expected number of monochromatic �-tuples is the same. This corresponds
to making E[X�]

E[X] the same for both instances. This, in turn, leads to the following
condition on the corresponding frequency variables, which is the core of our lower
bound.

Definition 4.3 (proportional moments). Random variables X̂ and X̃ have k− 1
proportional moments if

E[X̃]
E[X̂]

=
E[X̃2]
E[X̂2]

=
E[X̃3]
E[X̂3]

= · · · =
E[X̃k−1]
E[X̂k−1]

.

4That is, let us denote by M�′ the number of monochromatic �′-tuples, and recall that F� denotes
the number of �-way collisions. Then, assuming that Fk = Mk = 0, we have that Fk−1 = Mk−1,

Fk−2 = Mk−2 − (k − 1)Fk−1, and, in general, F� = M� −
∑k−1

�′=�+1

(�′
�

)
F�′ .



STRONG LOWER BOUNDS FOR DISTRIBUTION SUPPORT SIZE 823

We will see in section 5 that when two frequency variables have k−1 proportional
moments, the corresponding instances are indistinguishable by algorithms that take
(roughly) fewer than n1− 1

k samples. Additionally, we need that the instances have very
different numbers of distinct colors. This corresponds to ensuring that the frequency
variables have different expectations.

Definition 4.4 (moments condition). Random variables X̂ and X̃ satisfy the
moments condition with parameters k and B if X̂ and X̃ have k − 1 proportional
moments and E[X̃]

E[X̂]
≥ B.

Theorem 4.5 (random variables satisfying the moments condition). For all
integers k > 1 and B > 1, there exist random variables X̂ and X̃ over positive integers
a0 < a1 < · · · < ak−1 that satisfy the moments condition with parameters k and B.
Moreover, for these variables ai = (B + 3)i, E[X̃] > B, and E[X̂] < 1 + 1

B .
The relation to the “truncated moments problem.” Our technique for constructing

random variables that satisfy the moments condition and the moments condition prob-
lem itself are related to a well-studied mathematical problem known as the “truncated
moments problem,” or the “truncated Hamburger problem” (see, e.g., [And70, CF91]).
In this problem we are given some domain of interest K (e.g., the interval K = [a, b],
the real line K = R, etc.) and a set of values γ0, γ1, . . . , γm. The goal is to construct
a measure (random variable) μ on K such that

∫
K tjdμ(t) = γj for every 0 ≤ j ≤ m.

This is called the truncated problem, as opposed to the full moments problem (see,
e.g., [Akh65]), since we are interested only in a finite number of moments. Note that
γj is the jth moment of the random variable constructed. In [CF91] the authors
give necessary and sufficient conditions on {γj}m

j=0 for the solvability of the problem.
Moreover, they show that a solution exists in which the support of μ is finite and is
in fact of size (m+1)/2 (when m is odd). Next we briefly discuss the similarities and
differences between the Hamburger problem and our moments condition.

At first glance it may seem that there is an easy reduction from the problem of
constructing random variables that satisfy the moments condition to the Hamburger
problem. Indeed, pick any set {γj}m

j=0 that satisfies the sufficient conditions provided
in [Akh65] and construct the random variable X̂, which, as stated above, has a finite
support. Then construct the (finitely supported) random variable X̃ for {B · γj}m

j=0

(that also satisfies the sufficient conditions). It is clear that X̂ and X̃ satisfy the
moments condition. The problem with this approach is that we cannot guarantee
that X̂ and X̃ are supported on integers, which is what we need. Moreover, it is not
clear what the largest element of the support is. Our techniques require a bound on
this quantity (see Theorem 5.6).

In addition to the similarity between the definitions of the problems, another
similarity is the techniques used in the proofs: In both cases the Vandermonde matrix
and its properties play an important role. This is not surprising since the moments
of a random variable with a finite support are vectors in the image of the appropriate
Vandermonde matrix.

To conclude, the Hamburger problem and the problem of constructing random
variables that satisfy the moments condition are related. However, it is not clear how
to use a solution for the former problem in order to solve the latter problem when
the support of the distributions should be on integers and the largest element in the
support should be bounded. Our result (Theorem 4.5) can be seen as a complementary
result that adds to the literature on the Hamburger problem.

Proof of Theorem 4.5. The rest of the section is devoted to this proof, which
comprises three parts: an overview, the construction, and its analysis. To reduce



824 S. RASKHODNIKOVA, D. RON, A. SHPILKA, AND A. SMITH

notation, in the proof, and more generally in the rest of the paper, all variables
pertaining to the first instance in the pair of instances that are hard to distinguish
are marked by a hat (̂ ), and those pertaining to the second by a tilde (̃ ). In statements
relevant to both instances, the corresponding variables without hat or tilde are used.

Overview. Let C = E[X̃]/E[X̂]. Then the moments condition (Definition 4.4) can
be restated as (E[X̃], E[X̃2], . . . , E[X̃k−1]) = C · (E[X̂], E[X̂2], . . . , E[X̂k−1]) and C ≥ B.
Recall that the supports of X̂ and X̃ are both contained in {a0, . . . , ak−1}. The main
step in our construction is to set aj = aj for an appropriate a > 1. Let pi =
Pr[X = ai] and 
p = (p0, . . . , pk−1). Let V denote the (k− 1)× k Vandermonde matrix
satisfying Vi,j = (aj)i. Then the vector (E[X], E[X2], . . . , E[Xk−1]) can be represented
as the product V · 
p. This gives yet another way to formulate the moments condition:
V (C · 
̂p − 
̃p) = 
0. For a fixed a, there is a unique (up to a factor) nonzero vector 
u

satisfying V · 
u = 
0. To obtain probability vectors 
̂p and 
̃p from 
u, we let positive
coordinates ui become C ·p̂i and negative ui become −p̃i, divided by the corresponding
normalization factors. This defines distributions X̂ and X̃ for each a.

To find an appropriate choice of a and to demonstrate the required properties
of our construction, we explicitly compute a vector 
u that defines the distributions.
The main idea behind this step is to view 
u as coefficients of a polynomial. Let
f(t) = tk−1 + uk−2t

k−2 + · · ·+ u0 be the unique nonzero polynomial that vanishes on
a, a2, . . . , ak−1. Then f(t) =

∏k−1
i=1 (t−ai). Because the set of zeros of f is a geometric

sequence, we can show that the coefficients of f also grow rapidly. This enables us to
demonstrate that C > a − 3, which implies that it is enough to set a = B + 3.

Construction. We start by computing the coefficients of the polynomial f(t),
described in the overview. For every 0 ≤ i ≤ k − 1, let si(y1, . . . , yk−1) be the ith
symmetric function

si(y1, . . . , yk−1) =
∑

T⊆[k−1]
|T |=i

∏
j∈T

yj .

For example, s2(y1, y2, y3) = y1y2+y1y3+y2y3. In general, s0 = 1 and sk−1(y1, . . . , yk−1)
= y1y2 · · · yk−1. As explained in the overview, the supports of the two distributions
we construct are contained in the set {1, a, a2, . . . , ak−1}, where a is a positive integer
parameter. Define

si(a) def= si(a, a2, . . . , ak−1) .

Following our previous example, s2(a) = a3 + a4 + a5 and s3(a) = a6. In general, one
can show that si−1(a) < si(a) for sufficiently large a. For our analysis we need only
some bounds on the si(a)’s in terms of sk−1(a), proved in Claim 4.8.

Consider the polynomial f(t) =
∏k−1

i=1 (t − ai). It is easy to see that

f(t) = (−1)k−1 ·
k−1∑
i=0

(−1)i · sk−1−i(a) · ti.

The probability of each element in our distributions is determined by the correspond-
ing coefficient of f , divided by a normalization factor. We define

∀i, 0 ≤ i ≤ k − 1, Pr[X̂ = ai] =

{
sk−1−i(a)/N̂(a) for even i,

0 for odd i,



STRONG LOWER BOUNDS FOR DISTRIBUTION SUPPORT SIZE 825

∀i, 0 ≤ i ≤ k − 1, Pr[X̃ = ai] =

{
0 for even i,

sk−1−i(a)/Ñ(a) for odd i,

where

N̂(a) def=
	(k−1)/2
∑

j=0

sk−1−2j(a) and Ñ(a) def=
	(k−2)/2
∑

j=0

sk−2−2j(a)

are normalization factors.
Analysis. After proving auxiliary lemmas, Lemmas 4.6 and 4.7, we use them to

complete the proof of Theorem 4.5. Lemma 4.6 shows that the distributions X̂ and X̃
have k − 1 proportional moments (see Definition 4.3). Lemma 4.7 bounds E[X̃] and
E[X̂].

Lemma 4.6. Let C
def= N̂(a)/Ñ(a). Then C · E[X̂�] = E[X̃�] for � = 1, . . . , k − 1.

Proof. By definition of X̂ and X̃,

C · E[X̂�] − E[X̃�] = C ·
∑

0≤i≤k−1
i even

(ai)� · sk−1−i(a)
N̂(a)

−
∑

0≤i≤k−1
i odd

(ai)� · sk−1−i(a)

Ñ(a)

=
1

Ñ(a)
·

k−1∑
i=0

(−1)i · sk−1−i(a) · (a�)i =
(−1)k−1

Ñ(a)
· f(a�) = 0.

Lemma 4.7. For all a > 3,
1. E[X̂] < 1+ 1

a−3 ;
2. E[X̃] > a − 2.

To prove Lemma 4.7, we bound the si(a)’s in terms of sk−1(a). Later, we express
the expectations of X̂ and X̃ in terms of the si(a)’s. We then use the upper bound on
the si(a)’s to get the upper bound on E[X̂], and both the lower bound on sk−2(a) and
the upper bound on the si(a)’s to get the lower bound on E[X̃].

Claim 4.8. For all a > 3,
1. sk−2(a) > sk−1(a)/a;
2. sk−1−i(a) < sk−1(a)/

(
a

i(i−1)
2 (a − 1)i

)
for all 1 ≤ i ≤ k − 2.

Proof. By the definition,

sk−1−i(a) = sk−1−i(a, a2, . . . , ak−1) =
∑

T⊆[k−1]
|T |=k−1−i

∏
j∈T

aj

=

⎛⎝k−1∏
j=1

aj

⎞⎠ ·
∑

T⊆[k−1]
|T |=k−1−i

∏
j �∈T

a−j

= sk−1(a) ·
∑

T⊆[k−1]
|T |=k−1−i

∏
j �∈T

a−j

= sk−1(a) ·
∑

R⊆[k−1]
|R|=i

∏
j∈R

a−j .(5)

In particular, sk−2(a) = sk−1(a) · (∑k−1
j=1 a−j

)
> sk−1(a)

a , proving the first part of the
claim.



826 S. RASKHODNIKOVA, D. RON, A. SHPILKA, AND A. SMITH

We now prove the second part of the claim. For fixed integers k and a, and for
all i ∈ [k − 1], let

ρ(i) def=
∑

R⊆[k−1]
|R|=i

∏
j∈R

a−j =
∑

R⊆[k−1]
|R|=i

a−∑ j∈R j .

By (5), it suffices to show that

(6) ρ(i) < a−i(i−1)/2(a − 1)−i.

We prove this by induction on i. By definition, ρ(1) =
∑k−1

j=1 a−j < 1
a−1 , proving

(6) for i = 1. For i > 1, observe that every subset R ⊆ [k − 1] of cardinality i
can be represented as R = R′ ∪ {j}, where |R′| = i − 1 and j = maxj′∈R j′ (so
that j ∈ {i, . . . , k − 1}). Moreover, each pair (R′, j) corresponds to at most one R.
Therefore,

(7) ρ(i) ≤ ρ(i − 1) ·
⎛⎝k−1∑

j=i

a−j

⎞⎠ < ρ(i − 1) · a−i+1

a − 1
.

By the induction hypothesis, ρ(i − 1) < a−(i−1)(i−2)/2(a − 1)−i+1. Substituting this
into the previous equation, we get

ρ(i) <
a−(i−1)(i−2)/2 · a−i+1

(a − 1)−i+1 · (a − 1)
=

a−i(i−1)/2

(a − 1)
,

as claimed in (6).
Proof of Lemma 4.7. By definition of X̂,

E[X̂] =
1

N̂(a)
·
	(k−1)/2
∑

j=0

sk−1−2j(a)a2j .

By Claim 4.8(2),

E[X̂] <
sk−1(a)
N̂(a)

·
⎛⎝1 +

	(k−1)/2
∑
j=1

a2j

aj(2j−1)(a − 1)2j

⎞⎠
=

sk−1(a)
N̂(a)

·
⎛⎝1 +

	(k−1)/2
∑
j=1

(
a2

a2j−1(a − 1)2

)j
⎞⎠

<
sk−1(a)
N̂(a)

·
⎛⎝1 +

	(k−1)/2
∑
j=1

1
(a − 2)j

⎞⎠
<

sk−1(a)
N̂(a)

·
(

1 +
1

a − 3

)
< 1 +

1
a − 3

.



STRONG LOWER BOUNDS FOR DISTRIBUTION SUPPORT SIZE 827

To bound E[X̃] from below, we first bound Ñ(a) from above. Recall that Ñ(a) =∑	(k−2)/2

j=0 sk−2−2j(a). By Claim 4.8(2),

Ñ(a) < sk−1(a) ·
	(k−2)/2
∑

j=0

1
aj(2j+1)(a − 1)2j+1

< sk−1(a) ·
(

1
a − 1

·
(

1 +
1

a(a − 1)2 − 1

))
< sk−1(a)/(a − 2).

Since X̃ takes the value a with probability sk−2(a)/Ñ(a),

E[X̃] >
sk−2(a) · a

Ñ(a)
>

sk−2(a) · a
sk−1(a)/(a − 2)

> a − 2.

The last inequality follows from Claim 4.8(1). Thus, the proof of Lemma 4.7 is
completed.

In order to complete the proof of Theorem 4.5 it remains to find, for every B > 1,
an a such that E[X̃]/ E[X̂] ≥ B. By Lemma 4.7,

E[X̃]
E[X̂]

>
a − 2

1 + 1
a−3

= a − 3.

Thus, if we take a = B + 3, then E[X̃]/ E[X̂] > B, E[X̂] < 1 + 1
B , and E[X̃] > B. This

completes the construction and the proof of Theorem 4.5.

5. Indistinguishability by Poisson algorithms. Even though uniform algo-
rithms are much simpler than general algorithms, they still might be tricky to analyze
because of dependencies between the numbers of balls of various colors that appear
in the sample. Batu et al. [BDKR02] (conference version of [BDKR05]) noted that
such dependencies are avoided when an algorithm takes a random number of sam-
ples according to a Poisson distribution. The Poisson distribution Po(λ) takes the
value x ∈ N with probability e−λλx/x!. The expectation and variance of a random
variable distributed according to Po(λ) are both λ. Several properties of the Poisson
distribution are collected in Claim A.2 (see Appendix A).

Definition 5.1. We call a uniform algorithm Poisson-s if the number of samples
it takes is a random variable, distributed as Po(s).

From this point on we consider Poisson algorithms that get only the histogram
of the sample as their input. This is justified by Lemma 5.3, stated next. Batu
et al. [BDKR02] (conference version of [BDKR05]) proved a variant of Lemma 5.3 in
the context of entropy estimation of distributions. However, the statements and the
proofs generalize to estimating symmetric functions over strings and, in particular,
to Distinct-Elements. In Lemma 5.3 below, and throughout this section, we use
statistical difference to bound the distinguishability of distributions.

Definition 5.2 (statistical difference). Distributions P and Q over a domain S
have statistical difference (also called total variation distance) δ if maxS′⊆S |P (S′)
−Q(S′)| = δ. We write P ≈δ Q to denote that P and Q have statistical difference at
most δ.

For two random variables X ∼ P and Y ∼ Q, we say that X and Y have statistical
difference δ (and write X ≈δ Y ) when P ≈δ Q.



828 S. RASKHODNIKOVA, D. RON, A. SHPILKA, AND A. SMITH

Statistical difference provides a convenient measure of distinguishability between
random variables: If X and Y have small statistical difference δ, then any algo-
rithm A will behave almost identically on the two variables; that is, Pr[A(X) = 1] =
Pr[A(Y ) = 1] ± δ. We have collected several standard properties of statistical differ-
ence in Claim A.1 (see Appendix A).

Lemma 5.3 (Poissonization lemma, generalizes [BDKR02], conference version of
[BDKR05]).

(a) Poisson algorithms can simulate uniform algorithms. Specifically, for every
uniform algorithm A that uses at most s

2 samples, there is a Poisson-s al-
gorithm A′ such that for every input w, the statistical difference between the
distributions A(w) and A′(w) is at most 4/s.

(b) If the input to Distinct-Elements contains b balls of a particular color, then
the number of balls of that color seen by a Poisson-s algorithm is distributed
as Po( b·s

n ). Moreover, it is independent of the number of balls of all other
colors in the sample.

(c) For any function invariant under permutations of the alphabet symbols (color
names), any Poisson algorithm can be simulated by an algorithm that gets
only the histogram of the sample as its input. The simulation has the same
approximation guarantees as the original algorithm.

Item (a) implies that it suffices to show lower bounds for Poisson algorithms
in order to prove similar bounds for uniform algorithms. The independence of the
number of occurrences of different colors in the sample (item (b)) greatly simplifies
the analysis of Poisson algorithms. We prove Lemma 5.3 in Appendix A.

As we explained, we prove Theorem 2.1 by constructing a pair of instances that
are hard to distinguish. They correspond to the pair of frequency variables satisfying
the moments condition that we constructed in the proof of Theorem 4.5. Defining
Distinct-Elements instances based on frequency variables is straightforward if we
make an integrality assumption described below. Specifically, for k > 1 let a0 <
a1 < · · · < ak−1 be integers, and let X be a random variable over these integers with
Pr[X = ai] = pi. Then E[X] =

∑k−1
i=0 pi · ai. Based on X, we define a Distinct-

Elements instance DX of length n (that is, a string in [n]n) that contains n
E[X] colors.

For i = 0, . . . , k − 1, instance DX contains npi

E[X] colors of type i, where each color of
type i appears ai times. We now give a precise definition that does not rely on the
assumption that npi

E[X] is an integer for every i.
Definition 5.4 (the instance DX). For k > 1, let a0 < a1 < · · · < ak−1 be

integers, and let X be a random variable over these integers defined by Pr[X = ai] = pi.
Observe that E[X] =

∑k−1
i=0 pi · ai. Based on X, we form a Distinct-Elements

instance DX of length n (that is, a string in [n]n) that contains MX colors, where
MX =

∑k−1
i=0

⌊
npi

E[X]

⌋
+ n−∑k−1

i=0

⌊
npi

E[X]

⌋ · ai. (Note that if npi

E[X] is an integer for every i,
then MX = n

E[X] .) For i = 0, . . . , k − 1, instance DX contains
⌊

npi

E[X]

⌋
colors of type i,

each appearing ai times. In addition, there are n−∑k−1
i=0

⌊
npi

E[X]

⌋ ·ai colors that appear
once each. We refer to these singleton colors as being of type k and set ak = 1.

The names and order of the colors in DX are unimportant. For concreteness,
assign labels from 1 to MX in increasing order of the number of times each color
appears and arrange the symbols in order of their color names in the string.

The following claim bounds the distortion introduced to handle nonintegral values
of npi

E[X] .
Claim 5.5. In the instance DX of Definition 5.4, the following hold.



STRONG LOWER BOUNDS FOR DISTRIBUTION SUPPORT SIZE 829

1. The number of colors of type k, called Ck, is at most
∑k−1

i=1 ai ≤ k · ak−1.
2. The number of distinct colors MX is at least n

E[X] and at most n
E[X] + Ck.

Proof. We can write n as
∑k−1

i=0
npi

E[X] , and hence rewrite Ck as

Ck =
k−1∑
i=0

(
npi

E[X]
−
⌊

npi

E[X]

⌋)
· ai .

This is at most
∑k−1

i=0 ai. Since ak−1 is larger than all other ai, the sum is at most
k · ak−1. Finally, to bound the number of distinct colors, we write MX − n

E[X] =∑k−1
i=0

(⌊
npi

E[X]

⌋− npi

E[X]

)
+ Ck. Using the expression above for Ck, we get

MX − n
E[X] =

k−1∑
i=0

(
npi

E[X] −
⌊

npi

E[X]

⌋)
· (ai − 1).

This is nonnegative since the ai’s are all positive integers and are bounded above by
our previous expression for Ck.

Note that because it suffices to prove lower bounds for algorithms that sam-
ple uniformly at random and look only at the histogram of the colors appearing in
their sample, we do not care about the labels or order of colors in the instances we
construct—the algorithms we study are oblivious to them.

Our next main building block in the proof of Theorem 2.1 is the theorem stated
below. It shows that if distributions X̂ and X̃ over integers have k − 1 proportional
moments, then the corresponding instances of Distinct-Elements, DX̂ and DX̃,
cannot be distinguished by a Poisson algorithm that looks only at histograms and
uses fewer than about n1− 1

k samples. In fact, the bound is more complicated, since
it depends on how the maximum value, ak−1, in the support of X̂ and X̃ varies as n
increases.

Theorem 5.6 (distinguishability by Poisson algorithms). Let X̂, X̃ be random
variables over positive integers a0 < a1 < · · · < ak−1 that have k − 1 proportional
moments. For any Poisson algorithm A that looks only at histograms and takes s ≤

n
2·ak−1

samples in expectation,

∣∣∣Pr[A(DX̂) = 1] − Pr[A(DX̃) = 1]
∣∣∣ = O

(
k2 · ak−1 · s

n
+

k⌊
k
2

⌋
! · ⌈k

2

⌉
!
· ak−1

k−1 ·
sk

nk−1

)
.

The generality of this bound is required to prove Theorem 2.1. However, the fol-
lowing simpler corollary is sufficient to show that algorithms for Distinct-Elements

with additive approximation guarantees require a near-linear number of samples.
Corollary 5.7. Let X̂ and X̃ be fixed (w.r.t. n) random variables that have

k− 1 proportional moments. If s = o(n1− 1
k ), then for any Poisson-s algorithm A, we

have |Pr[A(DX̂) = 1] − Pr[A(DX̃) = 1]| = o(1).
We now turn to proving Theorem 5.6. As in Definition 4.1, for � = 0, 1, 2, . . . ,

let F� be a random variable representing the number of �-way collisions a Poisson-
s algorithm sees, and let F = (F1, F2, F3, . . . ) be the corresponding histogram (the
sequence is infinite since a Poisson algorithm can, in principle, see collisions involving
an arbitrary number of elements of the same color). We can restate Theorem 5.6 in
terms of the statistical difference between histogram distributions.



830 S. RASKHODNIKOVA, D. RON, A. SHPILKA, AND A. SMITH

Theorem 5.8 (distinguishability by Poisson algorithms, restated). For s ≤
n

2·ak−1
, the statistical difference between histogram random variables (F̂1, F̂2, F̂3, . . . )

and (F̃1, F̃2, F̃3, . . . ) is

O

(
k2 · ak−1 · s

n
+

k⌊
k
2

⌋
! · ⌈k

2

⌉
!
· ak−1

k−1 ·
sk

nk−1

)
.

For the remainder of this section, assume s ≤ n
2·ak−1

. The proof of Theorem 5.8
relies on the following three lemmas. Lemma 5.9 states that �-way collisions are
very unlikely for � ≥ k, when s is sufficiently small. Lemma 5.10 shows that for
both instances DX̂ and DX̃, the distribution on histograms is close to the product
of its marginal distributions; that is, the components of the histogram are close to
being independent. Finally, Lemma 5.12 shows that the number of �-way collisions is
distributed almost identically when sampling from DX̂ and from DX̃, for every � < k.
The fact that X̂ and X̃ have proportional moments is used only for this last result;
the first two lemmas hold as long as the ai’s are bounded.

Lemma 5.9. For both instances DX̂ and DX̃, the probability of a collision involving
k > 1 or more balls is at most

δ1 = O

(
ak−1

k−1

k!
· sk

nk−1

)
.

Proof. Consider any particular color of type i. By Lemma 5.3(b), the probability
that the algorithm sees k or more balls of that color is

PrX∼Po(ais/n)[X ≥ k] = e−ais/n
∑
t≥k

1
t!

(ais

n

)t

.

Since t! > k!(t − k)!, each of the terms in the sum is bounded above by the product
1
k! (

ais
n )k · 1

(t−k)! (
ais
n )t−k. We can factor out the term 1

k! (
ais
n )k from the sum, and

obtain the following bound:

PrX∼Po(ais/n)[X ≥ k] = e−ais/n
∑
t≥k

1
t! (

ais
n )t

≤ 1
k! (

ais
n )ke−ais/n

∑
t≥k

1
(t−k)! (

ais
n )t−k

= 1
k! (

ais
n )k .

Let Ci =
⌊

npi

E[X]

⌋
denote the number of colors of type i for 0 ≤ i ≤ k − 1, and let

Ck = n −∑k−1
i=0

⌊
npi

E[X]

⌋ · ai denote the number of colors of type k (which appear once
each). Taking a union bound over all colors, we can bound the probability that some
color appears k or more times. We sum first over types i and then over colors of a
given type:

k∑
i=0

Ci · 1
k!

(ais

n

)k

=
sk

k! · nk−1
·

k∑
i=0

Ci · ak
i

n

≤ sk

k! · nk−1
·
(

k−1∑
i=0

⌊
pia

k
i

E[X]

⌋
+

1
n
· Ck

)

≤ sk

k! · nk−1
·
(

E[Xk]
E[X]

+ 1
)

.(8)



STRONG LOWER BOUNDS FOR DISTRIBUTION SUPPORT SIZE 831

Since ak−1 is the largest value that X can take, E[Xk] ≤ ak−1
k−1 E[X]. Combining this

with the bound in (8) completes the proof.
Recall that we write X ≈δ Y to denote that the statistical difference between the

random variables X and Y is at most δ.
Lemma 5.10. For both instances DX̂ and DX̃, F1, . . . , Fk−1 are close to indepen-

dent, that is, (F1, . . . , Fk−1) ≈δ2 (F′
1, . . . , F

′
k−1), where the variables F′

� are indepen-
dent, for each � the distributions of F� and F′

� are identical, and δ2 ≤2k·ak−1·s
n .

The proof of Lemma 5.10 relies on the following claim, which considers many
independent rolls of a biased k-sided die. It shows that if one side of the die appears
with probability close to 1, then the variables counting the number of times each of
the other sides appears are close to independent.

As mentioned above, Claims A.1 and A.2 state several standard properties of
statistical difference and the Poisson distribution, respectively, that are used below.
One of these properties is a bound on the statistical difference between the Poisson
distribution and the binomial distribution (in Claim A.2(3)). We use Bin(m, p) to
denote the binomial distribution with parameters m and p, that is, the distribution
on the number of heads in a sequence of m independent coin flips, each of which comes
up heads with probability p.

Claim 5.11. Consider a k-sided die, whose sides are numbered 0, . . . , k − 1,
where side � has probability q� and q0 ≥ 1/2. Let Z0, . . . , Zk−1 be random variables
that count the number of occurrences of each side in a sequence of m independent rolls.
Let Z ′

1, . . . , Z
′
k−1 be independent random variables, where for each �, the variable Z ′

�

is distributed identically to Z�. Then (Z1, . . . , Zk−1) ≈δ4 (Z ′
1, . . . , Z

′
k−1) for δ4 ≤

2(1 − q0), regardless of the number of times m that the die is rolled.
Proof. Let Z �=0 count the number of times that side 0 does not come up; i.e., Z �=0 =

m−Z0 =
∑k−1

�=1 Z�. This count follows a binomial distribution Z �=0 ∼ Bin(m, 1− q0).
By Claim A.2(3), the statistical difference between Bin(m, 1− q0) and Po (m(1− q0))
is at most 1 − q0.

Conditioned on a fixed value of Z �=0, the variables Z1, . . . , Zk−1 follow a multi-
nomial distribution. As in the proof of Lemma 5.3, if Z �=0 itself is chosen according
to Po(m(1 − q0)), and Z1, . . . , Zk−1 are resampled according to this value of Z �=0,
the resulting distribution on Z1, . . . , Zk−1 is a vector of independent Poisson random
variables distributed according to Po(mq1), . . . , Po(mqk−1).

The statistical difference between the vector of resampled (Poissonized) random
variables and the original vector is no greater than the statistical difference between
Po(m(1− q0)) and the original distribution of Z �=0, by the data processing inequality
of Claim A.1(3) (note that in both cases, the vector of counts is the same randomized
function of the value of Z �=0).

For each �, Po(mq�) approximates the original distribution Bin(m, q�) within error
q� (Claim A.2(3)). By the triangle inequality for statistical difference, the overall
statistical distance between Z1, . . . , Zk−1 and independent realizations Z ′

1, . . . , Z
′
k−1

is thus at most (1 − q0) +
∑k−1

�=1 q� = 2(1 − q0).
Proof of Lemma 5.10. Observe that the number of �-way collisions F� is a sum

of independent Bernoulli random variables, one for each color, with probability 1
�! ·

e−
as
n · (as

n

)� of being 1 if the color appeared a times in the input. Hence, the number
of �-way collisions is a sum of independent binomial random variables, one for each
type. That is, F� = F

(1)
� + · · · + F

(k)
� , where F

(i)
� is the number of �-way collisions

among colors of type i. Since the types are independent, it suffices to show that for



832 S. RASKHODNIKOVA, D. RON, A. SHPILKA, AND A. SMITH

each i, the variables F
(i)
1 , . . . , F

(i)
k−1 are close to being independent. We can then sum

the distances over the types to prove the lemma.
Let F

(i)
0 denote the number of colors of type i that occur either 0 times, or k

or more times, in the sample. The vector F
(i)
0 , F

(i)
1 , . . . , F

(i)
k−1 follows a multinomial

distribution. It counts the outcomes of an experiment in which Ci independent,
identical dice are rolled, and each one produces outcome � with probability e−λiλ�

i/�!,
where λi = ais/n for � ∈ [k − 1], and outcome 0 with the remaining probability. On
each roll, outcome 0 occurs with probability at least e−λi ≥ 1 − λi ≥ 1/2.

Claim 5.11 shows that when one outcome occupies almost all the mass in such
an experiment, the counts of the remaining outcomes are close to independent—
within distance 2λi. Summing over all types, the distance of F1, . . . , Fk−1 from being
independent is at most 2

∑
i λi ≤ 2kak−1s

n .
(N.B.: Subsequent to this work, Valiant [Val08] applied a more general form

of Claim 5.11 to obtain a bound of 2ak−1s
n on the distance from being indepen-

dent.)
We now give the third lemma needed for the proof of Theorem 5.8.
Lemma 5.12. For � = 1, . . . , k − 1, F̂� ≈δ3 F̃�, where

δ3 = O

(
k · ak−1 · s

n
+

1⌊
k
2

⌋
! · ⌈k

2

⌉
!
·
(ak−1

n

)k−1

· sk

)
.

As noted previously, the fact that X̂ and X̃ have proportional moments is used in
the proof of Lemma 5.12 (the other two lemmas hold as long as the ai’s are bounded).
The main idea of the proof is to approximate F� by a Poisson random variable with
the same expectation and to show that the moments condition implies that F̂� and F̃�

have similar (though not equal) expectations.
Proof. Recall, as in the proof of Lemma 5.10, that the number of �-way collisions

F� is a sum of independent binomial random variables, one for each type. More
specifically,

(9) F� ∼
k∑

i=0

Bin
(

Ci ,
e−λiλ�

i

�!

)
.

When p is small, the Poisson distribution Po(λ = pm) is a good approximation
to the binomial distribution Bin(m, p); the statistical difference between the two is at
most p (Claim A.2(3)). To approximate F� with a Poisson variable, we replace terms
in the sum (9) with Poisson random variables, one at a time. Recall that if a random
variable Y is independent of random variables X and X ′ such that X ≈δ X ′, then
X + Y ≈δ X ′ + Y (this follows from items 3 (data processing) and 5 (independent
pairs) of the statistical difference, stated in Claim A.1). Hence each replacement of
a binomial by a Poisson random variable induces a change of at most p in statistical
difference in the distribution of the sum. By the triangle inequality, we can sum the
differences to obtain a bound on the total change induced by these replacements. Since
the sum of independent Poisson variables is also a Poisson variable (see Claim A.2(2)),
if we let λ(�) =

∑k
i=0 Ci · λ�

i

�! e
−λi and let Xλ(�) denote a random variable distributed

as Po(λ(�)), then

F� ≈γ�
Xλ(�) ∼ Po

(
λ(�) =

k∑
i=0

Ci · λ�
i

�!
e−λi

)
,



STRONG LOWER BOUNDS FOR DISTRIBUTION SUPPORT SIZE 833

where

γ� ≤
k∑

i=0

e−λiλ�
i

�!
≤

k∑
i=0

λi =
k∑

i=0

ais

n
≤ k · ak−1 · s

n
.

In the second inequality we used e−λiλ�−1
i

�! ≤ 1 for 0 ≤ λi ≤ 1, and in the last inequality
we used the fact that ak = 1 and ai < ak−1 for every i < k−1 (so that ak+a0 ≤ ak−1).

Next, to bound the statistical difference between F̂� and F̃� from above, it is
enough to bound the difference between λ̂(�) and λ̃(�), since the statistical difference
between Po(λ̂(�)) and Po(λ̃(�)) is at most |λ̂(�) − λ̃(�)| (see Claim A.2(4)).

Substituting ai

n · s for λi and using the fact that e−λi =
∑k−�−1

j=0 (−1)j · λj
i

j! +

(−1)k−� · O( λk−�
i

(k−�)!

)
(where we define 0! = 1), we get that

λ(�) =
1
�!

·
k−�∑
j=0

T
(�)
j ,

where

T
(�)
j = (−1)j · 1

j!
· s�+j

n�+j
·

k∑
i=0

Ci · a�+j
i

for 0 ≤ j ≤ k − � − 1, and

T
(�)
k−� = (−1)k−� · O

(
1

(k − �)!
· sk

nk
·

k∑
i=0

Ci · ak
i

)
.

Recall from Claim 5.5 that Ck ≤∑k−1
i=0 ai. Thus, for each j, 0 ≤ j ≤ k − �, we have

that

s�+j

n�+j
·

k∑
i=0

Ci · a�+j
i =

s�+j

n�+j
·
(

k−1∑
i=0

⌊
pin

E[X]

⌋
· a�+j

i + Ck

)

≤ s�+j

n�+j−1
· 1
E[X]

·
k−1∑
i=0

pi · a�+j
i +

s�+j

n�+j
·

k−1∑
i=0

ai

=
s�+j

n�+j−1
· E[X�+j ]

E[X]
+

s�+j

n�+j
·

k−1∑
i=0

ai.

Similarly (using Ck ≥ 0),

s�+j

n�+j
·

k∑
i=0

Ci · a�+j
i =

s�+j

n�+j
·
(

k−1∑
i=0

⌊
pin

E[X]

⌋
· a�+j

i + Ck

)

≥ s�+j

n�+j
·
(

k−1∑
i=0

(
pin

E[X]
− 1
)
· a�+j

i + Ck

)
(10)

≥ s�+j

n�+j−1
· 1
E[X]

·
k−1∑
i=0

pi · a�+j
i − s�+j

n�+j
·

k−1∑
i=0

a�+j
i

=
s�+j

n�+j−1
· E[X�+j ]

E[X]
− s�+j

n�+j
·

k−1∑
i=0

a�+j
i .



834 S. RASKHODNIKOVA, D. RON, A. SHPILKA, AND A. SMITH

The moment condition on X̂ and X̃ states that E[X̂�+j]

E[X̂]
= E[X̃�+j ]

E[X̃]
for j = 0, . . . , k−�−1.

Thus, ∣∣∣λ̂(�) − λ̃(�)
∣∣∣

= O

⎛⎝ 1
�!

·
k−�∑
j=0

s�+j

n�+j
· 2

k−1∑
i=0

a�+j
i +

1
�!(k − �)!

· sk

nk−1
· max

{
E[X̂k]
E[X̂]

,
E[X̃k]

E[X̃]

}⎞⎠ .

The ratio E[Xk]
E[X] is at most (ak−1)k−1, the expression 1

�!(k−�)! is maximized for � =
⌊

k
2

⌋
,

and

1
�!

·
k−�∑
j=0

s�+j

n�+j
· 2

k−1∑
i=0

a�+j
i ≤ 1

�!
·
(s · ak−1

n

)�

· 2k ·
k−�∑
j=0

(s · ak−1

n

)j

= O

(
k · ak−1 · s

n

)
,

where the last equality uses the fact that s·ak−1
n ≤ 1

2 . Therefore,

∣∣∣λ̂(�) − λ̃(�)
∣∣∣ = O

(
1⌊

k
2

⌋
! · ⌈k

2

⌉
!
·
(ak−1

n

)k−1

· sk +
k · ak−1 · s

n

)
.

Summing this together with the error, denoted γ�, introduced by approximating a
sum of binomials with a Poisson variable, proves the lemma.

Given the three lemmas above, we can easily prove the main result of the section.
Proof of Theorem 5.8. The proof follows by a hybrid argument. Consider a chain

of distributions “between” the two histograms of Theorem 5.8.
• Starting from the “hat” histogram, first replace all counts of collisions greater

than k by 0 (that is, by a random variable that takes the value 0 with proba-
bility 1). By Claim A.1(4), the resulting distribution has statistical difference
at most δ1 from the original, where δ1 is the bound from Lemma 5.9 on the
probability that any �-way collisions occur for � ≥ k.

• Next, replace each count F̂� with an independent copy F̂′
� for � ∈ [k − 1], as

in Lemma 5.10, introducing a change of δ2.
• For the following k − 1 steps, replace each F̂′

� with a corresponding F̃′
�. By

Lemma 5.12, each of these steps introduces a change of at most δ3.
• Finally, replace these independent F̃′

�’s with the actual variables F̃� and add
back the counts of the collisions involving more than k variables to obtain
the “tilde” histogram.

The resulting chain of distributions has k + 3 steps and has the following form (here
δ1, δ2, and δ3 are as defined in Lemmas 5.9, 5.10, and 5.12, respectively):

(F̂1, . . . , F̂k−1, F̂k, . . . ) ≈δ1 (F̂1, . . . , F̂k−1, 0, . . . ) ≈δ2 (F̂′
1, . . . , F̂

′
k−1, 0, . . . )

≈δ3 (F̃′
1, F̂

′
2, . . . , F̂

′
k−1, 0, . . . )

≈δ3 · · · ≈δ3 (F̃′
1, . . . , F̃

′
k−2, F̂

′
k−10, . . . )

≈δ3 (F̃′
1, . . . , F̃

′
k−1, 0, . . . ) ≈δ2 (F̃1, . . . , F̃k−1, 0, . . . )

≈δ1 (F̃1, . . . , F̃k−1, F̃k, . . . ).

By the triangle inequality, the sum of the statistical differences between consecutive



STRONG LOWER BOUNDS FOR DISTRIBUTION SUPPORT SIZE 835

distributions in the chain is a bound on the total statistical difference:

2 · δ1 + 2 · δ2 + (k − 1) · δ3

= O

(
1
k!

·
(ak−1

n

)k−1

· sk +
k · ak−1 · s

n
+ k · k · ak−1 · s

n
+

k⌊
k
2

⌋
! · ⌈k

2

⌉
!
·
(ak−1

n

)k−1

· sk

)
.

The first and second terms are negligible given the others. Removing them yields the
claimed bound.

6. Proof of main lower bound (Theorem 2.1). We now prove the main
lower bound (Theorem 2.1) by combining the construction of distributions satisfying
the moments condition (Theorem 4.5) with the bound on distinguishability by Poisson
algorithms (Theorem 5.6) and the reductions to uniform algorithms (Lemma 3.4) and
to Poisson algorithms (Lemma 5.3).

Proof of Theorem 2.1(1). Recall that in part 1 of the theorem, our goal is to
give a lower bound on the number of queries required for a uniform algorithm for
Distinct-Elements to distinguish inputs with at least n − T colors from inputs
with at most T colors. By Lemma 5.3, it suffices to give a lower bound on s for a
Poisson-s algorithm that uses only the histogram of the samples.

Set B = 2n
T and

k =

⌊√
log n

log B + 1
2 log log n

⌋
=

⌊√
log n

log n − log T + 1
2 log log n + 1

⌋
,

as in the statement of Theorem 2.1. Next, construct integer random variables X̂ and
X̃ that obey the moments condition with parameters k and B, and let DX̃ and DX̂
be the corresponding Distinct-Elements instances. By Theorem 4.5, these random
variables have expectation E[X̃] > B and E[X̂] < 1+ 1

B , respectively, and are supported
on integers less than ak−1 = (B + 3)k−1.

The corresponding Distinct-Elements instances have at least n
1+ 1

B

> n − T

and at most n
B + ak−1k colors, respectively (Claim 5.5). To obtain a slightly cleaner

bound, note that ak−1 ≤ (B + 3)k ≤ 2log(B)
√

log n/ log(B log1/2 n) ≤ 2
√

log B log n. Since
B < n1/4, we get kak−1 ≤ k

√
n ≤ √

n log n < n
B , so the instance DX̃ has at most

2n
B = T colors, as desired for Theorem 2.1.

We now turn to bounding the statistical difference of the corresponding histogram
distributions.

Consider any Poisson algorithm A that looks only at histograms and takes s
2

samples. (The choice of s
2 rather than s samples is made for the convenience of the

analysis.) According to Theorem 5.6,∣∣∣Pr[A(DX̂) = 1]−Pr[A(DX̃) = 1]
∣∣∣ = O

(
k2 · ak−1 · s

n
+

k⌊
k
2

⌋
! · ⌈k

2

⌉
!
·
(ak−1

n

)k−1

· sk

)
.

Recall that ak−1 = (B + 3)k−1 < (B + 3)k. We assume that this is in fact the case.
Therefore, ∣∣∣Pr[A(DX̂) = 1] − Pr[A(DX̃) = 1]

∣∣∣
= O

(
k2 · (B + 3)k · s

n
+

k⌊
k
2

⌋
! · ⌈k

2

⌉
!
· (B + 3)k(k−1) · sk

nk−1

)
.(11)



836 S. RASKHODNIKOVA, D. RON, A. SHPILKA, AND A. SMITH

We can set k and s as functions of B so that the error term in (11) is o(1): Given
B, define q by the equality B = log(n)q; it follows that k =

⌊√ log(n)

(q+ 1
2 ) log log(n)

⌋
.

Finally, set s =
⌊
n1− 2

k

⌋
. To ensure s ≥ 1, we need k > 2, so we restrict q to

be 0 < q < log n
4 log log n − 1

2 . In particular, B is at most n
1
4 /

√
log n. To make the

calculations easier, assume n > 16 so that k <
√

log n. We handle the two summands
in (11) separately. We begin with the first summand:

k2 · (B + 3)ks

n
< log(n) ·

(
log(n)q+ 1

2
)k

n1− 2
k

n

= log(n)

(
log(n)q+ 1

2
)k

n
2
k

≤ log(n)

(
2log log(n)·(q+ 1

2 )
)√log(n)/((q+ 1

2 ) log log(n))

2log(n)·2
√

((q+ 1
2 ) log log(n))/ log(n)

= log(n)
2
√

(q+ 1
2 ) log log(n) log(n)

22
√

(q+ 1
2 ) log log(n) log(n)

= 2log log(n)−
√

(q+ 1
2 ) log log(n) log(n)

< 2−
√

log log(n)(
√

1
2 log(n)−

√
log log(n))

< 2−
√

1
4 log log(n) log(n) .(12)

The inequality in (12) holds for sufficiently large n.
We estimate the second summand in a similar fashion.

k⌊
k
2

⌋
! · ⌈ k

2

⌉
!
· (B + 3)k(k−1)sk

nk−1
=

k

(B + 3)k
⌊

k
2

⌋
! · ⌈ k

2

⌉
!
· (B + 3)k2

sk

nk−1

<
2

(B + 3)k
· (log(n)q+ 1

2 )k2
nk−2

nk−1

=
2

(B + 3)k
·
(
log(n)q+ 1

2
) log n

(q+ 1
2 ) log log n

n

=
2

(B + 3)k

< 2−
1
2

√
log log(n) log(n) .(13)

Combining (11), (12), and (13) we get that∣∣∣Pr[A(DX̂) = 1] − Pr[A(DX̃) = 1]
∣∣∣ = O

(
2−

1
2

√
log log(n) log(n)

)
.

By applying Lemma 5.3(a) and recalling that o(1/s) = o(n−(1−2/k)) = o(2−
1
2 log(n)),

the proof of Theorem 2.1(1) is completed.
Proof of Theorem 2.1(2). The reduction to uniform algorithms allows us to deduce

part 2 of the theorem from part 1. Applying Lemma 3.4, with C1 = n−T and C2 = T ,
we conclude that no general algorithm for Distinct-Elements can distinguish inputs
with at least n−T

10 colors from those with at most T colors. For n large enough,
n−T
10 > n

11 , and we obtain the desired statement.



STRONG LOWER BOUNDS FOR DISTRIBUTION SUPPORT SIZE 837

7. A lower bound for approximating the entropy. The following problem
was introduced by Batu et al. [BDKR05]. Let p = 〈p1, . . . , pn〉 be a discrete distri-
bution over n elements, where pi is the probability of the ith element. Given access
to independent samples generated according to the distribution p, we would like to
approximate its entropy: H(p) = −∑n

i=1 pi log pi. Batu et al. showed how to obtain
an α-factor approximation in time Õ

(
n

1+η

α2
)
, provided that H(p) = Ω

(
α
η

)
. They also

proved a lower bound of Ω
(
n

1
2α2
)

that holds even when H(p) = Ω
(

log n
α2

)
. (Without

a lower bound on H(p), the time complexity is unbounded.)

Here we use our technique to obtain a lower bound of Ω
(
n

2
6α2−3+o(1)

)
, improving

on the Ω
(
n

1
2α2
)

lower bound for relatively small α. When α is close to 1, the bound
is close to n2/3 (rather than n1/2).

We first provide a different construction of random variables that satisfy the
moments condition (Definition 4.4) for the special case of k = 3. This much simpler
construction gives random variables with support on smaller integers than in the more
general construction in Theorem 4.5, leading to better bounds.

Lemma 7.1 (random variables satisfying the moments condition with k = 3).
For all integers B > 1, there exist random variables X̂ and X̃ over a0 = 1, a1 = 2B,
a2 = 4B − 2 that satisfy the moments condition with parameters 3 and B. Moreover,
E[X̃] = 2 and E[X̂] = 2B.

Proof. Set Pr[X̂ = a0] = 1 − 1
4B−3 , Pr[X̂ = a1] = 0, Pr[X̂ = a2] = 1

4B−3 and
Pr[X̃ = a0] = Pr[X̃ = a2] = 0, Pr[X̃ = a1] = 1. By definition of X̂ and X̃,

E[X̂] =
(

1 − 1
4B − 3

)
· 1 +

1
4B − 3

· (4B − 2) =
4B − 4 + 4B − 2

4B − 3
= 2

and

E[X̂2] =
(

1− 1
4B − 3

)
·12 +

1
4B − 3

· (4B−2)2 =
4B − 4 + 16B2 − 16B + 4

4B − 3
= 4B

while

E[X̃] = 1 · 2B = 2B and E[X̃2] = 4B2.

As required, E[X̃]

E[X̂]
= B, and E[X̂2]

E[X̂]
= E[X̃2]

E[X̃]
.

The two distributions and their entropies. As in section 5, given the two random
variables X̂ and X̃, define two distributions over n elements (or, more precisely, two
families of distributions). One distribution, denoted pX̂, has support on n

2 · 4B−4
4B−3

elements of weight 1
n each and n

2 · 1
4B−3 elements of weight 4B−2

n each (see below on
why we may assume that these quantities are all integers). The second distribution,
denoted pX̃, has support on n

2B elements of weight 2B
n each. We define two families

of distributions, FX̂ and FX̃, respectively, where we allow all permutations over the
names (colors) of the elements. Let D′

X̂
denote the uniform distribution over FX̂, and

let D′
X̃

denote the uniform distribution over FX̃.

Let B = B(n) be of the form B = 1
2n1−β for rational β < 1. (If β is rational,

there is an infinite family of integers n for which the numbers of colors of each type are
all integers.) Then the entropy of each distribution in FX̃ is β log n, and the entropy



838 S. RASKHODNIKOVA, D. RON, A. SHPILKA, AND A. SMITH

of each distribution in FX̂ is

2B − 2
4B − 3

· log n +
2B − 1
4B − 3

· log
n

4B − 2

=
1
2
·
(

log n + log
n

4B − 2

)
− 1

8B − 6
·
(

log n − log
n

4B − 2

)
≥ 1

2
· (log n + log nβ − 1

)− log(2n1−β)
4n1−β − 6

≥ 1 + β

2
log n − 1,

where the last inequality holds for sufficiently large n. Thus, the ratio between the
entropies is 1+β

2β − o(1).
While Theorem 5.6 is stated for the distributions on strings, DX̂ and DX̃, and

algorithms taking uniform samples from an input string of length n, it is not hard
to verify that it also holds for the distributions D′

X̂
and D′

X̃
and algorithms that

are provided with samples from distributions over n elements. Since k = 3 and
a2 = 2n1−β, to distinguish the two distributions one has to observe Ω

((
n
a2

)2/3) =

Ω
(
n2β/3

)
samples. In other words, Ω

(
n2β/3

)
= Ω

(
n

2
6α2−3+o(1)

)
samples are required

for α =
(√

1+β
2β − o(1)

)
-estimating the entropy.

Appendix A. Statistical difference and Poisson sampling. We state here
some useful properties of statistical difference and use them to prove the Poissonization
lemma (Lemma 5.3).

Claim A.1 (properties of statistical difference). For all random variables X, Y,
Z, X ′, Y ′ over a discrete domain S, the following hold.

1. The statistical difference between X and Y equals

1
2

∑
a∈S

∣∣Pr[X = a] − Pr[Y = a]
∣∣.

2. (Triangle inequality) If X ≈δ1 Y and Y ≈δ2 Z, then X ≈δ1+δ2 Z.
3. (Data processing inequality) If X ≈δ Y , then f(X) ≈δ f(Y ) for all func-

tions f .
4. If Pr[X = a] ≥ 1 − δ for some constant a, then (X, Y ) ≈δ (a, Y ).
5. If X ≈δ X ′ and Y is independent of both X and X ′, then (X, Y ) ≈δ (X ′, Y ).
6. X ≈δ Y if and only if there exist (possibly dependent) random variables

X∗, Y ∗ such that marginal distributions of X∗ and Y ∗ are the same as those
of X and Y , respectively, and Pr[X∗ = Y ∗] ≥ 1 − δ.

Proof. Items 1 through 5 are standard; see, for example, Vadhan’s thesis [Vad99,
Fact 2.2.2].

To prove item 6, suppose first that X ′, Y ′ exist that are distributed individually
as X, Y and are equal with probability 1 − δ. Let E denote the event that X ′ = Y ′.
For any event S′, we can write Pr[X ∈ S′] = Pr[X ′ ∈ S′] = Pr[X ′ ∈ S′ | E] ·
Pr[E] + Pr[X ′ ∈ S′ | Ē] · Pr[Ē], and similarly for Pr[Y ∈ S′]. The first term
in the two developments is the same. Thus Pr[X ∈ S′] − Pr[Y ∈ S′] = Pr[Ē] ·(
Pr[X ′ ∈ S′ | Ē] − Pr[Y ′ ∈ S′ | Ē]

)
. This is at most Pr[Ē] ≤ δ in absolute value, as

desired.
To prove the other direction of the “if and only if” in item 6, suppose that

X ≈δ Y . For each element a in the universe S, let ua = min{Pr[X = a], Pr[Y = a]}.



STRONG LOWER BOUNDS FOR DISTRIBUTION SUPPORT SIZE 839

The sum
∑

a ua is the common area under the probability mass functions of X and Y .
Consequently,

∑
a ua = 1−δ∗, where δ∗ ≤ δ is the actual statistical difference between

X and Y (since statistical difference equals half of the area under the probability mass
function of X that is not also under the mass function of Y , and vice versa). Let U
be drawn according to the probabilities

Pr[U = a] =
ua

1 − δ∗
.

(These probabilities sum up to 1, and so the distribution is well defined). Define
independent random variables Xrest and Yrest so that

Pr[Xrest = a] =
max{0, Pr[X = a] − ua}

δ∗
,

Pr[Yrest = a] =
max{0, Pr[Y = a] − ua}

δ∗
.

Xrest and Yrest are also well-defined random variables.
Finally, with probability 1 − δ∗ set X∗ = Y ∗ = U , and with probability δ∗

set X∗ = Xrest and Y ∗ = Yrest. It is easy to verify that X∗ and Y ∗ have the same
marginal distributions as X and Y and are equal with probability 1−δ∗ ≥ 1−δ.

Claim A.2 (properties of the Poisson distribution).
1. If X ∼ Po(λ), then E[X ] = Var[X ] = λ.
2. If X ∼ Po(λ), Y ∼ Po(λ′), and X, Y are independent, then X + Y ∼

Po(λ + λ′).
3. The statistical difference between Bin(m, p) and Po(mp) is at most p.
4. The statistical difference between Po(λ) and Po(λ′) is at most |λ − λ′|.

Note that item 4 provides a good bound when λ is near or equal to 0. One can
strengthen the bound to O

( |λ−λ′|√
1+min(λ,λ′)

)
. We do not need the latter bound here.

Proof. Items 1 and 2 can be found in any standard probability text (see, e.g.,
[Was04]). For item 3 (and other bounds on the Poisson approximation to the bino-
mial), see [Pro53] or [Web99, Bound b1].

Finally, we prove item 4: A Poisson random variable Y ∼ Po(λ + Δ) can be
written as a sum of two independent Poisson variables Xλ ∼ Po(λ) and XΔ ∼ Po(Δ)
(this is possible because of item 2). Conditioned on the event XΔ = 0, the sum is
distributed as Po(λ). This event occurs with probability e−Δ ≥ 1−Δ. The statistical
difference between Po(λ) and Po(λ + Δ) is thus at most Δ, as desired. (Recall that
the statistical difference between distributions p and q is at most Δ if and only if there
is a pair of (dependent) random variables (A, B) such that the marginal distributions
of A and B are p and q, respectively, and Pr[A = B] ≥ 1 − Δ.)

We now turn to the proof of Lemma 5.3.
Proof of Lemma 5.3. Let Xλ denote a random variable distributed as Po(λ).
(a) Consider the Poisson-s algorithm A′ that outputs “fail” if it receives fewer

than s/2 samples, and runs A on its first s/2 samples otherwise. The statistical
difference between A and A′ is at most Pr[Xs < s

2 ], since the variables have equal
distribution conditioned on an event of mass 1−Pr[Xs < s

2 ] (see Claim A.1(6)). The
Chebyshev inequality provides a good enough bound here. Since Xs has expectation
and variance s, we obtain

Pr[Xs < s
2 ] ≤ Pr[|Xs − E[Xs]| ≥ s

2 ] ≤ Var[Xs]
(s/2)2

=
4
s
.



840 S. RASKHODNIKOVA, D. RON, A. SHPILKA, AND A. SMITH

(b) The conversion from multinomial to Poisson sampling is common in, for ex-
ample, statistical analysis of categorical data. We prove the equivalence here for
completeness. Consider an algorithm that independently samples a number of balls
distributed as Po( bc·s

n ) for each color, where bc is the number of times that color c
appears. First, note that the total number of samples it takes is distributed as a
Poisson random variable (by Claim A.2) with parameter

∑
colors c

bc·s
n = s.

We now show that, conditioned on this sampler taking a particular number of
samples s0, the list of colors it sees is distributed identically to the case where s0 balls
are sampled uniformly at random. This is sufficient to show that the independent
sampler produces the same distribution as the sampler which first selects the number
of balls according to a Poisson random variable and then samples uniformly with
replacement.

Consider a particular run in which ec balls of color c are seen. In the case of
s0 uniform samples without replacement, this arises with multinomial probability:

s0!∏
c ec!

∏
c(

bc

n )ec . In the independent Poisson sampling case, we obtain conditional
probability ∏

c Pr[X bc·s
n

= ec]

Pr[Xs = s0]
=
∏

c exp(− bc·s
n )

exp(−s)
·
∏

c(
bc·s
n )ec

ss0
· s0!∏

c ec!
.

Since the sum of the ball numbers bc is exactly n, the first term of this product is
one. Since the counts ec sum to s0, the occurrences of s in the second term cancel
out, leaving exactly the desired multinomial probability.

(c) If a function f is invariant under permutations of the input colors, then ap-
plying a random permutation to the input colors before running a Poisson algorithm
A will not change A’s approximation guarantee. One can simulate the distribution of
A’s (permuted) input from the histogram of the sample, which counts the number of
occurrences of different elements, by assigning a random color to each of the distinct
elements, duplicating it a number of times according to the histogram, and randomly
ordering the resulting set of colors. This produces exactly the same distribution that
A would get if the names of the colors in the original input were permuted.

Acknowledgments. We would like to thank Oded Goldreich, Omer Reingold,
and Ronitt Rubinfeld for helpful discussions. Ronitt’s involvement in the initial stages
of this project was especially valuable. We are also grateful to Salil Vadhan and anony-
mous referees for detailed comments that tremendously helped us with the writing of
this work.

REFERENCES

[ABRS03] A. Akella, A. R. Bharambe, M. Reiter, and S. Seshan, Detecting DDoS attacks
on ISP networks, in Proceedings of the ACM SIGMOD/PODS Workshop on
Management and Processing of Data Streams, 2003.

[Akh65] N. I. Akhiezer, The Classical Moment Problem and Some Related Questions in
Analysis, Hafner, New York, 1965.

[AMS99] N. Alon, Y. Matias, and M. Szegedy, The space complexity of approximating the
frequency moments, J. Comput. System Sci., 58 (1999), pp. 137–147.

[And70] T. Ando, Truncated moment problems for operators, Acta Sci. Math. (Szeged), 31
(1970), pp. 319–334.

[Bar02] Z. Bar-Yossef, The Complexity of Massive Data Set Computations, Ph.D. thesis,
Computer Science Division, University of California at Berkeley, Berkeley, CA,
2002.



STRONG LOWER BOUNDS FOR DISTRIBUTION SUPPORT SIZE 841

[BJK+02] Z. Bar-Yossef, T. S. Jayram, R. Kumar, D. Sivakumar, and L. Trevisan, Count-
ing distinct elements in a data stream, in Proceedings of the 6th International
Workshop on Randomization and Approximation Techniques, Springer-Verlag,
London, 2002, pp. 1–10.

[BKS01] Z. Bar-Yossef, R. Kumar, and D. Sivakumar, Sampling algorithms: Lower bounds
and applications, in Proceedings of the Thirty-Third Annual ACM Symposium
on Theory of Computing, ACM Press, New York, 2001, pp. 266–275; full version
available online at http://www.ee.technion.ac.il/people/zivby/papers/sampling/
sampling full.ps.

[BKS02] Z. Bar-Yossef, R. Kumar, and D. Sivakumar, Reductions in streaming algorithms,
with an application to counting triangles in graphs, in Proceedings of the Thir-
teenth Annual ACM-SIAM Symposium on Discrete Algorithms, ACM, New York,
SIAM, Philadelphia, 2002, pp. 623–632.

[BDKR02] T. Batu, S. Dasgupta, R. Kumar, and R. Rubinfeld, The complexity of approx-
imating entropy, in Proceedings of the Thirty-Fourth Annual ACM Symposium
on Theory of Computing, 2002, pp. 678–687.

[BDKR05] T. Batu, S. Dasgupta, R. Kumar, and R. Rubinfeld, The complexity of approxi-
mating the entropy, SIAM J. Comput., 35 (2005), pp. 132–150.

[BFF+01] T. Batu, E. Fischer, L. Fortnow, R. Kumar, R. Rubinfeld, and P. White,
Testing random variables for independence and identity, in Proceedings of the
42nd Annual IEEE Symposium on Foundations of Computer Science, 2001, pp.
442–451.

[BFR+00] T. Batu, L. Fortnow, R. Rubinfeld, W. Smith, and P. White, Testing that distri-
butions are close, in Proceedings of the 41st Annual IEEE Symposium on Foun-
dations of Computer Science, 2000, pp. 259–269.

[BHR+07] K. Beyer, P. J. Haas, B. Reinwald, Y. Sismanis, and R. Gemulla, On synopses for
distinct-value estimation under multiset operations, in Proceedings of the 2007
ACM SIGMOD International Conference on Management of Data, ACM, New
York, 2007, pp. 199–210.

[Bun] J. Bunge, Bibliography on Estimating the Number of Classes in a Population, http://
www.stat.cornell.edu/∼bunge/bibliography.htm.

[CCMN00] M. Charikar, S. Chaudhuri, R. Motwani, and V. R. Narasayya, Towards es-
timation error guarantees for distinct values, in Proceedings of the Nineteenth
ACM SIGMOD–SIGACT–SIGART Symposium on Principles of Database Sys-
tems, 2000, pp. 268–279.

[CF91] R. E. Curto and L. A. Fialkow, Recursiveness, positivity, and truncated moment
problems, Houston J. Math., 17 (1991), pp. 603–635.

[FM85] P. Flajolet and G. N. Martin, Probabilistic counting algorithms for data base
applications, J. Comput. System Sci., 31 (1985), pp. 182–209.

[GT02] P. B. Gibbons and S. Tirthapura, Distributed streams algorithms for sliding win-
dows, in Proceedings of the Fourteenth Annual ACM Symposium on Parallel
Algorithms and Architectures, 2002, pp. 63–72.

[IW03] P. Indyk and D. Woodruff, Tight lower bounds for the distinct elements problem,
in Proceedings of the 44th Annual IEEE Symposium on Foundations of Computer
Science, 2003, pp. 283–288.

[Pro53] Yu. V. Prohorov, Asymptotic behavior of the binomial distribution, Uspekhi Mat.
Nauk, 8 (1953), pp. 135–142 (in Russian).

[RRRS07] S. Raskhodnikova, D. Ron, R. Rubinfeld, and A. Smith, Sublinear algorithms
for approximating string compressibility, in Proceedings of the 11th RANDOM,
Springer-Verlag, Berlin, Heidelberg, 2007, pp. 609–623.

[RRSS07] S. Raskhodnikova, D. Ron, A. Shpilka, and A. Smith, Strong lower bounds for
approximating distribution support size and the distinct elements problem, in
Proceedings of the 48th Annual IEEE Symposium on Foundations of Computer
Science, IEEE Computer Society, Washington, DC, 2007, pp. 559–569.

[Szp01] W. Szpankowski, Average Case Analysis of Algorithms on Sequences, Wiley-
Interscience, New York, 2001.

[Vad99] S. P. Vadhan, A Study of Statistical Zero-Knowledge Proofs, Ph.D. thesis, Mas-
sachusetts Institute of Technology, Cambridge, MA, 1999.

[Val08] P. Valiant, Testing symmetric properties of distributions, in Proceedings of the For-
tieth Annual ACM Symposium on Theory of Computing, R. E. Ladner and C.
Dwork, eds., ACM, New York, 2008, pp. 383–392.



842 S. RASKHODNIKOVA, D. RON, A. SHPILKA, AND A. SMITH

[Was04] L. Wasserman, All of Statistics: A Concise Course in Statistical Inference, Springer-
Verlag, New York, 2004.

[Web99] M. Weba, Bounds for the total variation distance between the binomial and the Pois-
son distribution in case of medium-sized success probabilities, J. Appl. Probab.,
36 (1999), pp. 97–104.

[ZL77] J. Ziv and A. Lempel, A universal algorithm for sequential data compression, IEEE
Trans. Inform. Theory, 23 (1977), pp. 337–343.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
    /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
    /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
    /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
    /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
    /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
    /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
    /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


