Testing Lipschitz Functions on Hypergrid Domains*

Pranjal Awasthi®, Madhav Jha?, Marco Molinaro!, and Sofya Raskhodnikova®**

1 Carnegie Mellon University, USA,
{pawasthi,molinaro}@cmu.edu.
2 Pennsylvania State University, USA,
{mx3j201, sofya}@cse.psu.edu.

Abstract. A function f(z1,...,z4), where each input is an integer from 1 to
n and output is a real number, is Lipschitz if changing one of the inputs by 1
changes the output by at most 1. In other words, Lipschitz functions are not very
sensitive to small changes in the input. Our main result is an efficient tester for
the Lipschitz property of functions f : [n]* — 67, where § € (0,1] and 67 is
the set of integer multiples of ¢.

The main tool in the analysis of our tester is a smoothing procedure that makes
a function Lipschitz by modifying it at a few points. Its analysis is already non-
trivial for the 1-dimensional version, which we call Bubble Smooth, in analogy to
Bubble Sort. In one step, Bubble Smooth modifies two values that violate the Lip-
schitz property, i.e., differ by more than 1, by transferring ¢ units from the larger
to the smaller. We define a transfer graph to keep track of the transfers, and use
it to show that the ¢; distance between f and BubbleSmooth(f) is at most twice
the ¢; distance from f to the nearest Lipschitz function. Bubble Smooth has other
important properties, which allow us to obtain a dimension reduction, i.e., a re-
duction from testing functions on multidimensional domains to testing functions
on the 1-dimensional domain, that incurs only a small multiplicative overhead in
the running time and thus avoids the exponential dependence on the dimension.

1 Introduction

Property testing aims to understand how much information is needed to decide (approx-
imately) whether an object has a property. A property tester [8, 5] is given oracle access
to an object and a proximity parameter € € (0, 1). If an object has the desired property,
the tester accepts it with probability at least 2/3; if the object is e-far from having the
desired property then the tester rejects it with probability at least 2/3. Specifically, for
properties of functions, e-far means that a given function differs on at least an € fraction
of the domain points from any function with the property. Properties of different types
of objects have been studied, including graphs, metrics spaces, images and functions.
We present efficient testers for the Lipschitz property of functions® f : [n]? — 67,
where 6 € (0, 1] and 67 is the set of integer multiples of §. A function f is c-Lipschitz

* All omitted proofs appear in the full version [1].

** P.A. is supported by NSF grant CCF-1116892. M.J. and S.R. are supported by NSF CAREER
grant CCF-0845701 and NSF grant CCF-0729171. M.M. is supported by NSF grant CMMI-
1024554.

3 The set {1,...,n} is denoted by [n].

2 Awasthi, Jha, Molinaro and Raskhodnikova

(with respect to the ¢; metric on the domain) if |f(x) — f(y)| < ¢ - |z — y|;. Points
in the domain [n]? can be thought of as vertices of a d-dimensional hypergrid, where
every pair of points at ¢; distance 1 is connected by an edge. Each edge (z, y) imposes
a constraint | f(z) — f(y)| < ¢ and a function f is c-Lipschitz iff every edge constraint
is satisfied. We say a function is Lipschitz if it is 1-Lipschitz. (Note that rescaling by a
factor of 1/c¢ converts a c-Lipschitz function into a Lipschitz function.)

Testing of the Lipschitz property was first studied by Jha and Raskhodnikova [7]
who motivated it by applications to data privacy and program verification. They pre-
sented testers for the Lipschitz property of functions on the domains {0, 1}¢ (the hyper-
cube) and [n] (the line) that run in time O(d?/(J¢)) and O(log n/¢), respectively. Even
though the applications in [7] are most convincing for functions on general hypergrid
domains (in one of their applications, for instance, a point in [1]? represents a histogram
of a private database), no nontrivial tester for functions on such general domains was
known prior to this work.

1.1 Our Results

We present two efficient testers of the Lipschitz property of functions of the form f :
[n]? — §7Z with running time polynomial in d,n and (J¢)~!. Our testers are faster for
functions whose image has small diameter.

Definition 1.1 (Image diameter). Given a function f : [n]¢ — R, its image diameter
is Ing(f) = MaXgc[n)d f(x) - minye[n]d f(y)

Observe that a Lipschitz function on [n]? must have image diameter at most nd. How-

ever, image diameter can be arbitrarily large for a non-Lipschitz function.

Our testers are nonadaptive, that is, their queries do not depend on answers to pre-
vious queries. The first tester has /-sided error, that is, it always accepts Lipschitz
functions. The second tester is faster (when v/d >> log(1/¢) and ImgD(f) is large), but
has 2-sided error, i.e., it can err on both positive and negative instances.

Theorem 1.1 (Lipschitz testers). For* all §,¢ € (0, 1], the Lipschitz property of func-

tions f : [n]? — 87 can be tested nonadaptively with the following time complexity:
(1)in O (£ - min {ImgD(f), nd} - log min{ImgD(f), n}) time with 1-sided error:
(2)in O (6% - min {Ing(f), n\/dlog(l/e)} - log min{ImgD(f), n}) time with

2-sided error.

If ImgD(f), 6 and € are constant, then both testers run in O(d) time. This is tight already
for the range {0, 1, 2}, even for the special case of the hypercube domain [7].

1.2 QOur Techniques

For clarity of presentation, we state and prove all our theorems for 6 = 1, i.e., for
integer-valued functions. In the full version, by discretizing (as was done in [7]), we
extend our results to the range JZ.

“If § > 1 then f is Lipschitz iff it is O-Lipschitz (that is, constant). Testing if a function is
constant takes O(1/¢) time.

Testing Lipschitz Functions on Hypergrid Domains 3

The main challenge in designing a tester for functions on the hypergrid domains is
avoiding an exponential dependence on the dimension d. We achieve this via a dimen-
sion reduction, i.e., a reduction from testing functions on the hypergrid [n]? to testing
functions on the line [n], that incurs only an O(d - min{ImgD, nd}) multiplicative
overhead in the running time. In order to do this, we relate the distance to the Lipschitz
property of a function f on the hypergrid to the average distance to the Lipschitz prop-
erty of restrictions of f to 1-dimensional (axis-parallel) lines. For i € [d], let ¢! € [n]?
be 1 on the ith coordinate and O on the remaining coordinates. Then for every dimen-
sion i € [d] and a € [n]? with o; = 0, the line g of f along dimension i with position
« is the restriction of f defined by g(z;) = f(a + x; - €'), where x; ranges over [n].
We denote the set of lines of f along dimension 7 by L} and the set of all lines, i.e.,
U, cld] L}, by L. We denote the relative distance of a function A to the Lipschitz prop-
erty, i.e., the fraction of input points where the function needs to be changed in order
to become Lipschitz, by ¢%??(h). The technical core of our dimension reduction is the
following theorem that demonstrates that if a function on the hypergrid is far from the
Lipschitz property then a random line from Ly is, in expectation, also far from it.

Theorem 1.2 (Dimension reduction). For all functions f : [n]? — Z, the following

. Lip

holds: By 1, [e47(9)] > st

To obtain this result, we introduce a smoothing procedure that “repairs” a function
(i.e., makes it Lipschitz) one dimension at a time, while modifying it at a few points.
Such procedures have been previously designed for restoring monotonicity of Boolean
functions [4, 3] and for restoring the Lipschitz property of functions on the hypercube
domain [7]. The key challenge is to find a smoothing procedure that satisfies the follow-
ing three requirements: (1) It makes all lines along dimension 1 (i.e., in Ljf) Lipschitz.
(2) It changes only a small number of function values. (3) It does not make lines in other
dimensions less Lipschitz, according to some measure.

Smoothing Procedure for 1-dimensional Functions. Our first technical contribu-
tion is a local smoothing procedure for functions f : [n] — Z, which we call Bub-
bleSmooth, in analogy to Bubble Sort. In one basic step, BubbleSmooth modifies two
consecutive values (i.e., f(i) and f(i + 1) for some ¢ € [n — 1]) that violate the Lips-
chitz property, namely, differ by more than 1. It decreases the larger and increases the
smaller by 1, i.e., it transfers a unit from the larger to the smaller. See Algorithm 1 for
the description of the order in which basic steps are applied. BubbleSmooth is a natural
generalization of the averaging operator in [7], used to repair an edge of the hypercube,
that can also be viewed as several applications of the basic step to the edge.

One challenge in analyzing BubbleSmooth is that when it is applied to all lines
in one dimension, it may increase the average distance to the Lipschitz property for
the lines in the remaining dimensions. Our second key technical insight is to use the
{7 distance to the Lipschitz property to measure the performance of our procedure on
the line and its effect on other dimensions. The ¢; distance between functions f and
/' on the same domain, denoted by |f — f’|, is the sum of |f(xz) — f'(x)| over all
values x in the domain. The ¢; distance of a function f to the nearest Lipschitz function

4 Awasthi, Jha, Molinaro and Raskhodnikova
over the same domain is denoted by ¢ 1L K4 (f). Observe that the Hamming distance and
the ¢; distance from a function to a property can differ by at most ImgD(f). Later,
we leverage the fact that Lipschitz functions have a relatively small image diameter to
relate the ¢; distance to the Hamming distance.

We prove that BubbleSmooth returns a Lipschitz function and that it makes at most
twice as many changes in terms of /; distance as necessary to make a function Lipschitz.

Theorem 1.3. Consider a function f : [n] — Z and let f' be the function returned by
BubbleSmooth(f). Then (1) function f’ is Lipschitz and (2) |f — f'|1 < 2- LXP(f).

The proof of the second part of this theorem requires several technical insights.
One of the challenges is that BubbleSmooth changes many function values, but then
undoes most changes during subsequent steps. We define a transfer graph to keep track
of the transfers that move a unit of function value during each basic step. Its vertex
set is [n] and an edge (x,y) represents that a unit was transferred from f(x) to f(y).
Since two transfers (x,y) and (y, z) are equivalent to a transfer (x, z), we can merge
the corresponding edges in the transfer graph, proceeding with such merges until no
vertex in it has both incoming and outgoing edges. As a result, we get a transfer graph,
where the number of edges, |E|, is twice the ¢; distance from the original to the final
function. _

To prove that |E| < ¢X(f), we show that the transfer graph has a matching with
the violation score at least | E|. The violation score of an edge (or a pair) (x,y) is the
quantity by which |f(x) — f(y)| exceeds the distance between x and y. (Recall that
|f(z) — f(y)| < |z — y]| for all Lipschitz functions f on domain [n].) The violation
score of a matching is the sum of the violation scores over all edges in the matching.
We observe (in Lemma 2.3) that Ef”’ (f) is at least a violation score of any matching.
The crucial step in obtaining a matching with a large violation score is pinpointing
a provable, but strong enough property of the transfer graph that guarantees such a
matching. Specifically, we show that the violation score of each edge in the graph is
at least the number of edges adjacent to its endpoints at its (suitably defined) moment
of creation (Lemma 2.1). E.g., this statement is not true for adjacent edges in the final
transfer graph. The construction of a matching with a large violation score in the transfer
graph is one of the key technical contributions of this paper. It is the focus of Section 2.

Dimension Reduction with respect to ¢;. Our smoothing procedure for functions
on the hypergrids applies BubbleSmooth to repair all lines in dimensions 1,2, ...,d,
one dimension at a time. We show that for all ¢, j € [d] applying BubbleSmooth in
dimension ¢ does not increase the expected ElLip (f) for arandom line g in dimension j.
The key feature of our smoothing procedure that makes the analysis tractable is that it
can be broken down into steps, each consisting of one application of the basic step of
BubbleSmooth to the same positions (k, k+1) on all lines in a specific dimension. This
allows us to show that one such step does not make other dimensions worse in terms
of the ¢, distance to the Lipschitz property. The cleanest statement of the resulting
dimension reduction is with respect to the ¢; distance.

. Lip
Theorem 1.4. For all functions f : [n]? — 7Z, we have: >ger, P ig) > w.

Testing Lipschitz Functions on Hypergrid Domains 5

Our Testers and Effective Image Diameter. The main component of our tester repeats
the following procedure: Pick a line uniformly at random and run one step of the line
tester. (We use the line tester from [7].) Our dimension reduction (Theorem 1.2) is cru-
cial in analyzing this component. However, the bound in Theorem 1.2 depends on the
image diameter of the function f. In the case of a non-Lipschitz function, it can be arbi-
trarily large, but for a Lipschitz function on [n] it is at most the diameter of the space,
namely nd (notice this factor in part (1) of Theorem 1.1). In fact, for our application
we can also use the observable diameter of the space [6]: since the hypergrid exhibits
Gaussian-type concentration of measure, a Lipschitz function maps the vast majority of
points to an interval of size O(n\/g) (notice this factor in part (2) of Theorem 1.1). Our
testers use a preliminary step to rule out functions with large image diameter (resulting
in 1-sided error) or with large observable diameter (resulting in 2-sided error).

1.3 Comparison to Previous and Concurrent Work

Jha and Raskhodnikova [7] gave a 1-sided error nonadaptive testers for the Lipschitz
property of functions of the form f : {0,1}¢ — 6Z and f : [n] — R that run in time
O (& - min {ImgD(f), d}) and O (™), respectively. They also showed that £2(d)
queries are necessary for testing the Lipschitz property on the domain {0, 1}%, even
when the range is {0, 1, 2}. No nontrivial tester of the Lipschitz property of functions
on the domain [n]? was known prior to this work.

Our first tester from Theorem 1.1 naturally generalizes the testers of [7] to func-
tions on the domain [n]?. As in [7], our tester has at most quadratic dependence on the
dimension d. Our second tester from Theorem 1.1 gives an improvement in the running
time over the hypercube tester in [7] at the expense of allowing 2-sided error. In this
specific case, Theorem 1.1 gives a tester with running time O(d"-®/(J¢)).

Concurrently with our work, Chakrabarty and Seshadhri [2] gave an ingenious anal-
ysis of the simple edge test for the Lipschitz property (and monotonicity) of functions
f:{0,1}¢ — R that shows that it is enough to run it for O(d/¢) time. Their analysis
does not apply to functions on the domain [n]?.

Organization. In Section 2, we present and analyze BubbleSmooth, our procedure
for smoothing 1-dimensional functions, and prove Theorem 1.3. In Section 3, we use
BubbleSmooth to construct a smoothing procedure for multidimensional functions that
leads to the dimension reduction of Theorems 1.2 and 1.4. Our Lipschitz testers for
functions on hypergrids claimed in Theorem 1.1 are presented in Section 4.

2 BubbleSmooth and its Analysis

In this section, we describe BubbleSmooth and prove Theorem 1.3 which asserts that
BubbleSmooth(f) outputs a Lipschitz function that does not differ too much from f
in the ¢, distance. In Section 2.1, we present BubbleSmooth (Algorithm 1) and show
that it outputs a Lipschitz function. Sections 2.2 and 2.3 are devoted to proving part (2)
of Theorem 1.3. At the high level, the proof follows the ideas explained in Section 1.2
(right after Theorem 1.3). In Section 2.2, we define our transfer graph (Definition 2.3)

6 Awasthi, Jha, Molinaro and Raskhodnikova

and prove its key property (Lemma 2.1). In Section 2.3, we show that the existence
of a matching with a large violation score implies that f is far from Lipschitz in the ¢,
distance (Lemma 2.3) and complete the proof of part (2) of Theorem 1.3 by constructing
such a matching in the transfer graph.

2.1 Description of BubbleSmooth and Proof of Part (1) of Theorem 1.3
We begin this section by recalling two basic definitions from [7].

Definition 2.1 (Violation score). Let f be a function and x,y be points in its domain.
The pair (x,y) is violated by f if | f(z) — f(y)| > |« —yl|1. The violation score of (z, y),
denoted by vsy(x,y), is | f(x) — f(y)| — | — y|1 if it is violated and O otherwise.

Definition 2.2 (Basic operator). Given f : [n|]¢ — Zand x,y € [n]?, where |x—y|, =
1 and vertex names x and y are chosen so that f(x) < f(y), the basic operator B, ,
works as follows: If the pair (x,y) is not violated by f then B, ,[f] is identical to f.
Otherwise, By, [f](x) = f(x) + 1 and B, , [f](y) = f(y) — 1.

In this section, we view a function f : [n] — Z as an integer-valued sequence

f(), f(2),..., f(n). We denote the subsequence f (i), f(i + 1),..., f(j) by f[i..j].
Naturally, a sequence f[i..J] is Lipschitz if | f(k) — f(k+1)| < 1foralli < k < j—1.
Algorithm 1 presents a formal description of BubbleSmooth.

Algorithm 1: BubbleSmooth (Input: an inte- Algorithm 2: LinePass
ger sequence f[1...n]) (Input: integer 7)
1 fori=n—1t01do 1 forj=iton—1do
// Start phase 1. 2 f < Bji+lf])
2 while | f(i) — f(i +1)| >1do // (i,i+1) // Rpply basic
is violated by f operator (see
3 LinePass(7). Definition 2.2.)
4 return f

We start analyzing the behavior of BubbleSmooth by proving part (1) of Theo-
rem 1.3, which states that BubbleSmooth returns a Lipschitz function.

Proof (of part (1) of Theorem 1.3). Consider an integer sequence f[1..n] and let f'[1..n]
be the sequence returned by BubbleSmooth(f). We prove that f’ is Lipschitz by in-
duction on the phase of BubbleSmooth. Initially, f(n) is vacuously Lipschitz. We fix
i € [n], assume f[¢ + 1..n| is Lipschitz at the beginning of phase ¢ and show this phase
terminates and that f[i..n] is Lipschitz at the end of the phase.

Consider an execution of LinePass(¢). Assume f[i + 1..n] is Lipschitz in the begin-
ning of this execution. Let j be the index, such that at the beginning of the execution,
f[é..j] is the longest strictly monotone sequence starting from f (7). Then LinePass(:)
modifies two elements: f (i) and f(5). If f(i) > f(j) then f(¢) is decreased by 1 and

Testing Lipschitz Functions on Hypergrid Domains 7

f(4) is increased by 1, i.e., 1 unit is transferred from i to j. Similarly, if f(i) < f(5)
then 1 unit is transferred from j to 7. It is easy to see that after this transfer is performed,
f[é + 1..n] is still Lipschitz. Moreover, each iteration of LinePass(¢) reduces the viola-
tion score of the pair (4,7 + 1) by at least 1. Thus, phase ¢ terminates with f[i..n] being
Lipschitz. a

2.2 Transfer Graph

In the proof of part (1) of Theorem 1.3, we established that for all ¢ € [n], each iteration
of LinePass(7) transfers one unit to or from i. We record the transfers in the transfer
graph T = ([n], E), defined next. A transfer from x to y is recorded as a directed edge
(z,y). The edges of the transfer graph are ordered (indexed), according to when they
were added to the graph. The edge (4, j) (resp., (j,4)) corresponding to the most resent
transfer is combined with a previously added edge (7, k) (resp., (k, 7)) if such an edge
exists. This is done because transfers from z to y and from y to z are equivalent to a
transfer from x to z. If a new edge (x,y) is merged with an existing edge (y, z), the
combined edge retains the index of the edge (y, z).

Definition 2.3 (Transfer graph). The transfer graph T' = ([n], E), where the edge set
E = (ey,...,e;)is ordered and edges are not necessarily distinct. The graph is defined
by the following procedure. Initially, E = () and t = 0. Each new run of LinePass
during the execution of BubbleSmooth, transfers a unit from i to j (or resp., from j to
1) for some i and j. If j has no outgoing (resp., incoming) edge in T', then increment
t by 1 and add the edge e, = (i,7) (resp., e, = (j,1)) to E. Otherwise, let es be an
outgoing edge (j, k) (resp., an incoming edge (k, j)) with the largest index s. Replace
(4, k) with (i, k), i.e., es < (i,k). (Replace (k,j) with (k,i), i.e, es + (k,i).) The
final transfer graph is denoted by T™*.

As mentioned previously, the order of creation of edges is important to formalize
the desired property of the transfer graph, so we need to consider the subgraphs that
consist of the first s edges e, ..., es of F.

Definition 2.4 (Degrees). Consider a transfer graph T at some time during the exe-
cution of BubbleSmooth. For all s € {0,...,t} its subgraph graph T is defined as
([n], (e1,...,€s)), where (e1,...,et) is the ordered edge set of T. (When s = 0, the
edge set of Ts is empty.) The degree of a vertex x € [n] of T is denoted by degs(x);
when Ty is a subgraph of the final transfer graph, it is denoted by deg’ ().

Observe that at no point in time can a vertex in 7' simultaneously have an incoming
and an outgoing edge because such edges would get merged into one edge.

Lemma 2.1 (Key property of transfer graph) Let f be an input function given to Bub-
bleSmooth. Then for each edge e, = (x,y) of the final transfer graph T, the following
holds: vs¢(x,y) > degi(z) + degl(y) — 1.

To prove this lemma, we consider each phase of BubbleSmooth separately and
formulate a slightly stronger invariant that holds at every point during that phase.

8 Awasthi, Jha, Molinaro and Raskhodnikova

Definition 2.5. Foralli € [n— 1], let A; be the degree of i in the transfer graph at the
end of phase .

The following stronger invariant of the transfer graph directly implies Lemma 2.1.

Claim 2.2 (Invariant for phase i) Let f be an input function given to BubbleSmooth.
At every point during the execution of BubbleSmooth(f), for each edge e; = (x,y) of
the transfer graph T,

f(@) = fy) = degs(x) + degs(y) — 1+ [x —y.

Moreover, for each phase i € [n — 1], after each execution of LinePass(i), for each
edge e incident on vertex i, the following (stronger) condition holds:

if the edge es = (i, j), i.e., it is outgoing from i, then f(i) — f(j) > A; +degs(j) —
1+ i —

if the edge es = (j,1), Le., it is incoming into i, then f(j) — f(i) > A; +degs(j) —
1+ i —j].

Observe that all transfers involving ¢ during phase 7 are in the same direction: if in
the beginning of the phase we have f(i) > f(i + 1), then all transfers are from ¢; if
we have f(i) < f(i + 1) instead, then all transfers are to 4. In particular, whenever an
edge incident to ¢ is added, it is not modified subsequently during phase i. So for all
s, degs (i) never exceeds A; during phase ¢ and the condition in Claim 2.2 is indeed
stronger than that in Lemma 2.1. The proof of Claim 2.2 is omitted.

2.3 Matchings of Violated Pairs

Part (2) of Theorem 1.3 states that the ¢; distance between f and BubbleSmooth(f)
is at most 2 - ¢XP(f). By definition of the transfer graph T = ([n], E), the distance
|/ — BubbleSmooth(f)|; = 2|E|. Lemma 2.3 shows that £~ () is bounded below by
the violation score of any matching. We complete the proof of Theorem 1.3 by showing

that 7" has a matching with violation score |E|.

Lemma 2.3 Let M be a matching of pairs (z,y), where x and y are in the (discrete) do-
main of a function f. Then (1" (f) > vs;(M), where vs; (M) = D wmyen V87 (@,y)
is the violation score of M.

Proof. Let f* be a closest Lipschitz function to f (on the same domain as f) with
respect to the ¢; distance, i.e., |f — f*|1 = ¢1(f, Lip). Consider a pair (x,y) € M.

Since [f(x) = f(y)| = d(z,y) + vsy(z,y) and |f*(z) — f*(y)| < d(z,y), it follows
by the triangle inequality that | f(z) — f*(x)| + |f(y) — f*(y)| > vss(z,y). Since M
is a matching, we can add over all of its pairs to obtain

a(fLipp=1f=fhz Y (f@-=f@+If) - o)

(z,y)eM

> Z vsy(x,y) = vsp(M),
(z,y)eM

which concludes the proof. a

Testing Lipschitz Functions on Hypergrid Domains 9

Now using Lemma 2.1 we exhibit a matching in the final transfer graph which has
large violation score, concluding the proof of Theorem 1.3.

Proof (of part (2) of Theorem 1.3). Let T* = ([n], E) be the final transfer graph cor-
responding to the execution of BubbleSmooth on f and let E = {ey,...,e:}. By
definition of the transfer graph, |f — f'|; = Zie[n] deg:(i) = 2|E|. By Lemma 2.3, it
is enough to show that there is a matching M of pairs violated by f with the violation
score vs¢(M) > |E|.

We claim that T contains such a matching. It can be constructed greedily by repeat-
ing the following step, starting with s = ¢: add e to M and then remove e, and all other
edges adjacent to its endpoints from 7'; set s to be the number of edges remaining in E.
In each step, at most degs(x) + degs(y) — 1 are removed from 7. (“At most” because
T can have multiple edges.) By Lemma 2.1, vss(x,y) > degs(z) + degs(y) — 1. So,
at each step of the greedy procedure, the violation score of the pair (z,y) added to M
is at least the number of edges removed from T'. Therefore, vsy (M) > |E]|. O

3 Dimension Reduction: Proof of Theorems 1.2 and 1.4

In this section, we explain the main ideas used to prove Theorems 1.2 and 1.4 that con-
nect the distance of a function to being Lipschitz to the distance of its lines to being Lip-
schitz. Effectively, these results reduce the task of testing a multidimensional function
to the task of testing its lines. Our main contribution in this section is a smoothing pro-
cedure that makes a function Lipschitz by modifying it at a few points by repairing one
dimension at a time. In Definition 3.1, we present the dimension operator that repairs
all lines in a specified dimension by applying BubbleSmooth to each of them. The im-
portant properties of the dimension operator are summarized in Lemma 3.1 which is the
key ingredient in the proofs of Theorems 1.2 and 1.4. The derivation of Theorems 1.2
and 1.4 from Lemma 3.1 appears in the full version.

Recall from the discussion in Section 1.2 that we denote the set of lines of f along
dimension i by L and the set of all lines of f by Ly = L.

Definition 3.1 (Dimension operator A;). Given f : [n]? — Z and dimension i € [d],
the dimension operator A; applies BubbleSmooth to every function g € Llj} and returns
the resulting function.

Next lemma summarizes the properties of the dimension operator.

Lemma 3.1 (Properties of the dimension operator A;) Foralli € [d], the dimension
operator A; satisfies the following properties for every function f : [n]% — 7Z.

1. (Repairs dimension i.) Every g € Lf%[f] is Lipschitz.
2. (Does not modify the function too much.) |f — A;[f]l1 < 2- deL? élLip(g).

3. (Does not spoil other dimensions.) For all j # i in [d], it does not increase the
expected {1 distance of a random line in dimension j to the Lipschitz property, i.e.,

By, (07 (@) S E,py[617(9))

10 Awasthi, Jha, Molinaro and Raskhodnikova

Proof. Ttem 1. Item 1 follows from part (1) of Theorem 1.3.
Item 2. Since the dimension operator A; operates by applying BubbleSmooth to
all (disjoint) lines in L%, we get | f — A;[f]l1 = > g — BubbleSmooth|[g]|;. The

latter is at most deL; 2. éfip(g) by Part (2) of Theorem 1.3, thus proving the item.

gEL}

Item 3. Fix ¢ and j. First, we give a standard argument [4, 3, 7] that it is enough to
prove this statement for n x n grids. Namely, every a € [n]? with a; = aj = 0 defines
arestriction of a function f to ann xn grid by h(x;, z;) = f(a+wz;-e'+x;-¢’), where
z; and x; range over [n]. (Recall that e’ € [n]? is 1 on the ith coordinate and 0 on the
remaining coordinates.) If the item holds for all 2-dimensional grids, we can average
over all such grids defined by different « to obtain the statement for the d-dimensional
function f. Now fix an arbitrary restriction h : [n]? — Z as discussed and think of & as
an n X n matrix with rows (resp., columns) corresponding to lines in dimension ¢ (resp.,
in dimension j).

The key feature of our dimension operator A; is that it can be broken down into
steps, each consisting of one application of the basic step of BubbleSmooth to the same
positions (k, k 4+ 1) on all lines in dimension 4. To see this, observe that we can replace
the while loop condition on Line 2 of Algorithm 2 with “repeat ¢ times”, where ¢ should
be large enough to guarantee that the line segment under consideration is Lipschitz after
t iterations of LinePass. (E.g., t = n - ImgD(f) repetitions suffices.) If this version of
BubbleSmooth is run synchronously and in parallel on all lines in dimension ¢, the the
basic step will be applied to the same positions (k, k + 1) on all lines.

Since in each parallel update step only two adjacent columns of h are affected, it
is sufficient to prove the item for two adjacent columns of h. Accordingly, consider
two adjacent columns C and C; of h. Let M; and M, be Lipschitz columns that are
closest in the ¢; distance to C'; and Cs, respectively. Thus, élL P(Cy) = |Cy — My]; and
(1P (Cy) = |Cy — Myly. Let C} and CY be the columns of the matrix resulting from
applying the basic operator to the rows of the matrix (C7, C2). Similarly, define M7 and
MY to be the columns of the matrix resulting from applying the basic operator to the
rows of (M7, Ms). We prove in the full version that applying the basic operator to the
rows of a matrix consisting of two Lipschitz columns results in a matrix whose columns
are still Lipschitz, that is, M and M} are Lipschitz. Therefore, /17 (C}) < |C} — M|
and (17 (C4) < |Ch — Mj|,. Finally, using the inequality |C — M{|, + |C% — M}|; <
|Ch — My|y + |Cy — Ms|y whose proof is deferred to the full version, the proof of
Item 3 is completed as follows: X (C1) + (X7 (Cy) = |C) — My|1 + |Cy — My|y >
|Cf = M|y + |Cy — Mj|y > £7"(CY) + €77 (C3). O

4 Algorithms for Testing the Lipschitz Property on Hypergrids

In this section, we present our testers for the Lipschitz property of functions f : [n]? —
Z. Theorem 1.2 relates the distance of a function f from the Lipschitz property to the
(expected) distance of its lines to this property. The resulting bound, however, depends
on the image diameter of f. The image diameter is small (at most nd) for Lipschitz
functions, but can be arbitrarily large otherwise. The high-level description of our testers
is the following: (i) estimate the image diameter of [and reject if it is too large; (ii)

Testing Lipschitz Functions on Hypergrid Domains 11

repeatedly sample a line g of f at random, run one step of a Lipschitz tester for the
line on g and reject if a violated pair is discovered; otherwise, accept. Step (1) ensures
that a small sample of lines is enough to succeed with constant probability. The testers
differ only in one parameter which quantifies what “too large” means in Step (i).

4.1 Estimating the Effective Image Diameter

As mentioned before, a Lipschitz function on [n]d has image diameter at most nd,
which can serve as a threshold for rejection in Step (i) of the informal procedure above.
However (if we are willing to tolerate two-sided error), it is sufficient to use a smaller
threshold, equal the effective diameter of the function. For a given e € (0, 1], define
ImgD,(f) as the smallest value « such that f is e-close to having image diameter «:

ImgD (f) = gnwfﬁg (l_e)nd{gﬁneag f(@) — min f(2)}.

Although the image diameter of a Lipschitz function f can indeed achieve value nd, the
effective ImgD_(f) is upper bounded by the potentially smaller quantity O(n+/d In(1/¢)).
The next lemma makes this precise, and follows directly from McDiarmid’s inequality.

Lemma 4.1 (Effective image diameter) For all € € (0, 1], each Lipschitz function f :
[n]? — R is (¢/21)-close to having image diameter at most n~/d1In(42/e).

Our testers use estimates of image diameter or effective diameter to reject functions.
The next lemma, proved in the full version, shows that we can get such estimates ef-
ficiently. An algorithm satisfying parts (i) and (ii) of the lemma was obtained in [7].

Lemma 4.2 There is a randomized algorithm SAMPLE-DIAMETER that, given a func-
tion f : [n]? — Rand e € (0, 1], outputs an estimate r € R such that: (i) ImgD,_(f) <
7 with probability at least 5/6; (ii) r < ImgD(f) (always) and (iii) r < ImgD, 5, (f)
with probability at least 2/3. Moreover, the algorithm runs in time O(1/e).

4.2 Tester for Hypergrid Domains

Our tester for functions on hypergrids uses a tester for functions on lines from [7].

Lemma 4.3 (Full version of [7]) Consider a function g : [n] — R and r > ImgD(g).
Then there is a I-sided error algorithm LINE-TESTER which on input g and r rejects

. . e“P (g)
with probability at least Slogmin{rin]’
To analyze our testers, we also need to estimate the probability that a random line
g < Ly is rejected by LINE-TESTER(g,) with r > ImgD, /5(f). Such bound r will
be obtained via Lemma 4.2. Since r may be much smaller than ImgD(f), Lemma 4.3
does not apply directly. Nevertheless, the next lemma (proved in the full version) shows
how to circumvent this difficulty.

12 Awasthi, Jha, Molinaro and Raskhodnikova

Lemma 4.4 Let f : [n]? — Z be e-far from Lipschitz. Consider a real v > ImgD, /5 (f).
For a random line g <— Ly, the probability that LINE-TESTER(g,) rejects is at least

24dr log fnin{r,n} :
Algorithm 3 presents our tester for the Lipschitz property on hypergrid domains.

One of its inputs is a threshold R for rejection in Step 1. The testers in Theorem 1.1 are
obtained by setting R appropriately.

Algorithm 3: Tester for Lipschitz property on hypergrid.

input : function f : [n]? — Z, € € (0, 1], and value R € R
1 Letr + SAMPLE-DIAMETER(f,€/2). If r > R, reject.
2fori=1tol = —48d'rl°gemin{r’”} do

3 Select a line g uniformly from L and reject if LINE-TESTER(g,) does.
4 Accept.

Proof (of Theorem 1.1). We claim that Algorithm 3 run with R = nd (respectively,
R = n+/dIn(84/¢)) gives the tester in part (1) (respectively, part (2)) of Theorem 1.1.
Suppose that the input function f is Lipschitz. When R = nd, the algorithm accepts
f with probability 1; when R = ny/dIn(84/¢), Lemmas 4.2 and 4.1 guarantee that
it accepts with probability at least 2/3. Now suppose that f is e-far from Lipschitz.
Conditioning on the event that 7 > ImgD, /2(f) (which holds with probability at least
5/6 by Lemma 4.2), we get from Lemma 4.4 that f is rejected with probability at least
4/5 in Step 3. Removing the conditioning gives that f is rejected with probability at
least 2/3 (regardless of R). Further details and the analysis of the running time are
omitted. O

References

[1] Awasthi, P,, Jha, M., Molinaro, M., Raskhodnikova, S.: Testing lipschitz functions on hy-
pergrid domains. Electronic Colloquium on Computational Complexity (ECCC) TR12-076
(2012)

[2] Chakrabarty, D., Seshadhri, C.: Optimal bounds for monotonicity and Lipschitz testing over
the hypercube. Electronic Colloquium on Computational Complexity (ECCC) TR12-030
(2012)

[3] Dodis, Y., Goldreich, O., Lehman, E., Raskhodnikova, S., Ron, D., Samorodnitsky, A.: Im-
proved testing algorithms for monotonicity. In: RANDOM. pp. 97-108 (1999)

[4] Goldreich, O., Goldwasser, S., Lehman, E., Ron, D., Samorodnitsky, A.: Testing monotonic-
ity. Combinatorica 20(3), 301-337 (2000)

[5] Goldreich, O., Goldwasser, S., Ron, D.: Property testing and its connection to learning and
approximation. J. ACM 45(4), 653-750 (1998)

[6] Gromov, M.: Metric Structures for Riemannian and non-Riemannian Spaces (1999)

[7]1 Jha, M., Raskhodnikova, S.: Testing and reconstruction of Lipschitz functions with ap-
plications to data privacy. In: IEEE FOCS. pp. 433-442 (2011), full version available at
http://eccc.hpi-web.de/report/2011/057/.

[8] Rubinfeld, R., Sudan, M.: Robust characterization of polynomials with applications to pro-
gram testing. SIAM J. Comput. 25(2), 252-271 (1996)

	Testing Lipschitz Functions on Hypergrid Domains

