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Abstract— A function f : D → R has Lipschitz constant
c if dR(f(x), f(y)) ≤ c·dD(x, y) for all x, y in D, where dR
and dD denote the distance metrics on the range and domain
of f , respectively. We say a function is Lipschitz if it has
Lipschitz constant 1. (Note that rescaling by a factor of 1/c
converts a function with a Lipschitz constant c into a Lipschitz
function.) Intuitively, a Lipschitz constant of f is a bound on
how sensitive f is to small changes in its input.

We initiate the study of testing and local reconstruction of
the Lipschitz property of functions. A property tester, given
a parameter ε, has to distinguish functions with the property
(in this case, Lipschitz) from functions that are ε-far from
having the property, that is, differ from every function with
the property on at least an ε fraction of the domain. A local
filter reconstructs a desired property (in this case, Lipschitz)
in the following sense: given an arbitrary function f and a
query x, it returns g(x), where the resulting function g satisfies
the property, changing f only when necessary. If f has the
property, g must be equal to f .

We consider functions over domains of the form
{1, . . . , n}d, equipped with `1 distance. We design efficient
testers of the Lipschitz property for functions of the form
f : {1, 2}d → δZ, where δ ∈ (0, 1] and δZ is the set of
integer multiples of δ, and of the form f : {1, . . . , n} → R,
where R is (discretely) metrically convex. We also present an
efficient local filter of the Lipschitz property for functions of
the form f : {1, . . . , n}d → R. We give corresponding lower
bounds on the complexity of testing and local reconstruction.

The algorithms we design have applications to program
analysis and data privacy. The application to privacy is based
on the fact that a function f of entries in a database of
sensitive information can be released with noise of magnitude
proportional to a Lipschitz constant of f , while preserving
the privacy of individuals whose data is stored in the database
(Dwork, McSherry, Nissim and Smith, TCC 2006). We give
a differentially private mechanism, based on local filters, for
releasing a function f when a purported Lipschitz constant of
f is provided by a distrusted client. We show that when no
reliable Lipschitz constant of f is given, previously known
differentially private mechanisms have either a substantially
higher running time or a higher expected error, for a large
class of symmetric functions f .

∗This work was supported by the National Science Foundation
(NSF/CCF CAREER award 0845701).
†All missing proofs appear in the full version of this paper [14].

1. INTRODUCTION

Consider a function f : D → R mapping a metric
space (D, dD) to a metric space (R, dR), where dD and
dR denote the distance functions on the domain D and
range R, respectively. Function f has Lipschitz constant
c if dR(f(x), f(y)) ≤ c ·dD(x, y) for all x, y in D. We
call such a function c-Lipschitz and say a function is
Lipschitz if it is 1-Lipschitz. (Note that rescaling by
a factor of 1

c converts a c-Lipschitz function into a
Lipschitz function.) Intuitively, a Lipschitz constant of
f is a bound on how sensitive f is to small changes in
its input.

Lipschitz continuity1 is a fundamental notion in math-
ematical analysis, the theory of differential equations
and other areas of mathematics and computer science.
A Lipschitz constant c of a given function f is used,
for example, in probability theory in order to obtain tail
bounds via McDiarmid’s inequality [16]; in program
analysis, it is considered as a measure of robustness
to noise [7]; in data privacy, it is used to scale noise
added to output f(x) to preserve differential privacy
of a database x [11]. In these three examples, one
often needs to compute a Lipschitz constant of a given
function f or, at least, verify that f is c-Lipschitz for
a given number c. However, in general, computing a
Lipschitz constant is computationally infeasible. The
decision version is undecidable when f is specified by
a Turing machine that computes it, and NP-hard if f
is specified by a circuit. In this work, we focus on
Lipschitz continuity of functions over finite domains,
for which the NP-hardness statement still holds.

We initiate the study of testing if a function (over
a finite domain) is Lipschitz, which is a relaxation
of the decision problem described above. A property
tester [19], [13] is given oracle access to an object
(in this case, a function f ) and a proximity parameter
ε. It has to distinguish functions with the property

1A function is called Lipschitz continuous if there is a constant c
for which it is c-Lipschitz.



(in this case, Lipschitz) from functions that are ε-far
from having the property, that is, differ from every
function with the property on at least an ε fraction
of the domain. Intuitively, a tester for the Lipschitz
property of functions provides an approximate answer
to the decision problem of determining if a function
is Lipschitz and is useful in some situations when
obtaining an exact answer is computationally infeasible.

We also study local reconstruction of the Lipschitz
property of functions over finite domains. This is useful
in applications (in particular, to data privacy) where
merely testing is not sufficient, and one needs to be able
to enforce the Lipschitz property. Property-preserving
data reconstruction [1] is beneficial when an algorithm,
call it A, is computing on a large dataset and the
algorithm’s correctness is contingent upon the dataset
satisfying a certain structural property. For example, A
may require that its input array be sorted or, in our
case, its input function be Lipschitz. In such situations,
A could access its input via a filter that ensures that
data seen by A always satisfy the desired property,
modifying it at few places on the fly, if required.
Suppose that A’s input is represented by a function f .
Then whenever A wants to access f(x), it makes query
x to the filter. The filter looks up the value of f on
a small number of points and returns g(x), where g
satisfies the desired property (in our case, is Lipschitz).
See Figure 1. Thus, A is computing with reconstructed
data g instead of its original input f .

Local reconstruction [20] imposes an additional re-
quirement to allow for parallel or distributed imple-
mentation of filters: the output function g must be
independent of the order of the queries x to the filter.
The version of local reconstruction we consider (see
Definition 2.1), defined in [3], further requires that if the
original input has the property, it should not be modified
by the filter, i.e., if f has the property, g must be equal
to f . Our application to data privacy has an unusual
feature, not encountered in previous applications of
filters: algorithm A needs to access its input only at
one point x (corresponding to the database its holding).
Nevertheless, we require local filters, not because of the
distributed aspect they were initially developed for, but
because when g depends on x, it might leak information
about x and violate privacy.

Previous work on property testing and reconstruction:
Property testing [13], [19] is a well-studied notion of ap-
proximation for decision problems. Properties of a wide
variety of structures, including graphs, error-correcting
codes, geometric sets, probability distributions, images
and Boolean functions, have been investigated in this

context, most of which are not directly related to the
problems we consider here. A notable exception is work
on testing monotonicity of functions, first considered
in [12] (see, e.g., [4] and references therein), which has
provided several techniques that are surprisingly useful
for testing the Lipschitz property. We give relevant
pointers for each of our results in Section 1.1. A unified
discussion can be found in the full version of this paper.

Property preserving reconstruction [1] has been stud-
ied for monotonicity of functions [1], [20], [3], con-
vexity of points [8], graph expansion [15] and error-
correcting codes [6]. The local model is addressed
in [20], [6], [3], with only [20] providing local filters,
and the other two papers focusing on lower bounds.
Results on filters for properties other than monotonicity
of functions do not seem directly relevant to our work.

1.1. Our Results and Techniques

We study testing and local reconstruction of Lips-
chitz functions over discrete metric spaces. Standard
notions from property testing and reconstruction are
introduced in Section 2. Throughout the paper, we use
[n] to denote {1, . . . , n}. We represent each domain
by a graph G equipped with the shortest path distance
dG. Specifically, we consider functions over domains
{0, 1}d, [n] and [n]d, equipped with `1 distance. We
refer to the domains of our functions by specifying the
underlying graph that captures the distances between
points in the domain. Specifically, {0, 1}d is referred to
as the hypercube Hd, [n] as the line Ln and [n]d as
the hypergrid Hn,d. The hypergrid Hn,d has vertex set
[n]d and edge set {{x, y} : ∃ unique i ∈ [d] such that
|yi − xi| = 1 and for j 6= i, yj = xj}. The line and
the hypercube are the special cases of the hypergrid for
d = 1 and n = 2, respectively, with vertices of the
hypercube renumbered as {0, 1}d instead of {1, 2}d.

Testing the Lipschitz property on the hypercube:
We design efficient testers of the Lipschitz property for
functions over the hypercube Hd and the line Ln and
prove corresponding lower bounds.

The following theorem, proved in Section 3, gives
our main technical result: a tester for the Lipschitz
property of functions of the form f : Hd → δZ, where
δ ∈ (0, 1] and δZ is the set of integer multiples of δ.
Its performance is better when a small upper bound on
the image diameter of the input function is known. The
image diameter of f : D → R, denoted ImD(f), is
maxx∈D f(x)−minx∈D f(x).

Theorem 1.1 (Lipschitz tester for hypercube). The
Lipschitz property of functions f : Hd → δZ can
be tested nonadaptively and with one-sided error in
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O
(
d·min{d,ImD(f)}

δε

)
time for all δ ∈ (0, 1].

For instance, if the range of f is {0, 1, 2} then the tester
runs in O(d/ε) time.

The tester first samples random points and checks
if the image of the input function f , restricted to
the samples, has appropriately small diameter for a
Lipschitz function over Hd – namely, at most d. If f
passes this test then it checks if the Lipschitz condition
is satisfied for uniformly random edges of Hd and
rejects if it finds a violation. To analyze the tester,
we relate (in Lemma 3.1) the number of edges of Hd
that are violated by a function to its distance to the
Lipschitz property. The main tool in the analysis is
the averaging operator, which we use to restore the
Lipschitz property one dimension at a time. We build
on ideas from [12], [10] which restored monotonicity
one dimension at a time to analyze monotonicity tests
for Boolean functions. Our averaging operator modifies
values of f on the endpoints of each violated edge in
a given dimension, bringing the two values sufficiently
close. It can be thought of as computing an average
of the values on the endpoints (however, one must be
careful about how rounding to the nearest value in the
range is done in order for our technique to work). One
of the difficulties we overcome in the analysis is that
the averaging operator might increase the number of
violated edges in the previously restored dimensions.
We introduce a potential function, called a violation
score, that takes into account not only the number of
violations, but also their magnitude. We prove that ap-
plying the averaging operator along one dimension does
not increase the violation score in other dimensions. The
main idea behind the proof is to break down the action
of the averaging operator into small steps, captured
by the basic operator which brings the endpoints of
violated edges in a given dimension closer to each other
by a small increment δ, and prove the desired statement
for the basic operator.

The analysis of the tester in the proof of Theorem 1.1
does not apply directly to real-valued functions. By
discretizing function values, in the full version, we
obtain the following corollary for such functions.

Corollary 1.2. There is an algorithm that gets param-
eters δ ∈ (0, 1], ε ∈ (0, 1), d and oracle access to a
function f : Hd → R; it accepts if f is Lipschitz, rejects
with probability at least 2/3 if f is ε-far from (1 + δ)-
Lipschitz and runs in O

(
d·min{d,ImD(f)}

δε

)
time.

We also give a lower bound on the query complexity
of the tester for the hypercube which matches the upper
bound in Theorem 1.1 for the case of the {0, 1, 2} range

and constant ε.

Theorem 1.3. An (adaptive, two-sided error) tester of
the Lipschitz property of functions f : Hd → Z must
make Ω(d) queries. This holds even if the range of f is
{0, 1, 2}.

We prove Theorem 1.3 in the full version of this
paper. We use the method presented in [5] of reducing
a suitable communication complexity problem to the
testing problem. [5] uses this method to prove (amongst
other results) an Ω(d) lower bound for testing mono-
tonicity of functions on {0, 1}d with a range of size
Ω(
√
d). Our lower bound for the Lipschitz property

holds even for functions with a range of size 3.
Testing the Lipschitz property on the line: Next

we give an efficient tester for the class of function
properties which, in our terminology, are edge-transitive
and allow extension. (Refer to the full version of this
paper for the definition and discussion.) The Lipschitz
property for functions on f : Ln → R belongs to this
class for most ranges R of interest. We characterize such
ranges R as discretely metrically convex metric spaces.
Metric convexity is a standard notion in geometric
functional analysis (see, e.g., [2]). We define the discrete
version, which is a weakening of the original notion in
the following sense: all metrically convex spaces are
also discretely metrically convex.

Definition 1.1 (Definition 1.3 of [2] and its relaxation).
A metric space (R, dR) is metrically convex (resp.,
discretely metrically convex) if for all points u, v ∈ R
and positive real numbers (resp., positive integers) α
and β satisfying dR(u, v) ≤ α+ β, there exists w ∈ R
such that dR(u,w) ≤ α and dR(w, v) ≤ β.

Our efficient tester for edge-transitive properties that
allow extension, presented in the full version of this
paper, builds on ideas from [4]. Specifically, for the
Lipschitz property of functions f : Ln → R, it implies
the following corollary.

Corollary 1.4. The Lipschitz property of functions f :
Ln → R for every discretely metrically convex space R
can be tested in time O

(
logn
ε

)
. In particular, the bound

applies to the following metric spaces R: (Rk, `p) for
all p ∈ [1,∞), (Rk, `∞), (Zk, `1), (Zk, `∞) and the
shortest path metric dG on all graphs G.

The following theorem, proved in the full version of
this paper, shows that the upper bound of Corollary 1.4
is tight for nonadaptive one-sided error testers. Even
though it is stated for range R for concreteness, it
trivially applies to Zk and Rk for all k and metrics
discussed above. (Note that it does not—and should
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not—apply to the shortest path metric on arbitrary
graphs.)

Theorem 1.5. A nonadaptive one-sided error tester of
the Lipschitz property of functions f : Ln → R must
make Ω(log n) queries.

To prove Theorem 1.5, we construct a family of
Ω(log n) functions which are 1/4-far from Lipschitz
and have pairwise disjoint sets of violated pairs. The
construction has a clean description in terms of the
discrete derivative function ∆f , defined by f(x) =∑
y∈[x] ∆f(y) for all x ∈ [n].
Reconstruction of the Lipschitz property: We present

a local filter of the Lipschitz property for functions
of the form f : [n]d → R with lookup complexity
O((log n + 1)d). This result is stated in Theorem 1.6,
which is proved in Section 4.

Theorem 1.6 (Local Lipschitz filters for Hypergrid).
There is a deterministic nonadaptive local Lipschitz
filter for functions f : [n]d → R with running time
(and the number of lookups) O((log n+1)d) per query.

We abstract the combinatorial object used in this filter
as a lookup graph consistent with the domain graph.
We show that the existence of a lookup graph implies
a local Lipschitz filter where the lookup complexity of
the filter is the maximum outdegree of a node in the
lookup graph. We then obtain a lookup graph for [n]
with outdegree bounded by O(log n). Our construction
builds on ideas of Ailon et al. [1] who gave a local
monotonicity filter for functions f : [n]→ R. We obtain
a lookup graph for the hypergrid Hn,d by constructing
a strong product of the lookup graphs for the line.

For functions of the form {0, 1}d → R, we show that
every nonadaptive reconstructor has lookup complexity
exponential in d. The statement and the proof of the
lower bound appear in full version of this paper. The
main tool in the analysis is graph spanners, which
were also used in [3] to prove lower bounds on local
monotonicity reconstructors.

1.2. Applications

Our testers have applications to program analysis.
Our filters have applications to data privacy.

Program Analysis: Certifying that a program com-
putes a Lipschitz function has been studied in [7].
Applications described there include ensuring that a
program is robust to noise in its inputs and ensuring
that a program responds well to compiler optimizations
that lead to an approximately equivalent program. For
example, a Lipschitz function is guaranteed to respond

proportionally to changes in input data (e.g., sensor
measurements) due to rounding or other kinds of errors.

The methodology presented in [7] relies on inspecting
the code of the program to verify that it computes
a Lipschitz function. Their method might work for a
particular program, but not apply to another function-
ally equivalent program with more complicated syntax.
Efficient testers of the Lipschitz property allow one to
approximately check if a program computes a Lipschitz
function, while treating the program as a black box,
without any syntactical restrictions. The only restriction
we impose is on the domain and the range of the
function computed by the program, since our tests are
tailored to the domain and the range.

Data Privacy: The challenge in private data analysis
is to release global statistics about the database while
protecting the privacy of individual contributors. The
database x can be modeled as a multiset (or a vector)
over some domain U , where each element (resp., entry)
xi ∈ U represents information contributed by one indi-
vidual. One of main questions addressed in this area is:
what information about x that does not heavily depend
on individual entries xi can we compute (and release)
efficiently? There is a vast body of work on this problem
in statistics and computer science, with [9] pioneering
a line of work in cryptography. Subsequently, [11]
defined a rigorous notion of privacy, called differen-
tial privacy (reviewed in Defition 5.1), and described
the Laplace mechanism (reviewed in Theorem 5.1)
for achieving differential privacy for releasing a given
function f of the database x. The method is based
on adding random noise from the Laplace distribution
to f(x), where the magnitude of the noise, i.e., the
scale parameter of the distribution, is proportional to
a Lipschitz constant of the function f .

Two major systems that release data while satisfy-
ing differential privacy have been implemented, both
based on the Laplace mechanism. Both allow releasing
functions of the database of the form f : x → R. In
both implementations, the client sends a program to
the server, requesting to evaluate it on the database,
and receives the output of the program with Laplace
noise added to it. However, the client is not trusted
to provide a function with a low Lipschitz constant.
The first approach relies on a language-based solution
PINQ [17]. It imposes strict restrictions on the syntax
of the programs that may be sent to the server holding
the database, ensuring that programs evaluate Lipschitz
functions. The second approach, taken in [18], allows
for arbitrary programs. The privacy guarantee is ensured
by enforcing that the program’s output is always within

4



Figure 1. A filter Figure 2. Use of a Lipschitz filter in private data analysis

its prespecified range. The range of the program must
be declared and is used as a Lipschitz constant. Note
that the range of a function can be much larger than
its least Lipschitz constant. Therefore, the resulting
mechanism may add overwhelming noise and destroy
the information even when the function value could have
been released privately with little noise.

The difficulty is that when f (supplied by a distrusted
client) is given as a general-purpose program, it is hard
to compute its least Lipschitz constant, or even an upper
bound on it. Suppose we ask the client to supply a
constant c such that f is c-Lipschitz. Unfortunately,
as mentioned before, it is undecidable to even verify
whether a function computed by a given Turing machine
is c-Lipschitz for a fixed constant c. Applying the
Laplace mechanism with c smaller than a Lipschitz
constant (if the client is lying) would result in a privacy
breach, while applying it with a generic upper bound
on the least Lipschitz constant of f would result in
overwhelming noise.

In Section 5.1, we describe and analyze a different
solution, which we call the filter mechanism, that can be
used to release a function f when a Lipschitz constant
of f is provided by a distrusted client. (See Figure 2.)
The filter mechanism is differentially private and adds
the same amount of noise as the Laplace mechanism
for an honest client. Instead of directly running a
program f , provided by the client, on the database
x, the server calls a local Lipschitz filter on query x
with f as an oracle. The filter outputs g(x) instead of
f(x), where g is Lipschitz2. Crucially, since the filter
is local, it guarantees that g does not depend on the
database x. That is, the client could have computed g by
herself, based on f . Consequently, releasing g(x) via the

2If one needs to ensure that a function is c-Lipschitz, the function
can be rescaled.

Laplace mechanism is differentially private. Moreover,
if the client is honest and provides a program that
computes a Lipschitz function f , the output function
g of the filter is identical to f . In this case, the noise
added to the answer is identical to that of the Laplace
mechanism3.

Let Lap(λ) denote the Laplace distribution on R with
the scale parameter λ. Its density function is fλ(y) =
1
2λe
− |y|λ . The following theorem, proved in Section 5.1,

summarizes the performance of the filter mechanism.

Theorem 1.7 (Filter Mechanism). Fix c, ε > 0. Let A
be a local Lipschitz filter of functions f : D → Rt
where the Lipschitz property is with respect to (D, dD).
For all functions f : D → Rt, the following algorithm
(which receives f as an oracle) is ε-differentially pri-
vate: AfFil(x) = c · A( 1

c · f, x) + (Y1, . . . , Yt), where

Yi
i.i.d.∼ Lap(c/ε) for all i ∈ [t].
Moreover, for all c-Lipschitz functions f , the outputs

of the filter and Laplace mechanisms are identical with
probability at least 1−δ, where δ is the error probability
of the local filter.

In Section 5.2, we instantiate the filter mechanism
with our filter from Theorem 1.6 to obtain an efficient
private algorithm for releasing functions f : x → R of
the databases x which can be represented as multisets
and for which an upper bound on the multiplicity of
all elements of the universe U is known. (Note that the
number of people in databases is a trivial upper bound.)

3We do not insist that f and g differ only on a small number of
points, since we call our filter only on one database x. If we did, a
dishonest client would be penalized for fewer instances of x. Observe
that the amount of distortion reconstruction introduces by substituting
f(x) with g(x) does not depend on the distance of f to the Lipschitz
property: it could be Lipschitz everywhere, besides x, but f(x) would
be changed anyway. However, it is not hard to see that our filter never
changes f(x) by more than maxy {|f(y)− f(x)|+ dG(x, y)} .
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When the client provides a correct Lipschitz constant,
the resulting filter mechanism has the same expected
error as the Laplace mechanism. Our mechanism is
differentially private even for dishonest clients.

We show that when no reliable Lipschitz constant
of f is given, previously known differentially private
mechanisms (specifically, those based on the Laplace
mechanism) either have a substantially higher running
time (because they verify the Lipschitz constant by brute
force) or have a higher expected error for a large class of
functions f . Specifically, suppose that U has size k, that
is, the individuals can have one of k types, and consider
functions f that compute the number of individuals of
types S ⊆ [k] for |S| = Ω(k). We show that the noisy
histogram approach (based on the Laplace mechanism)
incurs an expected Ω(

√
k) error in answering the query.

In contrast, our filter mechanism has expected error
O(1/ε) while preserving differential privacy even in the
presence of distrusted clients. The following theorem,
proved in the full version, summarizes the comparison
of the filter mechanism to the noisy histogram approach.

Theorem 1.8. For some functions f , releasing f results
in expected error Ω(

√
k/ε) with the noisy histogram

approach, but only O(1/ε) with the filter mechanism.

2. PRELIMINARIES

Testing Properties of functions: Given functions f, g
on the same domain D, the distance between f and
g, denoted Dist(f, g), is the number of points in D
on which f and g differ. We say f is ε-far from a
property P if Dist(f, g) ≥ ε · |D| for all functions
g satisfying P . A (two-sided error, adaptive) q-query
tester for a property P is a randomized algorithm, which
given oracle access to a function f and a parameter
ε ∈ (0, 1) makes at most q queries to the oracle f and
can distinguish, with probability 2/3, the case that f
satisfies P from the case that f is ε-far from P . A
tester has one-sided error if it always accepts functions
satisfying P . It is nonadaptive if the queries to f do
not depend on the answers to the previous queries.

Local Property Reconstruction: Local reconstruction
was defined in [20]. The variant we consider is from [3].

Definition 2.1 (Local filter). A local filter for recon-
structing property P is an algorithm A that has oracle
access to a function f : D → R and to an auxiliary
random string ρ (the “random seed”), and takes as
input x ∈ D. For fixed f and ρ, A runs deterministically
on input x to produce an output Af,ρ(x) ∈ R. The
function g(x) = Af,ρ(x) output by the filter must satisfy
P for all f and ρ. In addition, if f satisfies P then g
must be identical to f with probability at least 1−δ for

some error probability δ ≤ 1/3, where the probability
is taken over ρ.

When answering a query x ∈ D, a filter may access
values of f at domain points of its choice using its
oracle. Each accessed domain point is called a lookup
to distinguish it from the client query x. A local filter
is nonadaptive if its lookups on input query x do not
depend on answers given by the oracle.

3. TESTING THE LIPSCHITZ PROPERTY

In this section, we show how to test if a function
f : Hd → δZ is Lipschitz and explain the main ideas
from the proof of Theorem 1.1.

W.l.o.g., we assume that that 1/δ is an integer.
Observe that a function is Lipschitz if its values on

the endpoints of every edge differ by at most 1. An
edge {x, y} is violated if |f(x)− f(y)| > 1. Since Hd
has diameter d, no values in the image of a Lipschitz
function should differ by more than d.

Definition 3.1 (Image diameter). The image diameter
of a function f : D → R, denoted ImD(f), is
the difference between the maximum and the minimum
values attained by f , i.e., max

x∈D
f(x)−min

x∈D
f(x).

First, our algorithm approximates the image diameter
of the input function f by computing the image diameter
of f , restricted to random samples, and rejects if it is
greater than d. Then it looks for violations by sampling
hypercube edges uniformly at random.

LIPSCHITZ-TEST(f : {0, 1}d → δZ, d, δ, ε)
1 Select t = d12/εe vertices z1, . . . , zt uniformly and

independently at random from the hypercube Hd.
2 Let r = maxti=1 f(zi)−minti=1 f(zi).
3 if r > d, reject.
4 Select d(2 · dr)/δεe edges uniformly and

independently at random from the hypercube Hd.
5 if any of the selected edges are violated, reject;

otherwise, accept.

The main tool in the analysis of our test is
Lemma 3.1, proved in Sections 3.1–3.2. In the full
version, we derive Theorem 1.1 from this lemma.

Lemma 3.1 (Main). Let function f : {0, 1}d → δZ
be ε-far from Lipschitz. Let V (f) denote the number of
edges of Hd violated by f . Then V (f) ≥ δε·2d−1

ImD(f) .

3.1. Averaging Operator Ai
To prove Lemma 3.1, we show how to transform an

arbitrary function f : {0, 1}d → δZ into a Lipschitz
function by changing f on a set of points, whose size
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is related to the number of the hypercube edges violated
by f . This is achieved by repairing one dimension of the
hypercube Hd at a time with the averaging operator Ai,
defined below. The operator modifies values of f on the
endpoints of each violated edge in dimension i, bringing
the two values sufficiently close. It can be thought of
as computing an average of the values on the endpoints
and rounding it down and up to the closest values in δZ
to obtain new assignments for the endpoints. Let bxcδ
(resp., dxeδ) be the smallest (resp., largest) value in δZ
not greater (resp., not smaller) than x.

Definition 3.2 (Averaging operator Ai). Given f :
{0, 1}d → δZ, for each violated edge {x, y} along
dimension i, where vertex names x and y are cho-
sen so that f(x) < f(y) − 1, define Ai[f ](x) =⌊
f(x)+f(y)

2

⌋
δ

and Ai[f ](y) =
⌈
f(x)+f(y)

2

⌉
δ
.

We would like to argue that while we are repairing
dimension i with the averaging operator, other dimen-
sions are not getting worse. Unfortunately, the number
of violated edges along other dimensions can increase.
Instead, we keep track of our progress by looking at a
different measure, called the violation score.

Definition 3.3 (Violation score). The violation score
of an edge {x, y} with respect to function f , denoted
vs({x, y}), is max(0, |f(x)− f(y)| − 1). The violation
score of dimension i, denoted V Si(f), is the sum of
violation scores of all edges along dimension i.

The violation score of an edge is positive iff the edge
is violated. Moreover, the violation score of a violated
edge with respect to a δZ-valued function is contained
in the interval [δ, ImD(f)]. Let V i(f) be the number
of edges along dimension i violated by f . Then

δV i(f) ≤ V Si(f) ≤ V i(f) · ImD(f). (1)

Later, we use (1) to bound the number of values
of f modified by Ai in terms of V i(f). Next lemma
shows that Ai does not increase the violation score in
dimensions other than i.

Lemma 3.2. For all i, j ∈ [d], where i 6= j, and every
function f : {0, 1}d → δZ, applying the averaging
operator Ai does not increase the violation score in
dimension j, i.e., V Sj(Ai[f ]) ≤ V Sj(f).

Proof. The main idea behind the proof is to break down
the action of the averaging operator Ai into small steps
and prove that each step along dimension i does not
increase the violation score in dimension j. Each small
step is captured by the basic operator Bi, defined next.

Definition 3.4 (Basic operator Bi). Given f :
{0, 1}d → δZ, for each violated edge {x, y} along
dimension i, where vertex names x and y are chosen
so that f(x) < f(y) − 1, define Bi[f ](x) = f(x) + δ
and Bi[f ](y) = f(y)− δ.

It is easy to see that applying Ai is equivalent to apply-
ing Bi multiple times until no edges along dimension i
are violated. Therefore, it is enough prove Lemma 3.2
for Bi instead of Ai.

Note that the edges along dimensions i and j form
disjoint squares in the hypercube. Therefore, the special
case of Lemma 3.2 for f restricted to each of these
squares individually (where each such restriction is a
two-dimensional function) allows us to prove the lemma
for dimensions i and j by summing the inequalities over
all such squares. It remains to prove the lemma for d =
2 and Bi instead of Ai.

Note that we may assume w.l.o.g. that 1/δ is an
integer. This is because f is Lipschitz iff f/δ is 1/δ-
Lipschitz. Since f/δ is an integer-valued function, it is
1/δ-Lipschitz iff it is b1/δc-Lipschitz. Let c = b1/δc
and f ′ = f/(δ·c). Then f ′ is Lipschitz iff f is Lipschitz.
Therefore, testing if f : Hd → δZ is Lipschitz is
equivalent to testing if f ′ : Hd → (1/c)Z is Lipschitz
for the integer c defined above. yt

ybxb

xt

i
jConsider a two-dimensional

function f : {xt, xb, yt, yb} →
δZ with vertices xt, xb, yt, yb
positioned as depicted. We show that an application of
the basic operator Bi along the horizontal dimension
does not increase the violation score of the vertical
dimension. If the violation scores of the vertical edges
do not increase, the proof is complete. Assume w.l.o.g.
the violation score of the left vertical edge {xt, xb}
increases. Also w.l.o.g. assume Bi[f ](xt) > Bi[f ](xb)
(otherwise, we can swap the horizontal edges on our
picture.) Then Bi increases f(xt) and/or decreases
f(xb). Assume w.l.o.g. Bi increases f(xt). (The case
when Bi decreases f(xb) is symmetrical). Then {xt, yt}
is violated with f(xt) < f(yt). Moreover, since f is
a δZ-valued function and 1/δ is an integer, f(yt) ≥
f(xt) + 1 + δ. The application of the basic operator
increases f(xt) by δ and decreases f(yt) by δ.

If the bottom edge is not violated then f(xb) ≥
f(yb) − 1 and the basic operator does not change
f(xb) and f(yb). Since vs({xt, xb}) increases, f(xt) >
f(xb)+1−δ. Integrality of 1/δ implies f(xt) ≥ f(xb)+
1. Combining the three inequalities derived so far, we
get f(yt) ≥ f(xt)+1+δ ≥ f(xb)+2+δ ≥ f(yb)+1+δ.
Thus, vs({xt, xb}) increases by δ, while vs({yt, yb})
decreases by δ, keeping the violation score along the
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vertical dimension unchanged.
If the bottom edge is violated then, since vs({xt, xb})

increases and 1/δ is integral, f(xt) ≥ f(xb) + 1 − δ.
Also, f(xb) must decrease, implying f(xb) > f(yb)+1.
Therefore, f(yt) ≥ f(xt) + 1 + δ ≥ f(xb) + 2 >
f(yb) + 3. Recall that δ ≤ 1. Thus, vs({xt, xb})
increases by at most 2δ, while vs({yt, yb}) decreases by
2δ, ensuring that the violation score along the vertical
dimension does not increase.

3.2. Proof of Lemma 3.1

The crux of the proof is showing how to make a
function f : {0, 1}d → δZ Lipschitz by redefining it on
at most 2

δ ·V (f) · ImD(f) points. We apply a sequence
of averaging operators as follows: we define f0 = f
and for all i ∈ [d], let fi = Ai[fi−1].

f = f0
A1−−→ f1

A2−−→ f2 −→ · · · −→ fd−1
Ad−−→ fd.

We claim that fd is Lipschitz. By Definition 3.2, each
step above makes one dimension i free of violated
edges. Recall that the violation score V Si is 0 iff dimen-
sion i has no violated edges. Therefore, by Lemma 3.2,
Ai preserves the Lipschitz property along dimensions
fixed in the previous steps. Thus, eventually there are
no violated edges, and fd is Lipschitz.

Now we bound the number of points on which f and
fd differ, that is, Dist(f, fd). For all i ∈ [d],

Dist(fi−1, fi) = Dist(fi−1, Ai[fi−1]) ≤ 2 · V i(fi−1)

≤ 2

δ
· V Si(fi−1) ≤ 2

δ
· V Si(f) ≤ 2

δ
· V i(f) · ImD(f).

The first inequality holds because Ai modifies f only
on the endpoints of violated edges along dimension i.
The second and the fourth inequality follow from (1).
The third inequality holds because, by Lemma 3.2, the
operators Aj for j 6= i do not increase the violation
score in dimension i. By the triangle inequality, the
distance from f to fd is

Dist(f, fd) ≤
∑
i∈[d]

Dist(fi−1, fi)

≤
∑
i∈[d]

2

δ
· V i(f) · ImD(f) =

2

δ
· V (f) · ImD(f). (2)

Consider a function f which is ε-far from the Lips-
chitz property. Since fd is Lipschitz, Dist(f, fd) ≥ ε2d.
Using (2), we get V (f) ≥ εδ·2d−1

ImD(f) , as required.

4. RECONSTRUCTING THE LIPSCHITZ PROPERTY

In this section, we prove Theorems 1.6, giving local
filters of the Lipschitz property for functions f : Ln →
R and f : Hn,d → R. Our filters are deterministic

and nonadaptive. We abstract the combinatorial object
used in these filters as a lookup graph consistent with
the domain graph. We start by defining lookup graphs
in Definition 4.2. In Lemma 4.1, we show how to
use them to construct Lipschitz filters. Finally, we
construct lookup graphs for the line and the hypergrid
in Lemma 4.3. Lemmas 4.1 and 4.3 imply Theorem 1.6.

Definition 4.1 (Out-neighbors, outdegree). Given a
directed graph H = (V,EH) and a node u ∈ V ,
let NH(u) be the set {z ∈ V | (u, z) ∈ EH} of out-
neighbors of u in H . Let N ∗H(u) = NH(u) ∪ {u}. (We
omit the subscript H when the graph is clear from the
context.) We denote the maximum outdegree of a node
in H by outdegree(H).

Definition 4.2 (Lookup graph). Given an undirected
graph G = (V,E), a lookup graph of G is a directed
graph H = (V,EH) satisfying the following properties:
• Consistency: for all x, y ∈ V , some z ∈ N ∗H(x) ∩
N ∗H(y) is on a shortest path between x and y in G.

• (Strict) Containment: (x, y) ∈ EH ⇒ NH(y) ⊂
NH(x).

Lemma 4.1. If a graph G has a lookup graph H
then there is a nonadaptive local Lipschitz filter for
real-valued functions on G with lookup complexity
outdegree(H) and running time O(outdegree(H)).

Proof: We describe a filter which receives a lookup
graph H and f : V (H)→ R as inputs. We assume that
the filter has access to the domain graph G and that
distances in G can be computed in constant time.

We say a function f : D → R is Lipschitz on D′ ⊆ D
if for all pairs (x, y) ∈ D′×D′, the Lipschitz condition
is satisfied, namely, dR(f(x), f(y)) ≤ dD(x, y).

FILTERH(f, x)

1 if N (x) is empty, output g(x) = f(x);
2 for each vertex z in N (x),

recursively compute g(z) = FILTERH(f, z);
3 if setting g(x) = f(x) makes g Lipschitz on N ∗(x)
4 then output g(x) = f(x)
5 else output g(x) = max

z∈N (x)
(g(z)− dG(x, z)).

We proceed to prove correctness of the filter. The
recursion on Line 2 terminates because H satisfies the
containment property and, consequently, the size of the
out-neighbor set decreases strictly with every successive
recursive call.

Claim 4.2. If function f is Lipschitz on N ∗(x) and on
N ∗(y), it is also Lipschitz on {x, y}.

Proof: Let z ∈ N ∗(x) ∩N ∗(y) be a vertex which
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lies on a shortest path between x and y in G (guaranteed
to exist by the consistency property of H). From the
statement of the claim, f is Lipschitz on {x, z} and
{y, z}. Since z lies on a shortest path between x and y
in G, function f is Lipschitz on {x, y}.

Using Claim 4.2, it is sufficient to prove that for each
x ∈ V , g is Lipschitz on N ∗(x). The proof is by strong
induction on |N (x)|. The base case (when |N (x)| =
0) holds for trivial reasons. For the inductive case, let
|N (x)| = k > 0. Since each z ∈ N (x) has |N (z)| <
k, we may assume (by the induction hypothesis) g is
Lipschitz on N ∗(z) for all z ∈ N (x). Then Claim 4.2
implies that g is Lipschitz on N (x). The fact that g is
Lipschitz on N ∗(x) then follows from statements on
lines 3 and 4.

On query x, the filter only looks up out-neighbors of
x because of the containment property of H . There-
fore, the lookup complexity of the filter is at most
outdegree(H). Moreover, if the filter stores the value
of g(z) the first time it is computed and reuses it later,
the running time is O(outdegree(H)).

Lemma 4.3 (Lookup graph constructions). The line
graph Ln has a lookup graph H with outdegree(H) =
O(log n). The hypergrid Hn,d has a lookup graph H
with outdegree(H) = (1 + log n)d.

Proof: To construct a lookup graph for the line
Ln, consider a balanced (rooted) binary search tree T
on the set Vn = [n]. Recall that the lowest common
ancestor (LCA) of a pair of vertices x, y in T is a
common ancestor of x and y which is furthest from the
root. We now construct H as follows: For each x ∈ [n],
if w 6= x is an ancestor of x in T , we add an edge
(x,w) in H . Now, for distinct x, y ∈ [n], the vertex
LCA(x, y) is common to both out-neighbors of x and
y. Moreover, the binary search tree property implies that
it lies on the shortest path between x and y: for all
x < y, x ≤ LCA(x, y) ≤ y. This verifies that H is
a lookup graph of Ln. From definition of H , it is also
clear that H satisfies the containment property. Finally,
outdegree(H) = O(log n).

To construct a lookup graph for Hn,d, we use a
strong product of lookup graphs for the line; details are
provided in the full version of this paper.

Theorem 1.6 follows from Lemmas 4.1 and 4.3.

5. APPLICATION TO DATA PRIVACY

In Section 5.1, we review differential privacy and
the Laplace mechanism from [11] and describe our
filter mechanism. In Section 5.2, we instantiate the filter
mechanism with the filter from Theorem 1.6 to obtain
a private and efficient algorithm for releasing functions

f of the data when a Lipschitz constant of the function
is provided by a distrusted client.

5.1. Filter Mechanism

There are several ways to model a database. It can
be represented as a vector or a multiset where each
component (or element) represents an individual’s data
and takes values in some fixed universe U . In the latter
case, equivalently, it can be represented by a histogram
– that is, a vector where the ith component represents
the number of times the ith element of U occurs in the
database. Two databases x and y are neighbors if they
differ in one individual’s data. For example, if x and
y are histograms, they are neighbors if they differ by
1 in exactly 1 component. The results of this section
apply to all of these models. Let D denote the set of
all databases x. The notion of neighboring databases
induces a metric dD on D such that dD(x, y) = 1 iff x
and y are neighbors.

Definition 5.1 (Differential privacy, [11]). Fix ε > 0.
A randomized algorithm A is ε-differentially private if
for all neighbors x, y ∈ D, and for all subsets S of
outputs, Pr[A(x) ∈ S] ≤ eε Pr[A(y) ∈ S].

Recall that Lap(λ) denote the Laplace distribution
on R with the scale parameter λ. The Laplace mech-
anism [11] is a randomized algorithm for evaluating
functions on databases privately and efficiently.

Theorem 5.1 (Laplace Mechanism [11]). Fix c, ε > 0.
For all functions f : D → Rt which are c-Lipschitz
on the metric space (D, dD), the following algorithm
(which receives f as an oracle) is ε-differentially pri-
vate: AfLap(x) = f(x) + (Y1, . . . , Yt), where Yi

i.i.d.∼
Lap(c/ε) for all i ∈ [t].

Next we prove Theorem 1.7 (from Section 1.2) that
summarizes the performance of our filter mechanism.

Proof of Theorem 1.7: Let x be the input database
and gρ the output function of the local Lipschitz filter A
with random seed fixed to ρ. Since the filter is local, gρ
is well defined on D. In particular, this means that gρ
can be computed by the user without the knowledge
of x and therefore does not disclose anything about
the database x. Moreover, gρ is guaranteed to be 1-
Lipschitz and therefore, c · gρ is c-Lipschitz. The filter
mechanism can thus be seen as an application of the
Laplace mechanism on the c-Lipschitz function c · gρ.
By Theorem 5.1, the algorithm AfFil is ε-differentially
private. Since ρ was arbitrary, above analysis holds for
any choice of ρ, i.e., any instantiation of the filter A.

For the second part of the theorem, note that if f is
c-Lipschitz, the function that filter A gets as an input
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oracle, 1
c · f , is Lipschitz. Thus, the output function of

the filter is identical to its input function with probability
at least 1− δ. Since the output of the filter is scaled by
c, the second part of the theorem follows.

5.2. Filter Mechanism for Histograms

Theorem 1.7 applies to arbitrary metric spaces
(D, dD). In this section, we instantiate it with the local
Lipschitz filter for functions from the hypergrid to real
numbers, described in Theorem 1.6, and analyze its
performance.

Recall that each individual’s data is an element of
an arbitrary domain U . Suppose that U consists of k
elements, that is, the individuals can have one of k
types. In this section, we model a database x as a
histogram, i.e., a vector in Rk, where the ith component
represents the number of times the ith element of U
occurs in the database. Consider the set of databases
which contain at most m individuals of each type. The
corresponding set of histograms is D = {0, ...,m}k.
Recall that two histograms are neighbors if they differ
by 1 in exactly one of the components. In this case,
we can identify the metric space (D, dD) with the
hypergrid Hm+1,k (with the convention that vertices are
vectors with entries in {0, ...,m} instead of [m + 1]).
Therefore, we can use our local Lipschitz filter from
Theorem 1.6 in the filter mechanism to release functions
f : D → R. The performance of the resulting algorithm
is summarized in Corollary 5.2. We also bound the
error of the mechanism. Given a function f : D → R
and a (randomized) mechanism A for evaluating f , let
E(f,A) = supx∈D E[|A(x)− f(x)|] be the error of the
mechanism A in computing f .

Corollary 5.2 (Filter mechanism for histograms). Fix
c, ε > 0. For all functions f : D → R, the filter
mechanism of Theorem 1.7 instantiated with the local
filter of Theorem 1.6 is ε-differentially private and
its running time is bounded by (log(m + 1) + 1)k

evaluations of f . In addition, for c-Lipschitz functions f
on D, the error of the mechanism, E(f,AFil) is O(c/ε).

The proof of the corollary appears in the full version.
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