
Limitations of Local Filters
of Lipschitz and Monotone Functions?

Pranjal Awasthi1, Madhav Jha2, Marco Molinaro1, and Sofya Raskhodnikova2??

1 Carnegie Mellon University, USA,
{pawasthi,molinaro}@cmu.edu.
2 Pennsylvania State University, USA,
{mxj201,sofya}@cse.psu.edu.

Abstract. We study local filters for two properties of functions f : {0, 1}d → R:
the Lipschitz property and monotonicity. A local filter with additive error a is a
randomized algorithm that is given black-box access to a function f and a query
point x in the domain of f . Its output is a value F (x), such that (i) the reconstructed
function F (x) satisfies the property (in our case, is Lipschitz or monotone) and (ii)
if the input function f satisfies the property, then for every point x in the domain
(with high constant probability) the reconstructed value F (x) differs from f(x) by
at most a. Local filters were introduced by Saks and Seshadhri (SICOMP 2010) and
the relaxed definition we study is due to Bhattacharyya et al. (RANDOM 2010),
except that we further relax it by allowing additive error. Local filters for Lipschitz
and monotone functions have applications to areas such as data privacy.
We show that every local filter for Lipschitz or monotone functions runs in time
exponential in the dimension d, even when the filter is allowed significant additive
error. Prior lower bounds (for local filters with no additive error, i.e., with a = 0)
applied only to more restrictive class of filters, e.g., nonadaptive filters. To prove
our lower bounds, we construct families of hard functions and show that lookups
of a local filter on these functions are captured by a combinatorial object that we
call a c-connector. Then we present a lower bound on the maximum outdegree of
a c-connector, and show that it implies the desired bounds on the running time of
local filters. Our lower bounds, in particular, imply the same bound on the running
time for a class of privacy mechanisms.

1 Introduction

In this work we study local reconstruction of properties of functions. Property-preserving
data reconstruction [1] is a direction of research in sublinear algorithms that has its roots
in property testing [14,10]. Some related notions include locally decodable codes [12],
program checking [7] and, more generally, local computation [15,2].

To motivate the reconstruction model, consider an algorithm ALG that is computing
on a large dataset and whose correctness is contingent upon the dataset satisfying a cer-
tain structural property. For example, ALG may require that its input array be sorted or
? All omitted proofs appear in the full version [3].

?? P.A. is supported by NSF grant CCF-1116892. M.J. and S.R. are supported by NSF CAREER
grant CCF-0845701 and NSF grant CCF-0729171. M.M. is supported by NSF grant CMMI-
1024554.



2 Awasthi, Jha, Molinaro and Raskhodnikova

that its input function be Lipschitz. In such situations, ALG could access its input via a
filter that ensures that data seen by ALG always satisfies the desired property, modifying
it at few places on the fly, if required. We can represent the input to ALG as a function
f , where f(x) represents the portion of the data that can be accessed on query x. Instead
of accessing f(x) directly, ALG makes a query x to the filter. The filter looks up the
value of f on a small number of points and returns F (x), where F satisfies the desired
property and is as close to the original function f as possible. Thus, ALG is computing
with reconstructed data F instead of its original input f .

Saks and Seshadhri [16] introduced the stronger notion of a local filter. It has an
additional requirement that the reconstruction of f(x) and f(y) on two different queries
x and y should be done independently. In particular, the output function F is independent
of the order of the queries x made to the filter.

Local filters have many desirable features: for example, they can be implemented
in a distributed setting, where several processes need to access different parts of the
input, and the filter has to ensure that all the parts together are consistent with some
function F that satisfies the desired property. This global consistency guarantee enables
several applications of local filters described in previous work [16,5,11], including the
application to data privacy that we explain below.

The main goal of this paper is to understand limitations of local filters. This is crucial
in order to identify the types of tradeoffs (i.e., output quality vs. lookup complexity)
available for a given application. Two natural candidate properties for this evaluation are
the Lipschitz property and monotonicity of functions3 f : [n]d → R, studied in previous
work [1,16,5,11]: the first is motivated by the privacy application explained below and
the second is a ‘benchmark’ problem in property-preserving reconstruction and property
testing. A function f : [n]d → R is Lipschitz (with respect to the `1 metric on [n]d) if
|f(x) − f(y)| ≤ ‖x − y‖1 for all points x, y in the domain [n]d. Intuitively, changing
the argument to the Lipschitz function by a small amount does not significantly change
the value of the function. A function f : [n]d → R is monotone if f(x) ≤ f(y) for all
points x � y in the domain [n]d, where � denotes the natural partial order on [n]d: for
x = (x1, . . . , xd) ∈ [n]d and y = (y1, . . . , yd) ∈ [n]d, we have x � y iff xi ≤ yi for
all coordinates i ∈ [d]. In other words, increasing the coordinates of the argument to a
monotone function does not decrease the value of the function.

The original definition of local filters in [16] has a requirement that the filter be
distance-respecting, that is, the reconstructed function F should not differ from the orig-
inal function f on significantly more points than necessary. Bhattacharyya et al. [5] and
Jha and Raskhodnikova [11] removed this requirement and demonstrated that it is not
necessary in some applications. Their local filter is simply required to output F = f if
the original function has the property; otherwise, F can be an arbitrary function satisfy-
ing the property. We relax the notion of local filter further by allowing additive error. Our
definition (see Definition 2.1) has an additional parameter a, and the function F can dif-
fer from f by a small amount on every point, even if f satisfies the property: namely, we
require that for every x in the domain, with high constant probability |F (x)−f(x)| ≤ a.
Local filters considered in [5,11] are a special case of our local filters with a = 0. Our

3 We use [n] to denote the set {1, 2, . . . , n}.



Limitations of Local Filters of Lipschitz and Monotone Functions 3

goal is to determine (for small a) if there are local filters that make only poly(n, d)
lookups in order to output the reconstructed function F (x) at a given point x.

Privacy Application. We observe that local filters with small additive error can still be
used in the privacy application described in [11]. Consider a server which has a private
database with information about individuals, modeled as a point x in {0, 1}d, represent-
ing which of d possible types of people are present in the database. (More generally, x
is modeled as a point in [n]d representing a histogram that captures how many people of
each type are present.) A user who does not have direct access to x can ask the server
for some information about this database by specifying a function f for the server to
evaluate at the point x. The server’s goal is to output a value which is close to f(x) but
which reveals almost no information about any single individual. Recently, the latter no-
tion has been made precise via the concept of differential privacy [9]. A standard way of
obtaining such guarantees is to ask users to submit only Lipschitz functions4, and have
the server output f(x) plus some random noise depending on the desired privacy guar-
antee [9]. However, if a malicious user submits a function which is not Lipschitz, the
differential privacy guarantee is lost. A local filter with the following properties can then
be used between the server and the submitted function f to ensure the desired privacy:
(i) the reconstructed function F is always Lipschitz; (ii) if f is already Lipschitz, then
with high probability |F (x) − f(x)| ≤ a for all x, where a is a given parameter. This
way, the server always evaluates a Lipschitz function F and thus has the desired privacy
guarantees. Furthermore, if the user provides a valid Lipschitz function f , the mecha-
nism outputs a value F (x) in the range f(x)± a plus a random noise; if a is reasonably
small it is then absorbed in the noise. Thus, bounds on the running time and additive error
of the local filter translate directly into bounds on the running time and accuracy of the
corresponding privacy mechanism.

1.1 Previous Results on Local Filters

Despite the fact that local filters have been thoroughly studied, lower bounds for general
(not necessarily distance-respecting) adaptive filters remained a big challenge.

Saks and Seshadhri [16] present a distance-respecting local filter for monotonicity of
functions f : [n]d → R with running time (log n + 1)O(d) per query. For monotonicity
of functions f : {0, 1}d → R, no nontrivial (i.e., performing o(2d) lookups per query)
filter is known. Saks and Seshadhri also show that a distance-respecting local filter for
monotonicity on the domain {0, 1}d must perform 2Ω(d) lookups per query. This lower
bound crucially uses the fact that the filter is distance respecting, and does not apply to
general local filters (even when no additive error is allowed).

As we explained, in many applications the extra requirement that the filter be distance-
respecting is not necessary. Bhattacharyya et al. [5] studied lower bounds for local
monotonicity filters which are not necessarily distance-respecting. However, their super-
polynomial lower bounds only hold for nonadaptive filter. For the domain {0, 1}d, Bhat-
tacharyya et al. show that nonadaptive filters must perform Ω( 2αd

d ) lookups per query

4 More generally, if a user wants to evaluate a function f with Lipschitz constant at most `, where
` > 1, then the Lipschitz function f/` can be submitted to the server. When the noisy answer
returned by the server is multiplied by `, the effect is to add noise proportional to `.



4 Awasthi, Jha, Molinaro and Raskhodnikova

in the worst case, where α ≥ 0.1620. For adaptive filters, their bound quickly degrades
with the number of lookups performed to incomparable points in the domain (x, y ∈ [n]d

are comparable if x � y or y � x and incomparable otherwise). Specifically, their lower
bounds for adaptive filters is Ω( 2αd−`

d ), where ` is the number of lookups to points in-
comparable to x made on query x; for arbitrary adaptive filters, this degrades to Ω(d).
Prior to our work, no super-polynomial lower bound for adaptive local monotonicity filter
was known.

For the Lipschitz property, Jha and Raskhodnikova [11] obtain a deterministic non-
adaptive local filter that runs in time O((log n + 1)d) per query. They also show that
the lower bound from [5] for nonadaptive filters, with the same statement, applies to
nonadaptive local filters of the Lipschitz property.

Previous work left open whether it is possible to obtain (adaptive and not necessarily
distance-respecting) local filters monotonicity and Lipschitz properties that make only
poly(n, d) lookups per query.

1.2 Our Results and Techniques

We consider local a-filters, which is the relaxation of local filters that allows additive
error a, as described above and formally stated in Definition 2.1. These filters do not
need to be distance-respecting and can be fully adaptive. Our main results, stated in
more detail in Section 2, are that even such relaxed filters need to perform a number
of lookups exponential in the dimension d in order to reconstruct a Lipschitz (resp.,
monotone) function. (This applies even to functions on the domain {0, 1}d).

Theorem 1.1 (Limitations of Lipschitz filters). Consider the Lipschitz property of func-
tions f : {0, 1}d → R and any (randomized) local (not necessarily distance-respecting)
d

402 -filter for this property. Then there is a function f and a query x where, with constant
probability, this filter makes 2Ω(d) lookups.

The additive error a = d/402 in the theorem above is as large as possible up to a
constant factor: the trivial filter that outputs F (x) = (f(0) + f(1))/2, where 0 and 1
are all-0 and all-1 vectors, respectively, is a local d2 -filter.5 To see this, note that (i) the
reconstructed function F (x) is Lipschitz and (ii) if the input function f(x) is Lipschitz
then |F (x)− f(x)| = 1

2 |f(0) + f(1)− 2f(x)| ≤ 1
2 (|f(0)− f(x)|+ |f(1)− f(x)|) ≤

1
2 (‖0− x‖1 + ‖1− x‖1) = d

2 for every x ∈ {0, 1}d.
For monotonicity, we can prove an analogous theorem with no upper bound on a.

This is explained by the fact that monotonicity is determined by the order of the values
at different points and not their magnitudes. To calibrate the additive error, we state the
next theorem for functions with bounded range, namely, [0, 2a+ 1]. The additive error in
the theorem is also tight because for functions with that range, the trivial filter above that
outputs F (x) = (f(0) + f(1))/2 is a local (a+ 1

2 )-filter.

Theorem 1.2 (Limitations of monotonicity filters). Consider the monotonicity prop-
erty of functions f : {0, 1}d → [0, 2a + 1] and any (randomized) local a-filter for this

5 In order to simplify the presentation, we did not attempt to optimize this constant factor. In
particular, the choice of weights d/3 and 2d/3 in Definition 3.1 might not give the best factor.



Limitations of Local Filters of Lipschitz and Monotone Functions 5

property. Then there is a function f and query x where, with constant probability, this
filter makes 2Ω(d) lookups.

To introduce the ideas used in the proofs, we focus for now on deterministic filters.
To obtain lower bounds for nonadaptive filters in [5,11], the authors construct two col-
lections of ‘hard functions’ f (x,y) and f (x,y) (satisfying the Lipschitz property) indexed
by x, y ∈ {0, 1}d. They show that if a local filter works correctly on f (x,y) and f (x,y), as
well as on a suitably defined function h(x,y) (violating the Lipschitz property on (x, y)),
the lookups made on queries x and y need to have a structured interaction. (Note that
in this case the lookups are independent of the input function because the filter is non-
adaptive.) More precisely, they construct a graph over {0, 1}d based on these interac-
tions and show that it is a 2-transitive-closure-spanner (2-TC-spanner) for the hypercube.
(TC-spanners were introduced in [6]; see Section 3 for definition and comparison with
c-connectors that we introduce.) Using the lower bound on the size of a 2-TC-spanner for
the hypercube from [5], it can be shown that any non-adaptive filter must use exponential
lookups on one of the query points.

In the case of adaptive filters one cannot assume that the lookups made on a given
query point are independent of the input function. One simple idea to try to overcome
this obstacle is to consider, for each query x, the union of the lookups made on query
x over all possible choice of hard functions. One can then try to apply the lower bound
approach discussed in the previous paragraph. In fact this union of lookups still has strong
interactions that imply a 2-TC-spanner. The problem is that this is clearly overcounting
the number of lookups made by the filter on a single given function on query x. Due
to the large number of ‘hard functions’ considered in [5,11], this overcounting makes
the bound coming from the 2-TC-spanners vacuous for adaptive filters; this is where the
factor 2` lost in [5] mentioned above comes from.

In order to remedy this, we build a collection of hard functions which are much
‘smoother’ than those from [5,11]. This allows us to use fewer functions. However, it
comes at a cost: the interactions of the lookups caused by these functions are not as struc-
tured as before and do not imply a 2-TC-spanner. We introduce a type of directed graph
called c-connector (Definition 3.2) which captures lookup interactions. When arc direc-
tions are ignored, a c-connector is a relaxation of 2-TC-spanners (as discussed in Sec-
tion 3, our transformation to c-connectors preserves information on whether x is looked
up on query y or vice versa, while this information is lost in the transformation to 2-TC-
spanners in [5,11]). Nevertheless, we can argue that a c-connector has a large maximum
outdegree, which relates to the lookup complexity. Indeed, one of the key ingredients for
our lower bound is recognizing the limitations of 2-TC-spanners in this context and find-
ing a combinatorial structure with the right amount of flexibility. Given the importance
of TC-spanners (see [13] for a survey), c-connectors might find use outside of this work.

Organization. Section 2 gives basic definitions and a more detailed statement of our
main results. In Section 3, we define c-connectors, the graph objects on which our lower
bounds are based. In Sections 4 and 5, we develop a connection between c-connectors
and local filters for the Lipschitz property and monotonicity. In Section 6, we bound the
outdegree of c-connectors. Our lower bounds follow directly from putting these two parts
together.



6 Awasthi, Jha, Molinaro and Raskhodnikova

2 Definitions and Formal Statement of Results

Given a point x ∈ {0, 1}d, we use xi to denote its ith coordinate and |x| to denote its
Hamming weight, that is, |x| =

∑
i xi. We identify each point x ∈ {0, 1}d with the

subset of coordinates where it takes value 1, namely, {i : xi = 1}. This gives meaning
to expressions like x ⊆ y, x ∩ y, x ∪ y and x \ y for x, y ∈ {0, 1}d. For x ∈ {0, 1}d, the
Hamming weight |x| coincides with the cardinality of the set associated with x.

We now provide a formal definition of local a-filters that allow additive error a. It is
stated for a general property P of functions with domain D; in our case, P will be either
the Lipschitz property or monotonicity.

Definition 2.1 (Local a-filter). Let P be a property of functions f : D → R for some
R ⊆ R. A local a-filter for P with error probability δ is a randomized algorithm which
is given black-box access to a function f : D → R together with a query point x ∈ D.
For each random seed σ in the algorithm’s probability space (Ω,Pr), the filter obtains
the value of f on a sequence of points L(σ, f, x) = {y1, y2, . . . , yk}, called lookups,
(where the choice of yi depends only on x, σ and f(y1), f(y2), . . . , f(yi−1)) and outputs
a reconstructed value F (σ, f, x) for x solely based on the values of f at L(σ, f, x). The
reconstructed function Fσ,f : D → R given by Fσ,f (x) = F (σ, f, x) must obey two
conditions: (i) Fσ,f satisfies property P for all functions f and all random seeds σ; (ii) if
f satisfies property P then for all x ∈ D we have Prσ(Fσ,f (x) ∈ [f(x)−a, f(x)+a]) ≥
1− δ.

Notice that requirement (ii) in this definition is weaker than requiring that “if f satis-
fies property P then Prσ(∀x ∈ D,Fσ,f (x) ∈ [f(x)− a, f(x) + a]) ≥ 1− δ”; therefore,
we manage to obtain lower bounds for a more general class of filters. As a notational
remark, we usually omit the probability space and denote a local a-filter by (L,F ).

The next observation captures the structural rigidity of local filters exploited in our
lower bounds. It states that if functions f and g are identical on the lookups performed
on query x when the input function is f , then the filter will perform the same lookups on
x for both f and g and, consequently, reconstruct the same value.

Observation 2.1 Let (L,F ) be a local a-filter. Then the following holds for every ran-
dom seed σ and query point x: if f and g are functions such that f |L(σ,f,x) = g|L(σ,f,x),
then F (σ, f, x) = F (σ, g, x).

Now we restate Theorems 1.1 and 1.2, giving more details about parameters we obtain.

Theorem 2.1. Fix a non-negative constant δ, consider a sufficiently large integer d (de-
pending on δ) and let a ∈ [0, d/402]. Let (L,F ) be a local a-filter for the Lipschitz
property with error probability δ. Then there exists a function f : {0, 1}d → R and a
query x ∈ {0, 1}d such that Prσ(|L(σ, f, x)| ≥ 20.009d) ≥ 1/2− 1.1δ.

Theorem 2.2. Fix a non-negative constant δ, consider a sufficiently large integer d (de-
pending on δ) and let a ≥ 0. Let (L,F ) be a local a-filter for monotonicity with er-
ror probability δ. Then there exists a function f : {0, 1}d → [0, 2a + 1] and a query
x ∈ {0, 1}d such that Prσ(|L(σ, f, x)| ≥ 20.009d) ≥ 1/2− 1.1δ.

The proof of Theorem 2.1 (resp. Theorem 2.2) follows directly from Lemma 4.3
(resp. Lemma 5.3) and Theorem 6.1; details are given in the full version [3].



Limitations of Local Filters of Lipschitz and Monotone Functions 7

3 c-Connectors

In this section, we formally introduce the notion of c-connectors. This combinatorial
structure can be represented as a directed graph on the vertex set {0, 1}d, where pairs
of nodes need to share an out-neighbor with some prescribed properties. As we shall
see next, c-connectors are related to 2-TC-spanners, although the full motivation for the
exact definition will only become clear in Sections 4 and 5.

Definition 3.1. Let X denote the set of points in {0, 1}d with Hamming weight exactly
d/3 and let Y denote the set of points in {0, 1}d with Hamming weight exactly 2d/3.
Also let P denote the set of comparable pairs (x, y) ∈ X × Y , namely, such that x ≺ y.

Definition 3.2 (c-connector). Fix c ∈ N. Given a subset P ′ of P , a digraph G with the
node set {0, 1}d is a c-connector for P ′ if for every (x, y) ∈ P ′ there exists z ∈ {0, 1}d
with the following properties:

– (Connectivity) The arcs (x, z) and (y, z) belong to G.
– (Structure) |z \ y| < c and |z| > d

3 − c.

A 2-TC-spanner of the boolean hypercube (with the usual partial order) is a directed
graph H on the node set {0, 1}d with the property that for all x ≺ y there is a point z
satisfying x � z � y, such that the arcs (x, z) and (z, y) belong to H [6]. If we reorient
the arcs in a 2-TC-spanner of the hypercube, so that the nodes in Y only have outgoing
arcs, we obtain a valid c-connector for every c ≥ 1: this is because the requirement
x � z � y (in the definition of 2-TC-spanner) implies the structure requirement in a
c-connector. Therefore, c-connectors relax 2-TC-spanners in two ways: first it requires
that only pairs in P have a common neighbor with prescribed properties, and second it
relaxes the required properties of this common neighbor. We remark that the direction
of the arcs in c-connectors is important here, since in order to obtain the desired results
we lower bound the outdegree. In contrast, in previous work [5,11] the information of
whether point x was looked up on query y or vice versa was lost in the transformation
to the corresponding 2-TC-spanner and the lower bound on the number of arcs, not the
outdegree, was used. This is one of the changes that gives us stronger lower bounds.

4 Local Filters for the Lipschitz Property imply c-Connectors

In this section we focus on the Lipschitz property. We construct a family of functions
such that a local a-filter that works correctly on functions from the family must preform
lookups corresponding to a c-connector. The idea is to start with a Lipschitz function
f0 and then construct other Lipschitz functions f cy which agree with f0 on most points,
but where f cy(y) is much larger than f0(y). We argue that if a purported local a-filter
makes only ‘local’ lookups when reconstructing at queries x and y, then we can create a
function that looks like f cy around y (so that the filter is fooled and returns F (y) in the
range f cy(y)± a) and looks like f0 around x (so that the filter is fooled and returns F (x)
in the range f0(x) ± a � f cy(y) ± a). Thus, for the returned function, F (x) and F (y)
are too far apart, ensuring that it is not Lipschitz.



8 Awasthi, Jha, Molinaro and Raskhodnikova

4.1 Hard functions for Filter

Recall from Definition 3.1 that Y denotes the set of points in {0, 1}d with Hamming
weight exactly d/3. In order to construct these hard functions, for a point y ∈ Y let Ty =
{x ∈ {0, 1}d : x ⊆ y, |x| ≥ d/3}. Define the function f0 by f0(z) = max{|z|, d/3} for
all z ∈ {0, 1}d. Intuitively, for c ∈ N and y ∈ Y , we define the function f cy as the smallest
Lipschitz function which is at least f0 + cχTy , where χTy denotes the characteristic
function of the set Ty . More specifically, we set f cy(z) = max{|z| + c − |z \ y|, f0(z)}
for all z ∈ {0, 1}d.

Clearly f0 is Lipschitz, and the functions f cy can be shown to be Lipschitz as well.

Lemma 4.1. For all c ∈ N and y ∈ Y the function f cy is Lipschitz.

For a point y ∈ Y and a constant c ∈ N, let T cy ⊆ {0, 1}d be the set of points z, such
that f cy(z) 6= f0(z). Then T 1

y = Ty and the set T cy gets larger as c increases: specifically,
T cy ⊆ T c

′

y for c < c′. The definitions of f cy and f0 directly give the following observation,
which justifies the specific structure used in the definition of a c-connector.

Observation 4.1 All elements z in the set T cy satisfy |z \ y| < c and |z| > d
3 − c.

4.2 Correct Reconstruction of Hard Functions implies c-Connector

Now we show that if a local a-filter is correct on the constructed functions, its lookups
correspond to a c-connector for the interesting pairs P (recall that P is the set of pairs
(x, y) ∈ X × Y such that x ≺ y). We start by essentially focusing on deterministic
filters or, alternatively, by looking at a ‘good’ seed of a randomized filter. The analysis
for randomized filters is based on the ability to pick a few of these good seeds and then
analyzing the ‘union’ of the behavior of the filter running with these seeds.

Consider a local a-filter (L,F ). Given points x ∈ X and y ∈ Y , we say that a
random seed σ ∈ Ω is good for x and y if Fσ,f0(x) ∈ [f0(x) − a, f0(x) + a] and
Fσ,fcy (y) ∈ [f cy(y)− a, fcy(y) + a]. Given a seed σ which is good for x and y, we define
the digraph Gxyσ = ({0, 1}d, Axyσ ) that captures the lookups made on queries x and y.
Specifically, the set Axyσ consists of all the arcs {(x, z) : z ∈ L(σ, f0, x) ∪ {x}} and
{(y, z) : z ∈ L(σ, f cy , y) ∪ {y}}.

Lemma 4.2 (Local filter implies c-connector). Consider a local a-filter (L,F ) for the
Lipschitz property and an integer c > 2a. For all (x, y) ∈ P , if σ ∈ Ω is good for x and
y then Gxyσ is a c-connector for (x, y).

Proof. For the sake of contradiction suppose not. Unraveling the definitions and using
Observation 4.1 this means that the sets (L(σ, f0, x)∪{x})∩T cy and (L(σ, f cy , y)∪{y})∩
T cy do not intersect. Then letA,B be a partition of T cy such thatA contains (L(σ, f0, x)∪
{x}) ∩ T cy and B contains (L(σ, f cy , y) ∪ {y}) ∩ T cy . Define the function f such that
f |A = f0|A, f |B = f cy |B , and f |{0,1}d\(A∪B) = f0|{0,1}d\(A∪B) = f cy |{0,1}d\(A∪B)

(the last equation follows from the definition of T cy ). To reach a contradiction, we show
that the filter does not reconstruct f correctly.



Limitations of Local Filters of Lipschitz and Monotone Functions 9

Notice that f0|L(σ,f0,x) = f |L(σ,f0,x), so Observation 2.1 gives that F (σ, f, x) =
F (σ, f0, x). Similarly, f cy |L(σ,fcy ,y) = f |L(σ,fcy ,y) and hence F (σ, f, y) = F (σ, f cy , y).

Now since σ is good for x and y, we have that F (σ, f, x) = F (σ, f0, x) ≤ f0(x) +
a = d

3 +a and F (σ, f, y) = F (σ, f cy , y) ≥ f cy(y)−a = 2d
3 + c−a. Since c > 2a we get

F (σ, f, y)−F (σ, f, x) > d/3 = ‖x− y‖1, and hence the function Fσ,f is not Lipschitz;
this contradicts that (L,F ) is a local a-filter and concludes the proof. ut

Consider two subsets P1,P2 of P . Notice that if G1 is a c-connector for P1 and G2

is a c-connector for P2 then the graph formed by the union of (the arcs of)G1 andG2 is a
c-connector for P1 ∪P2. We remark that when we take this union we do not add parallel
arcs. This directly gives the following result.

Corollary 4.1. Consider a local a-filter (L,F ) for the Lipschitz property and an integer
c > 2a. Suppose that for each (x, y) ∈ P there is a random seed σ(x, y) ∈ Ω which is
good for x and y. Then the graph obtained as the union of the graphs {Gxyσ(x,y)}(x,y)∈P
is a c-connector for P . Moreover, this graph has outdegree at most

max

{
max
x∈X

{∣∣⋃
y

L(σ(x, y), f0, x)
∣∣} ,max

y∈Y

{∣∣⋃
x

L(σ(x, y), f cy , y)
∣∣}}+ 1. (1)

Using this corollary, we show that a local a-filter with small ‘average’ number of
lookups implies a c-connector for P with a small outdegree. The idea is to construct, via
the probabilistic method, a set S̄ ⊆ Ω of good seeds which attains a small value in (1);
details are provided in the full version [3].

Lemma 4.3. Consider a local a-filter (L,F ) for the Lipschitz property with error proba-
bility δ and an integer c > 2a. Considerα > 0 and letM = maxf,x Prσ (|L(σ, f, x)| > α) .
If δ + M < 1/2 then there is a c-connector for P with maximum outdegree at most

2dα/ log
(

1
2δ+2M

)
+ 1.

5 Local Filters for Monotonicity imply 1-Connectors

In this section, we consider the monotonicity property and show that again the lookups
performed by a local a-filter give rise to a c-connector (in this case, with c = 1).

5.1 Hard Functions for Filter

Again, we start by defining functions f0 and fay , such that if a local filter is correct on
these functions, its lookups correspond to a 1-connector. Recall that for a point y ∈ Y , we
define Ty = {x ∈ {0, 1}d : x ⊆ y, |x| ≥ d/3}. Define the function f0 by f0(z) = 2a+1
if |z| ≥ d/3 and f0(z) = 0 if |z| < d/3. For a point y ∈ Y , we define the function fay
equal to f0−(2a+1)χTy , namely, fay (z) = 2a+1 if z ≥ d/3 and z /∈ Ty and fay (z) = 0
otherwise. It can be easily verified that these functions are monotone.

Lemma 5.1. For all y ∈ Y and a ≥ 0, the functions f0 and fay are monotone.

Notice that the functions f0 and fay differ exactly on points in Ty and that Ty is the
set of points which satisfy the structure property in the definition of a 1-connector.



10 Awasthi, Jha, Molinaro and Raskhodnikova

5.2 Correct Reconstruction of Hard Functions implies 1-Connector

Recall that P is the set of comparable pairs (x, y) ∈ X × Y or, equivalently, pairs where
x ∈ Ty . Consider a local a-filter (L,F ) for monotone functions. As before, given x ∈ X
and y ∈ Y , we say that a random seed σ ∈ Ω is good for x and y if Fσ,f0(x) ∈
[f0(x)− a, f0(x) + a] and Fσ,fay (y) ∈ [fay (y)− a, fay (y) + a]. Given a seed σ which is
good for x and y, we define the digraph Gxyσ = ({0, 1}d, Axyσ ) in a way similar to what
we did in the previous section: we add toAxyσ all the arcs {(x, z) : z ∈ L(σ, f0, x)∪{x}}
and {(y, z) : z ∈ L(σ, fay , y) ∪ {y}}.

Again the construction of our functions and the digraphGxyσ together with the behav-
ior of local a-filters captured in Observation 2.1 give the following.

Lemma 5.2. Take a ≥ 0 and consider a local a-filter (L,F ) for monotonicity. For any
(x, y) ∈ P , if σ ∈ Ω is good for x and y then Gxyσ is a 1-connector for (x, y).

Finally, we can utilize the same technique for finding a set of good seeds which
achieve small value in (1) as done in Lemma 4.3 to obtain the desired connection between
local a-filters and 1-connectors for P .

Lemma 5.3. Take a ≥ 0 and consider a local a-filter (L,F ) for monotone functions
with error probability δ. Consider α > 0 and let M = maxf,x Prσ (|L(σ, f, x)| > α) .
If δ + M < 1/2 then there is a 1-connector for P with maximum outdegree at most

2dα/ log
(

1
2δ+2M

)
+ 1.

6 Lower Bound on the Maximum Outdegree of a c-Connector

Recall that P is the set of pairs (x, y) ∈ X × Y such that x and y are comparable. We
show a lower bound on the maximum outdegree of a c-connector for P . We remark that
the constants in the bound are not optimized.

Theorem 6.1. Consider d ≥ 40, 200 and let c be an integer in the range [d/201, d/200].
Then the maximum outdegree of any c-connector for P is at least 20.01d.

To prove this, let G be a c-connector for P . Let T̃ cy = {z : |z \ y| < c, |z| > d/3− c}
be the points which satisfy the structure property in Definition 3.2. Then Ty ⊆ T cy ⊆ T̃ cy
for all y ∈ Y , and for x ∈ Ty and z ∈ T̃ cy we have x ∪ z ∈ T̃ cy . We say that a pair
(x, y) ∈ P is covered by a point z if z ∈ T̃ cy and the arcs (x, z) and (y, z) belong to G.

Each pair in P needs to be covered by a point. For a fixed x ∈ X , the outdegree of x
in G is at least the number of distinct points which are covering the pairs in P containing
x (and similarly for a fixed y ∈ Y ). The difficulty in lower bounding the outdegree of
x is that many pairs containing it can be covered by the same point. The heart of the
argument is to show that no point can cover too many such pairs. It relies on the fact that
the sets T̃ cy are ‘localized’. More precisely, consider a point z and let (x, y) be covered
by it. Notice that x ∈ Ty and z ∈ T̃ cy , hence x∪z ∈ T̃ cy . If z is not near x, namely, z \x is
large, then we argue that not too many points y satisfy x∪ z ∈ T̃ cy , given the localization



Limitations of Local Filters of Lipschitz and Monotone Functions 11

of T̃ cy . On the other hand, if z is near x then there are not too many possibilities for x
itself. Our bound is derived by putting these observations together.

In order to make the above argument work we divide the pairs in P into two groups
based on the covers they have. Let α ∈ [1/15, 1/14] be such that αd is an integer, which
exists since d is sufficiently large. For (x, y) ∈ P and z that covers (x, y), if |z \x| ≤ αd,
then we say that z is near x and that z is a nearby cover of (x, y). LetN denote the set of
pairs (x, y) ∈ P which have a nearby cover and let F = P \ N be the remaining pairs.
For a fixed y ∈ Y , define Ny as the pairs in N containing y and for x ∈ X define Fx as
the pairs in F containing x.

Let Z ⊆ {0, 1}d be the set of points which cover at least one pair in P . For a given
x ∈ X , we useZx to denote the set of points which cover at least one pair inP containing
x. We define Zy analogously. That is, Z is the union of sets Zx and Zy over all x ∈ X
and y ∈ Y .

Now we sketch the argument that upper bounds the number of pairs in N and F ;
computations are presented in the full version [3]. In order to upper bound N we start
by arguing that, for a fixed y ∈ Y , a point cannot be a nearby cover for many pairs
(x, y) in Ny . To see this, take z ∈ Zy and let (x, y) ∈ P be such that z is a nearby
cover for it. Then notice that x and z are very similar: |z \ x| ≤ αd and |x \ z| ≤
αd + c; the first bound follows from the definition of a nearby cover and the second
uses |z| ≥ |x| − c from Observation 4.1. From these constraints, it follows that there
are at most d2

(
d/3+αd
αd

)(
2d/3+c
αd+c

)
possibilities for such x’s. Thus, for all y ∈ Y we have

|Ny| ≤ |Zy| · d2
(
d/3+αd
αd

)(
2d/3+c
αd+c

)
. Adding over all y gives the desired bound.

Lemma 6.1. Letting Θ = d2
(
d/3+αd
αd

)(
2d/3+c
αd+c

)
, the number of pairs in N is at most

|Y | ·Θ ·maxy∈Y {|Zy|}.

To upper bound the size of F we start by showing that, for a fixed x ∈ X , a point
cannot be a (non-nearby) cover for too many pairs in Fx. To see this, take z ∈ Zx
and suppose (x, y) ∈ Fx is covered by z. Notice that x ∪ z and y are very similar:
|(x ∪ z) \ y| ≤ c and |y \ (x ∪ z)| ≤ d/3− αd+ c; the first bound follows from x ⊆ y
and Observation 4.1, and the second further uses the fact that |x ∪ z| ≥ d/3 + αd (since
z is not a nearby cover). Then it is easy to see that there are at most d2

( 2d
3 +c
c

)( 2d
3 −αd

d
3−αd+c

)
such y’s. Thus, for each x ∈ X we have |Fx| ≤ |Zx| · d2

( 2d
3 +c
c

)( 2d
3 −αd

d
3−αd+c

)
and adding

over all x gives the desired bound on F .

Lemma 6.2. Letting Φ = d2
( 2d

3 +c
c

)( 2d
3 −αd

d
3−αd+c

)
, the number of pairs in F is at most |X| ·

Φ ·maxx∈X{|Zx|}.

The maximum outdegree of the c-connector G is bounded from below by

M , max{max
x∈X
{|Zx|},max

y∈Y
{|Zy|}}.

Since N and F partition the set of pairs P , we can add the bounds from Lemmas 6.1
and 6.2 and obtain that M is at least the size of P divided by

(
d
d/3

)
(Θ+ Φ), which gives

M ≥
(
2d/3
d/3

)
/(Θ+Φ). Standard computations can be used to lower bound the right-hand

side of this expression by 20.01d. This concludes the proof of Theorem 6.1.



12 Awasthi, Jha, Molinaro and Raskhodnikova

7 Conclusion and Future work

We show that local filters for the Lipschitz property and monotonicity require exponen-
tially many (in the dimension) lookups, even when allowed additive error. One can try to
further relax the requirements on local filters in order to overcome these lower bounds.

One possibility is to consider local filters whose output does not satisfy the desired
property P with small probability. Such weaker guarantees can still be useful for other
definitions of privacy [4,8]. Another relaxation, specific to the Lipschitz property, is to
allow the reconstructed function F to be b-Lipschitz, that is, to require only |F (x) −
F (y)| ≤ b · ‖x− y‖1 for all x, y ∈ {0, 1}d. For the privacy application described, having
a and b of order O(

√
d) is still acceptable. We remark that the techniques presented here

yield similar lower bounds for b slightly larger than 1, but not for b ≥ 2.

References
1. Ailon, N., Chazelle, B., Comandur, S., Liu, D.: Property-preserving data reconstruction. Al-

gorithmica 51(2), 160–182 (2008)
2. Alon, N., Rubinfeld, R., Vardi, S., Xie, N.: Space-efficient local computation algorithms. In:

Rabani, Y. (ed.) SODA. pp. 1132–1139. SIAM (2012)
3. Awasthi, P., Jha, M., Molinaro, M., Raskhodnikova, S.: Limitations of local filters of lips-

chitz and monotone functions. Electronic Colloquium on Computational Complexity (ECCC)
TR12-075 (2012)

4. Bhaskar, R., Bhowmick, A., Goyal, V., Laxman, S., Thakurta, A.: Noiseless database privacy.
In: ASIACRYPT. pp. 215–232 (2011)

5. Bhattacharyya, A., Grigorescu, E., Jha, M., Jung, K., Raskhodnikova, S., Woodruff, D.P.:
Lower bounds for local monotonicity reconstruction from transitive-closure spanners. SIAM
J. Discrete Math. 26(2), 618–646 (2012)

6. Bhattacharyya, A., Grigorescu, E., Jung, K., Raskhodnikova, S., Woodruff, D.P.: Transitive-
closure spanners. In: SODA. pp. 932–941 (2009)

7. Blum, M., Luby, M., Rubinfeld, R.: Self-testing/correcting with applications to numerical
problems. J. Comput. Syst. Sci. 47(3), 549–595 (1993)

8. Dwork, C., Kenthapadi, K., Mcsherry, F., Naor, M.: Our data, ourselves: Privacy via distributed
noise generation. In: In EUROCRYPT. pp. 486–503. Springer (2006)

9. Dwork, C., McSherry, F., Nissim, K., Smith, A.: Calibrating noise to sensitivity in private data
analysis. In: TCC. pp. 265–284 (2006)

10. Goldreich, O., Goldwasser, S., Ron, D.: Property testing and its connection to learning and
approximation. J. ACM 45(4), 653–750 (1998)

11. Jha, M., Raskhodnikova, S.: Testing and reconstruction of Lipschitz functions with ap-
plications to data privacy. In: IEEE FOCS. pp. 433–442 (2011), full version available at
http://eccc.hpi-web.de/report/2011/057/.

12. Katz, J., Trevisan, L.: On the efficiency of local decoding procedures for error-correcting
codes. In: STOC. pp. 80–86 (2000)

13. Raskhodnikova, S.: Transitive-closure spanners: A survey. In: Goldreich, O. (ed.) Property
Testing. Lecture Notes in Computer Science, vol. 6390, pp. 167–196. Springer (2010)

14. Rubinfeld, R., Sudan, M.: Robust characterization of polynomials with applications to pro-
gram testing. SIAM J. Comput. 25(2), 252–271 (1996)

15. Rubinfeld, R., Tamir, G., Vardi, S., Xie, N.: Fast local computation algorithms. In: ICS. pp.
223–238 (2011)

16. Saks, M.E., Seshadhri, C.: Local monotonicity reconstruction. SIAM J. Comput. 39(7), 2897–
2926 (2010)


	Limitations of Local Filters of Lipschitz and Monotone Functions

