
Parameterized Property Testing of Functions∗

Ramesh Krishnan S. Pallavoor1, Sofya Raskhodnikova1, and Nithin
Varma1

1 Pennsylvania State University, University Park, PA, USA
rxp271@cse.psu.edu, sofya@cse.psu.edu, nithvarma@psu.edu

Abstract
We investigate the parameters in terms of which the complexity of sublinear-time algorithms
should be expressed. Our goal is to find input parameters that are tailored to the combinatorics
of the specific problem being studied and design algorithms that run faster when these parameters
are small. This direction enables us to surpass the (worst-case) lower bounds, expressed in terms
of the input size, for several problems. Our aim is to develop a similar level of understanding of the
complexity of sublinear-time algorithms to the one that was enabled by research in parameterized
complexity for classical algorithms.

Specifically, we focus on testing properties of functions. By parameterizing the query com-
plexity in terms of the size r of the image of the input function, we obtain testers for monotonicity
and convexity of functions of the form f : [n] → R with query complexity O(log r), with no de-
pendence on n. The result for monotonicity circumvents the Ω(logn) lower bound by Fischer
(Inf. Comput., 2004) for this problem. We present several other parameterized testers, providing
compelling evidence that expressing the query complexity of property testers in terms of the
input size is not always the best choice.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases Sublinear algorithms, property testing, parameterization, monotonicity,
convexity.

Digital Object Identifier 10.4230/LIPIcs...

1 Introduction

In this paper, we set out to investigate the parameters in terms of which the complexity
of sublinear-time algorithms should be expressed. Our goal is to find input parameters
that are tailored to the combinatorics of the specific problem being studied and design
algorithms that run faster when these parameters are small. This direction could enable
one to surpass the (worst-case) lower bounds on the problem complexity that are usually
expressed in terms of the input size. The spirit of our study is similar to that in the field
of parameterized complexity. In parameterized complexity, the focus is on expressing the
complexity of problems as a function of one or more input parameters in order to obtain
a fine-grained complexity classification, for example, of NP-hard problems. Our aim is to
develop a similar level of understanding of the complexity of sublinear-time algorithms to
the one that was enabled by research in parameterized complexity for classical algorithms.

We focus our study on the framework of property testing, introduced by Goldreich et
al. [28] and Rubinfeld and Sudan [40]. In property testing, an algorithm (an ε-tester) for

∗ This work was supported by NSF grant CCF-1422975; the third author was also supported by
Pennsylvania State University College of Engineering Fellowship and Pennsylvania State University
Graduate Fellowship.

© Ramesh Krishnan S. Pallavoor, Sofya Raskhodnikova and Nithin Varma;
licensed under Creative Commons License CC-BY

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs...
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

XX:2 Parameterized Property Testing of Functions

property P , where P is viewed as a class of functions, is given a parameter ε ∈ (0, 1) as input
and has oracle access to a function f . The tester has to accept with probability at least
2/3 if f belongs to the class P, and reject with probability at least 2/3 if f is ε-far from P,
that is, differs from every function in P on at least an ε fraction of function values. In the
context of property testing of functions, the query complexity of a tester is usually expressed
in terms of ε and the size of the domain of the input function. This works well for properties
whose query complexity depends only on the proximity parameter ε. However, for other
properties, it is not clear whether the domain size is the right parameter to express their
testing complexity.

Consider, for example, the widely studied problem of testing monotonicity of real-valued
functions (see, e.g., [27, 22, 23, 36, 26, 24, 31, 1, 32, 2, 11, 10, 13, 16, 12, 9, 17, 18, 15, 20,
19, 35, 4, 5, 21], and recent surveys [38, 14]). For functions over a discrete domain [n] (also
called the line), monotonicity testing is equivalent to testing sortedness of arrays. Algorithms
for sortedness testing have found use, for instance, in determining the “state of sortedness”
of relational databases [6], where the testing step is performed to decide on the sorting
algorithms to be run on the database. The complexity of sortedness testing (for constant ε) is
Θ(
√
n) if the tester is only allowed to make independent and uniformly random queries [26];

it is Θ(logn) if the tester is allowed to make arbitrary queries [23, 24].
From the above discussion, it might appear that one cannot make any more improvements

to the complexity of monotonicity testing over [n]. However, we argue that this is the case
only when the complexity of the problem is parameterized in terms of n, the domain size.

In this work, we ask whether better monotonicity testers can be designed by parameterizing
the query complexity in terms of the size of the image of the input function. The starting
point for our investigation is the folklore result that, for ε-testing monotonicity of Boolean
functions over [n], only O(1/ε) queries suffice. A slightly more general corollary of this result
is that monotonicity of functions over [n] with image size at most 2 can be ε-tested with only
O(1/ε) queries. The only bound for monotonicity testing (over [n]) that is expressed in terms
of the image size r of the input function is the bound of Ω(log r) for nonadaptive1 testers
due to Blais et al. [12]. We design an ε-tester for monotonicity of functions over [n] with
query complexity O((log r)/ε), where r is an upper bound on the size of the image of the
input function. This result circumvents Fischer’s lower bound of Ω(logn) for this problem
by focusing on a different parameter for measuring query complexity.

The size of the image is one of the natural parameters in terms of which one can express
the complexity of property testing algorithms. In this work, we show that there are several
testing problems for which parameterizing the complexity in terms of the image size works
well. Another example where parameterization has helped in the design of efficient testers is
the work of Jha and Raskhodnikova [34] on Lipschitz testing, even though they do not view
their results from this angle. The complexity of their testers is expressed in terms of the
image diameter. The image diameter of a function f : D 7→ R is maxx,y∈D |f(x)− f(y)|. In
many situations, the image diameter is much smaller than the domain size. We believe that
all this evidence is compelling enough to make one rethink the way in which the complexity
of sublinear-time algorithms is expressed. Our paper is a first step towards formalizing this
notion and finding what we think are the right parameters to express the complexity of some
central problems in sublinear-time algorithms.

1 Testers whose queries do not depend on the answers to previous queries are called nonadaptive; general
testers that do not satisfy this requirement are adaptive.

R. Pallavoor, S. Raskhodnikova and N. Varma XX:3

1.1 Parameters and Properties Studied in this Work
We study the dependence of complexity of monotonicity and convexity testers on the image
size of the input functions. The image of a function is defined as follows.

I Definition 1.1 (Image of a function). Let f be a function defined over a finite, discrete
domain D. The image of f , denoted Im(f), is the set {f(x) : x ∈ D} or, in other words, the
set of all values taken by f on points in D.

For the special case, when D is [n], a function f : [n] 7→ R can also be viewed as a
real-valued array of length n. Here, Im(f) is equal to the set of distinct values in the array.

We restrict our attention to real-valued functions defined over the following domains. These
are domains for which testing monotonicity and convexity have been studied extensively.

I Definition 1.2 (Hypergrid, Hypercube, Line). For x ∈ [n]d, let xi denote the ith coordinate
of x. A hypergrid is a partial order ([n]d,�) where x � y means that xi ≤ yi for all x, y ∈ [n]d
and i ∈ [d]. The partial order ([2]d,�) is called a hypercube and the total order ([n],�) is
called a line.

Next, we summarize some of the previous work on testing monotonicity and convexity of
real-valued functions.

Monotonicity. A function f : D 7→ R defined over a partial order (D,�) is monotone if
f(x) ≤ f(y) for all x, y ∈ D satisfying x � y. Monotonicity is one of the most widely studied
properties in the field of property testing [27, 22, 23, 36, 26, 24, 31, 1, 32, 2, 11, 10, 13, 16,
12, 9, 17, 18, 15, 20, 19, 35, 4, 5, 21]. The complexity of ε-testing monotonicity of functions
of the form f : [n]d 7→ R is Θ

(
d logn
ε

)
[16, 17]. For the special case of the line, the testing

complexity is Θ
(

logn
ε

)
[23, 24]. For functions defined over general poset domains D, the

complexity of monotonicity testing is O
(√
|D|/ε

)
[26].

Convexity. For a convex set D, a function f : D 7→ R is convex if ∀x, y ∈ D and t ∈ [0, 1],
f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y). For real-valued functions over [n], convexity can be
ε-tested using O(logn

ε) queries [37]. This bound is tight (for constant ε) for nonadaptive
testers [12].

1.2 Our Results
In this section, we describe the key technical contributions of our work. We design efficient
testers for monotonicity over various hypergrid domains and convexity over the line. For
monotonicity of functions over the line [n], which is equivalent to the property of sortedness
of arrays of length n, we design efficient testers under two different models of input access:
(i) query access and (ii) uniform samples. Our testers are given an upper bound r on the
image size of the input function, and their complexity is parameterized in terms of r.

Sortedness testing. We present our tester for sortedness of n-element arrays (monotonicity
over the line [n]) in Section 3. The complexity of our tester is independent of n. Our tester
has 1-sided error, that is, it always accepts a function with the property. (In contrast, the
general tester is said to have 2-sided error.) We prove the following theorem.

XX:4 Parameterized Property Testing of Functions

I Theorem 1.3. There exists a 1-sided error ε-tester making O
(

log r
ε

)
queries to test

sortedness of arrays with at most r distinct values.

An important ingredient in our sortedness tester is a nearly optimal nonadaptive tester for
this task, presented in Section 2. Its performance is summarized in the next theorem.

I Theorem 1.4. There exists a nonadaptive, 1-sided error ε-tester making O
(1
ε log r

ε

)
queries

to test sortedness of arrays with at most r distinct values.

The query complexity of our nonadaptive tester matches (for constant ε) the Ω(log r) lower
bound for nonadaptive sortedness testers in [12]. Note that for r ≥ 1/ε, the complexity of
the nonadaptive tester is O

(
log r
ε

)
. The tester that we design to prove Theorem 1.3 runs

the nonadaptive tester for r ≥ 1/ε and a different (adaptive) tester, presented in Section 3,
for r < 1/ε.

Uniform sortedness testing. The work that defined property testing [28], in addition to
the model with oracle access to the input, also considered testers that are allowed access to
function values only at points sampled uniformly and independently at random from the
domain. This model of property testing, known as uniform or sample-based testing, was
further studied by Goldreich and Ron [30], Fischer et al. [25], Berman et al. [8] and Berman
et al. [7]. The query complexity of ε-testing sortedness of n-element arrays (for constant ε)
using only uniformly and independently drawn samples is Θ(

√
n) [26]. We design optimal

(up to the dependence on ε) uniform testers whose query complexity is parameterized in
terms of the number or distinct elements in the input arrays. These results can be found in
Sections 5 and 6.

I Theorem 1.5. There exists a 1-sided error ε-tester that makes O(
√
r/ε) uniform and

independent queries to test sortedness of arrays with at most r distinct values.

I Theorem 1.6. Testing sortedness of arrays with values in [r] requires Ω(
√
r) uniform

queries, even with 2-sided error.

Monotonicity testing over hypergrids. We present our tester for monotonicity of real-
valued functions over hypergrid domains in Section 4 and prove the following theorem.

I Theorem 1.7. There exists a 1-sided error ε-tester that makes O
(
d
ε log d

ε log r
)

queries
to test monotonicity of real-valued functions f : [n]d 7→ R over the hypergrid domain, where
|Im(f)| ≤ r.

Note that our tester has a better complexity (up to log factors) than the optimal tester for
monotonicity of real-valued functions over the hypergrid domains that makes O

(
d logn
ε

)
queries [16] for small r. Parameterizing the complexity of testing in terms of the image size
of the functions being tested is what enables us to bypass the Ω

(
d logn
ε

)
lower bound for

monotonicity testing of functions over hypergrid domains in [17].

Convexity testing over the line. Finally, in Section 7, we give a nonadaptive convexity
tester for real-valued functions over the line and prove the following theorem.

I Theorem 1.8. There exists a nonadaptive, 1-sided error ε-tester for convexity of functions
f : [n] 7→ R that takes an integer r ≥ |Im(f)| as input and makes O(1/ε) queries when
r < εn/3 and O

(
log(r/ε)

ε

)
queries otherwise.

R. Pallavoor, S. Raskhodnikova and N. Varma XX:5

Recall that for real-valued functions over [n], the complexity of (nonadaptively) ε-testing
convexity (for constant ε) is Θ(logn). Contrary to this, our tester makes only a constant
number of queries when the image size of the function is small.

1.3 Related Work
A related concept of parameterized testability of graph properties was studied by Iwama and
Yoshida [33]. The focus of their work was to design efficient algorithms for the property testing
variants of several NP-hard decision problems on graphs, by expressing their complexity
in terms of parameters that have been successfully used in the literature on parameterized
algorithms. In most of the cases, the parameters that they used are NP-hard to compute. In
contrast, our goal is to determine the right input parameters in terms of which to express
the complexity of property testers and, more generally, sublinear-time algorithms. The
parameters we use are often easy to compute or estimate and, in many situations, can be
assumed to be given to the algorithm. We also believe that the parameters that we use are
tied to the intrinsic combinatorial structure of the properties and give insights into complexity
of testing them.

2 The Nonadaptive Sortedness Tester

In this section, we describe a nonadaptive, 1-sided error ε-tester for sortedness of arrays
containing at most r distinct values and prove Theorem 1.4. Our tester (Algorithm 1) uses a
proximity oblivious tester (POT) for sortedness as a subroutine.

I Definition 2.1 (POT, Goldreich and Ron [29]). A proximity oblivious tester for a property
P is an algorithm that has oracle access to a function f and
1. always accepts if f ∈ P;
2. rejects with probability at least dist(f,P) if f /∈ P, where dist(f,P) is the minimum

fraction of values in f that needs to be changed, so that f ∈ P.

Observe that a POT for P can be repeated O(1/ε) times to obtain a 1-sided error ε-tester for
P . We note that Definition 2.1 is a special case of the definition of POT in [29]. Specifically,
Goldreich and Ron [29] allow the rejection probability of a POT to be a non-decreasing
function of dist(f,P). However, the special case in Definition 2.1 is sufficient for our purposes.

We now give an overview of Algorithm 1. It runs for O(1/ε) iterations. In each iteration,
it first runs a POT for sortedness on a subarray B of the input array A consisting of 1 + 2r/ε
(nearly) equally spaced indices. Next, it picks an index i ∈ [n] uniformly at random. It
compares A[i] with the array values of the indices closest to i that were included in B.
Algorithm 1 rejects if either of these steps finds elements out of order.

At least three distinct POTs for sortedness of arrays with O(logn) query complexity are
known [23, 10, 16]. We can use any of them in Algorithm 1. Note that Algorithm 1 is not
proximity oblivious itself, as it uses the proximity parameter ε to determine its queries. For
simplicity, we assume throughout that 2r/ε is an integer that divides n.

Proof of Theorem 1.4. We prove that Algorithm 1 is a nonadaptive, 1-sided error ε-tester
making O

(1
ε log r

ε

)
queries to test sortedness of arrays with at most r distinct values.

Algorithm 1 is nonadaptive, since its queries can be chosen in advance. It has 1-sided error as
it always accepts sorted arrays. Lemmas 2.2 and 2.3 complete the proof of Theorem 1.4. J

I Lemma 2.2. Algorithm 1 makes O
(1
ε log r

ε

)
queries.

XX:6 Parameterized Property Testing of Functions

Algorithm 1: The Nonadaptive Sortedness Tester
input : query access to an array A of size n, an upper bound r on the number of

distinct values in A, and a distance parameter ε ∈ (0, 1).

1 Let B be the subarray of A consisting of the indices 1, εn2r ,
2εn
2r , . . . ,

(2r
ε − 1

)
εn
2r , n.

// No need to explicitly construct B.
2 repeat

⌈ 8
ε

⌉
times

3 Run a POT for sortedness of arrays (e.g., from [23], [10] or [16]) on B and reject if
it rejects.

4 Query an index i from A uniformly at random.
5 Set k =

⌊ 2ri
εn

⌋
+ 1. // Note that B[k] = A

[
(k−1)εn

2r

]
and B[k + 1] = A

[
kεn
2r
]
.

6 Query B[k] and B[k + 1].
7 Reject if (B[k], A[i], B[k + 1]) is not in sorted order.
8 Accept.

Proof. The query complexity of Step 3 is O(log |B|) = O(log(r/ε)). Steps 4-7 make a
constant number of queries. Steps 3-7 are executed O (1/ε) times. Hence, the overall query
complexity of the tester is O

(1
ε log r

ε

)
. J

Recall that an array is ε-far from sorted if at least an ε fraction of elements need to be
modified to make it sorted; otherwise, it is ε-close to sorted.

I Lemma 2.3. Algorithm 1, with probability at least 2/3, rejects every array that has at
most r distinct values and is ε-far from sorted.

Proof. Consider an array A that has at most r distinct values and is ε-far from sorted. Let
B be the subarray of A as defined in Step 1 of Algorithm 1. If B is ε

7 -far from sorted, then
by the definition of POT for sortedness, Step 3 of our tester rejects with probability at least
ε
7 in each iteration. In the rest of the proof, we consider the case when B is ε

7 -close to sorted.

I Claim 2.4. If B is ε
7 -close to sorted, then Steps 4-7 reject with probability at least ε

7 in
each iteration.

Proof. The subarray B consists of 1 + 2r/ε (nearly) equally spaced indices, which partition
A into 2r/ε intervals of nearly the same size. Let I = {I1, I2, . . . , I2r/ε} denote the set
of these intervals. Here, I1 denotes the interval2

[
2.. εn2r − 1

]
and, for k > 1, the interval[

(k−1)εn
2r + 1..kεn2r − 1

]
is denoted by Ik. Note that, by definition, B[k] and B[k + 1] denote

the values of the elements in A present immediately to the left and right of Ik, respectively.
An interval Ik is nearly-constant if B[k] = B[k + 1]. Let Ct be the set of arrays with all

their values equal to t. Let A[Ik] denote the subarray of A on the indices in Ik. Let d(Ik)
and D(Ik) denote the fractional and absolute Hamming distance of A[Ik] from the property
CB[k]. Note that d(Ik) = D(Ik)/|Ik|.

We now prove Claim 2.4 as follows in two steps. First, we show that
∑
Ik∈I′ D(Ik) > εn/7,

where I ′ = {Ik ∈ I : Ik is nearly-constant}. Second, we show that Steps 4-7 of Algorithm 1
reject with probability at least

∑
k∈I′ D(Ik)/n in each iteration.

Since B is ε
7 -close to sorted, there exists a set S of at most ε|B|/7 indices in B whose

values can be changed to make B sorted. Note that, for r ≥ 3, we have |S| < r/3 since

2 We use [a..b] to denote {a, a + 1, . . . , b− 1, b} for a, b ∈ Z, a < b.

R. Pallavoor, S. Raskhodnikova and N. Varma XX:7

|B| = 1 + 2r/ε. Consider the set of intervals E1 in I adjacent to at least one index from S.
As each index in S is adjacent to at most two intervals, |E1| < 2r/3.

Let E2 denote the set of intervals in I \ E1 that are not nearly-constant. For all k such
that Ik ∈ E2, we have B[k] < B[k + 1]. This is so because, if B[k] > B[k + 1], then Ik ∈ E1
and if B[k] = B[k + 1], then Ik is nearly-constant. The total number of distinct values taken
by the elements belonging to intervals in E2 is at least |E2|. But A has at most r distinct
values, and hence, |E2| ≤ r. Consequently, |E1 ∪ E2| < 2r

3 + r = 5r
3 .

Consider the subarray A′′ of A induced by the indices in the intervals in I \ (E1 ∪ E2).
Let DS(A) denote the absolute Hamming distance of the array A to the sortedness property.
As DS(A) ≥ εn, we get DS(A′′) > εn− 5r

3 ·
εn
2r = εn

6 . Note that all the intervals in A′′ are
nearly-constant. Hence, (I \ (E1 ∪ E2)) ⊆ I ′ and, consequently,∑

Ik∈I′
D(Ik) ≥ DS(A′′) > εn

6 >
εn

7 .

This completes the first step of the proof.
Consider a nearly-constant interval Ik ∈ I ′ such that D(Ik) > 0. As B[k] = B[k + 1],

there exists D(Ik) elements in Ik whose values are not B[k], i.e.,

|{x ∈ Ik : A[x] 6= B[k]}| = D(Ik).

Algorithm 1 rejects if it samples an index x ∈ Ik in Step 4 such that B[k] = B[k + 1]
(i.e., Ik ∈ I ′) and A[x] 6= B[k]. As there are

∑
Ik∈I′ D(Ik) such indices in A, Steps 4-7 of

Algorithm 1 reject A with probability at least
∑
Ik∈I′ D(Ik)/n. Since

∑
Ik∈I′ D(Ik) > εn/7,

the proof of Claim 2.4 is complete. J

Hence, the probability that Steps 3-7 reject in each iteration is at least ε/7. The probability
that Algorithm 1 accepts after d8/εe iterations is at most (1− ε/7)8/ε ≤ e−8/7 < 1/3. This
completes the proof of Lemma 2.3. J

3 The Sortedness Tester with O
(

log r
ε

)
Query Complexity

In this section, we describe a 1-sided error ε-tester for sortedness of arrays containing at
most r distinct values and prove Theorem 1.3. The tester, described in Algorithm 2, runs
the nonadaptive tester (Algorithm 1) described in Section 2 when r ≥ 1/ε, and a different
procedure, which is described in Algorithm 2, otherwise.

Proof of Theorem 1.3. We prove that Algorithm 2 is a 1-sided error ε-tester making
O
(

log r
ε

)
queries to test sortedness of arrays with at most r distinct values. When r ≥ 1/ε,

Algorithm 2 runs Algorithm 1 and outputs its answer. By Theorem 1.4, Algorithm 1 is
a 1-sided error ε-tester with query complexity O

(1
ε log r

ε

)
which is equal to O

(
log r
ε

)
as

r ≥ 1/ε. When r < 1/ε, Algorithm 2 only rejects if it finds array elements out of order, and
so, it has 1-sided error. Lemmas 3.1 and 3.2 complete the proof of Theorem 1.3. J

I Lemma 3.1. For r < 1/ε, Algorithm 2 makes O
(

log r
ε

)
queries.

Proof. We first bound the query complexity of Steps 4-10. Let w be the number of times
Steps 4-10 are run by Algorithm 2. For k ∈ [0..w], let Tk be the snapshot of the binary search
tree T of array indices (initialized in Step 3) at the end of iteration k. Note that T0 = {1, n}
and Tw is the tree at the end of the algorithm. Let Vk = {v : v = A[i] for some i ∈ Tk}
be the set of all array values of indices in Tk. Observe that once a value v is in Vk, it

XX:8 Parameterized Property Testing of Functions

Algorithm 2: The Sortedness Tester
input : query access to an array A of size n, an upper bound r on the number of

distinct values in A, and distance parameter ε ∈ (0, 1).

1 If r ≥ 1/ε, run Algorithm 1 and return its answer.
2 If A[1] > A[n], reject.
3 Initialize a balanced binary search tree T to contain keys 1 and n.

// Define successor(i) = min{j ∈ T : j > i}; predecessor(i) = max{j ∈ T : j < i}.
4 while ∃i, j ∈ T such that j = successor(i) and |i− j| > εn

2r and A[i] < A[j] do
5 Set m =

⌊
i+j

2
⌋
and query A[m].

6 if A[i] ≤ A[m] ≤ A[j] then insert m into T else reject.
7 if i > 1 and A[predecessor(i)] = A[i] = A[m] then
8 Delete i from T .
9 if j < n and A[m] = A[j] = A[successor(j)] then

10 Delete j from T .
11 repeat

⌈ 2 ln 3
ε

⌉
times

12 Sample an index x from [n] uniformly at random and query A[x].
13 if (A[predecessor(x)], A[x], A[successor(x)]) is not in sorted order then reject.
14 Accept.

remains in Vk′ for all k′ > k. For v ∈ Vk, define successor-distance(v, Tk) = |i− successor(i)|
such that A[i] = v and A[successor(i)] 6= v, where successor is defined with respect to
the tree Tk (for v = A[n], define successor-distance(v, Tk) = 0). Consider the kth it-
eration of Steps 4-10 where k ∈ [w]. In Step 4 of kth iteration, an index i ∈ T is
chosen such that successor-distance(A[i], Tk−1) > εn/2r. At the end of the iteration,
successor-distance(A[i], Tk) = successor-distance(A[i], Tk−1)/2 ignoring the errors due to
rounding. Generalizing this argument, for each iteration k ∈ [w], there exists some
vk ∈ Vk−1 \ {A[n]}, such that successor-distance(vk, Tk) = successor-distance(vk, Tk−1)/2.

Fix v∗ ∈ Vw \{A[n]}. Let k1, k2, . . . , kq ∈ [w], where k1 < k2 < . . . < kq, be the iterations
where the choice of i in Step 4 satisfies A[i] = v∗. From the description of the tester,
for any i ∈ [2..q], we have successor-distance(v∗, Tki) = successor-distance(v∗, Tki−1)/2. By
extending this relation, we get successor-distance(v∗, Tkq

) = successor-distance(v∗, Tk1)/2q−1.
But successor-distance(v∗, Tk1) < n and εn

4r < successor-distance(v∗, Tkq) ≤ εn
2r . Solving for q,

we get

2q−1 = successor-distance(v∗, Tk1)
successor-distance(v∗, Tkq

) <
n

εn/4r = 4r
ε

;

q < log 8r
ε
.

Hence, the tester runs at most log(8r/ε) iterations where successor-distance(v∗, ·) is halved.
Accounting for all the iterations for each value in Vw \ {A[n]}, we get

w < |Vw| · log(8r/ε) ≤ r log(8r/ε),

since |Vw| ≤ r. In each iteration, the tester makes a constant number of queries. So, the
overall query complexity of Steps 4-10 is O

(
r log r

ε

)
. The query complexity of Steps 11-13 is

O(1/ε). Hence, the overall query complexity of the tester is O
(1
ε + r log r

ε

)
.

Now, we prove that O
(
r log r

ε

)
= O

(
log r
ε

)
for r < 1/ε. We have O

(
r log r

ε

)
= O

(
r log 1

ε

)
as r < 1/ε. Note that the function g(x) = x

log x is increasing for x ≥ 3. Hence, for r < 1/ε,

R. Pallavoor, S. Raskhodnikova and N. Varma XX:9

we have r
log r < 1/ε

log(1/ε) , and hence r log 1
ε < log r

ε . Therefore, the query complexity of

Algorithm 2 is O
(

log r
ε

)
. J

I Lemma 3.2. Steps 2-14 of Algorithm 2, with probability at least 2/3, reject every array
that has at most r distinct values and is ε-far from sorted, when r < 1/ε.

Proof. Consider an array A that has at most r distinct values and is ε-far from sorted,
where r < 1/ε. Algorithm 2 rejects whenever it finds elements out of order. We show that
Steps 11-13 reject with probability at least 2/3, if Steps 2-10 do not find array elements out
of order.

Consider the indices in the tree T at the end of the while loop. Let E = {j ∈ T : A[j] <
A[successor(j)]} be the indices in T whose array values differ from that of their respective
successor in T . As A has at most r distinct values, by Pigeonhole principle, |E| < r. Each
i ∈ E satisfies |i− successor(i)| ≤ εn/2r. Define E′ = {k ∈ [n] : i < k < successor(i), i ∈ E}.
Clearly, |E′| ≤ εn

2r · |E| <
εn
2 . Consider the subarray of A indexed by [n] \ E′. This

subarray is ε
2 -far from sorted as A is ε-far from sorted. Also, all k ∈ [n] \ E′ satisfy

predecessor(k) < k < successor(k) and A[predecessor(k)] = A[successor(k)] (note that the
definitions of predecessor and successor are applicable to all elements in [n]). That is, for
all such indices k, we know what the element A[k] should be if A is sorted. Recall that if
A[i] = A[j], then [i..j] constitutes a nearly-constant interval, as defined in Section 2. By the
proof method used in Lemma 2.3, there exists at least εn/2 indices of the form k ∈ [n] such
that A[predecessor(k)] = A[successor(k)] and A[k] 6= A[successor(k)]. The probability that
Steps 12 and 13 fail to capture such an index in any of its

⌈ 2 ln 3
ε

⌉
iterations is at most

(1− ε/2)
2 ln 3

ε ≤ 1/3.

J

4 The Monotonicity Tester over Hypergrids

In this section, we describe a monotonicity tester for functions over hypergrid domains and
prove Theorem 1.7. We prove the correctness of this tester using the correctness of the
sortedness tester described in Section 3, a dimension reduction theorem by Chakrabarty et
al. [15] and the work investment strategy by Berman et al. [9].

An axis-parallel line ` of the hypergrid [n]d is a set of n points that agree on all but one
coordinate. Let f |` denote the restriction of a function f to `. Note that f |` can be thought
of as a real-valued function over [n].

Algorithm 3: The Monotonicity Tester over Hypergrids
input : query access to f : [n]d 7→ R, an upper bound r on |Im(f)|, and a distance

parameter ε ∈ (0, 1).

1 for i = 1 to
⌈
3 log 4d

ε

⌉
do

2 repeat
⌈ 16d ln 4

2iε

⌉
times

3 Sample a uniformly random axis-parallel line `.
4 Repeat twice: run Algorithm 2 on the array induced by f |`, with the distance

parameter set to 2−i and the upper bound on the number of distinct elements
set to r; reject if it rejects at least once.

5 Accept.

XX:10 Parameterized Property Testing of Functions

The tester iteratively samples uniformly random axis-parallel lines, runs Algorithm 2 on each
of them, and rejects if any run of Algorithm 2 rejects. We now analyze the tester and prove
Theorem 1.7.

Proof of Theorem 1.7. We prove that Algorithm 3 is a 1-sided error ε-tester that makes
O
(
d
ε log d

ε log r
)
queries to test monotonicity of real-valued functions f : [n]d 7→ R over the

hypergrid domain, where |Im(f)| ≤ r. Algorithm 3 has 1-sided error because Algorithm 2,
which it runs as a subroutine, has 1-sided error. Lemmas 4.1 and 4.2 complete the proof of
Theorem 1.7. J

I Lemma 4.1. Algorithm 3 makes O
(
d
ε log d

ε log r
)

queries.

Proof. The query complexity of a single execution of Step 4 during the ith iteration of
the outermost loop (Step 1) is O(2i log r). As Step 4 is repeated O

(
d

2iε

)
times in the

ith iteration, the overall query complexity of the ith iteration of the tester is O
(
d
ε log r

)
. The

outermost loop is executed O(log d
ε) times, and hence the query complexity of the tester is

O
(
d
ε log d

ε log r
)
. J

I Lemma 4.2. Algorithm 3, with probability at least 2/3, rejects every function over the
hypergrid domain which is ε-far from sorted and has image size is at most r.

Proof. Let f : [n]d 7→ R be ε-far from monotone, with |Im(f)| ≤ r. Let Ln,d denote the set
of all axis-parallel lines in [n]d and dM(f) denote the relative distance of f to monotonicity.
We also use dM(f |`) to denote the relative distance to monotonicity of the function f |`. We
have |Im(f |`)| ≤ r since |Im(f)| ≤ r. We use the following dimension reduction theorem
proved by Chakrabarty et al. [15].

I Theorem 4.3 (Chakrabarty et al. [15]).

E`←Ln,d
[dM(f |`)] ≥

dM(f)
4d .

We note that Theorem 4.3 is a special case of the dimension reduction theorem proved
in [15]. Clearly, if dM(f) ≥ ε, then, E`←Ln,d

[dM(f |`)] ≥ ε/4d. We use the work investment
strategy due to Berman et al. [9] to extend the monotonicity tester on the line domain to
the hypergrid domain.

I Theorem 4.4 (Berman et al. [9]). For a random variable X ∈ [0, 1] with E[X] ≥ µ for
µ < 1/2, let pi = Pr[X ≥ 1

2i] and δ ∈ (0, 1) be the desired probability of error. Let ki = 4 ln 1/δ
2iµ .

Then,
d3 log(1/µ)e∏

i=1
(1− pi)ki ≤ δ.

Consider running Algorithm 3 on f . Let X = dM(f |`), where ` is sampled uniformly at
random from Ln,d. We apply the work investment strategy (Theorem 4.4) on X with error
probability δ = 1/4. By Theorem 4.3, E[X] ≥ ε/4d. Thus, in Theorem 4.4, we set µ = ε/4d
and ki = 16d ln 4

2iε for all i ∈
[⌈

3 log 4d
ε

⌉]
. By Theorem 4.4, with probability at least 3/4, for

some i ∈
[⌈

3 log 4d
ε

⌉]
, we sample a line ` such that dM(f |`) ≥ 2−i in Step 3. Conditioned on

sampling such a line, Step 4 rejects ` with probability at least 8/9. Thus, given a function
f that is ε-far from sorted, Algorithm 3 rejects f with probability at least 3

4 ·
8
9 = 2

3 , as
required. This completes the proof of Lemma 4.2. J

R. Pallavoor, S. Raskhodnikova and N. Varma XX:11

Note on a nonadaptive tester for hypergrids. We can get a nonadaptive, 1-sided error
ε-tester for monotonicity over hypergrids by using Algorithm 1 instead of Algorithm 2 in
Step 4 of Algorithm 3. The same analysis goes through for this case and the overall query
complexity of the tester is O

(
d
ε log d

ε log rd
ε

)
.

5 The Uniform Tester for Sortedness

In this section, we describe a nonadaptive ε-tester that makes O(
√
r/ε) uniform and inde-

pendent queries to test sortedness of arrays containing at most r distinct values and prove
Theorem 1.5.

Our tester is Algorithm 4. The bound on the query complexity of the tester follows
directly from its description. The tester has 1-sided error as it always accepts sorted arrays.
In the rest of the section, we show that, with high probability, the tester rejects arrays that
are ε-far from sorted.

Algorithm 4: The Uniform Sortedness Tester
input : query access to an array A of size n, an upper bound r on the number of

distinct values in A, and a distance parameter ε ∈ (0, 1).

1 Sample
⌈

24
√
r

ε

⌉
indices from A uniformly and independently at random.

2 Reject if the array restricted to the sampled indices is not sorted; otherwise, accept.

I Lemma 5.1. Algorithm 4, with probability at least 2/3, rejects every array that has at
most r distinct elements and is ε-far from sorted.

Proof. Consider an array A that has at most r distinct values and is ε-far from sorted.
Recall that a pair of indices (x, y), where x, y ∈ [n] and x < y, is violated in an array A if
A(x) > A(y). Consider the undirected violation graph G = ([n], E) of A, where an edge
{u, v} ∈ E if (u, v) is a violated pair. Dodis et al. [22, Lemma 7] show that if A is ε-far from
sorted then G has a matching M of size at least εn/2.

For a pair (x, y) ∈ [n] × [n] such that x < y, we refer to x as its lower endpoint and
y as its higher endpoint. We first partition the pairs in M into r classes as follows. Let
v1 < v2 < · · · < vr be the values in the range. A pair (x, y) ∈ M such that x < y belongs
to the ith class Ci, if A(x) = vi. Note that C1 is empty. For each i ∈ [r], let CL

i and
CH
i denote the set of lower and higher endpoints of pairs in Ci, respectively. Note that
|Ci| = |CL

i | = |CH
i |. For each i ∈ [r], define the ith lower bucket BL

i to consist of the smallest
d|Ci|/2e indices in CL

i and the ith higher bucket BH
i to consist of the largest d|Ci|/2e indices

in CH
i . Note that

∣∣∣⋃i∈[r] B
L
i

∣∣∣ =
∣∣∣⋃i∈[r] B

H
i

∣∣∣ ≥ εn/4. It is easy to see that for each i ∈ [r],
every pair in BL

i × BH
i is a violated pair. Therefore, if an algorithm samples indices from

both BL
i and BH

i , for some i ∈ [r], it rejects. To bound the probability of this event from
below, we use the following generalization of the Birthday Paradox proved by Goldreich et
al. [27, Lemma 19].

I Claim 5.2 ([27, Lemma 19]). Let S1, S2 . . . , Sr, T1, T2 . . . , Tr be disjoint subsets of a
universe U . For each i ∈ [r], let pi = |Si|/|U | and qi = |Ti|/|U |. Let ρ =

∑
i min{pi, qi}.

Then, if we uniformly sample 6
√
r/ρ elements from U , with probability at least 2/3, for some

i ∈ [r], the sample will contain at least one element from both Si and Ti.

XX:12 Parameterized Property Testing of Functions

If we set Si = BL
i and Ti = BH

i for each i ∈ [r] in Claim 5.2, we have ρ ≥ ε/4. Therefore,
a uniform sample of 24

√
r/ε points from [n], with probability at least 2/3, will have, for

some i ∈ [r], an index from BL
i and BH

i , and the algorithm will reject. This completes the
proof of the lemma. J

6 A Lower Bound for the Uniform Sortedness Tester

In this section, we prove that Ω(
√
r) uniform queries are required to test sortedness of an

array with at most r distinct values, even when one allows for 2-sided error, and prove
Theorem 1.6. The proof uses Yao’s principle [41], the version with two distributions (see,
e.g., Raskhodnikova and Smith [39]). We first define two hard distributions P and N̂ on
arrays with r distinct values such that every array drawn from P is in sorted order and every
array drawn from N̂ is 1

8 -far from sorted. We then show that, for any tester that uses o(
√
r)

uniform queries, the statistical difference between tester’s views of the two distributions is
small, and hence, with high probability, it cannot distinguish between the distributions.

The statistical distance between two distributions D1 and D2, denoted by SD(D1,D2), is
defined as

SD(D1,D2) = max
S⊆(support(D1)∪support(D2))

(∣∣∣∣ Pr
x←D1

[x ∈ S]− Pr
x←D2

[x ∈ S]
∣∣∣∣) .

We write D1 ≈δ D2 to denote SD(D1,D2) ≤ δ.

Proof of Theorem 1.6. First, we define distributions P and N on arrays of size n taking
values in the set [r], where n ≥ 16r ln 8r. Without loss of generality, we assume that r is an
even number that divides n.

The distribution P is constructed as follows. Partition an n-element array into r/2
blocks, each of length 2n/r. For i ∈ [r/2], set the values in the ith block of the array
to ((2i− 1), 2i, 2i, . . . , 2i) with probability 1/2 and ((2i− 1), (2i− 1), . . . , (2i− 1), 2i) with
probability 1/2, independent of the other blocks.

The distribution N is constructed as follows. As before, partition an n-element array into
r/2 blocks, each of length 2n/r. For i ∈ [r/2], set the first value in the ith block to (2i− 1)
and the last value to 2i. The values at all other indices in that block are set to either (2i− 1)
or 2i uniformly and independently at random.

Note that every array drawn from P is in sorted order. We will show that, with high
probability, an array drawn from N is 1

8 -far from sorted.

I Lemma 6.1. Let E denote the event that an array chosen according to N is 1
8 -far from

sorted. Then,

Pr[E] > 5
6 .

Proof. Consider an array A chosen according to N . Consider the ith block of A for some
i ∈ [r/2]. Let Y2i denote the number of elements with value 2i in the first half of this block
and Y2i−1 denote the number of elements with value (2i− 1) in the second half of the block.
As the size of each half of the block is n/r, and the value at each index (except for the first
and the last index) is assigned either (2i− 1) or 2i uniformly and independently at random,

E[Y2i] = E[Y2i−1] = n

2r −
1
2 .

R. Pallavoor, S. Raskhodnikova and N. Varma XX:13

By a Chernoff bound, for all i ∈
[
r
2
]
,

Pr
[
Y2i ≤

n

4r

]
= Pr

[
Y2i−1 ≤

n

4r

]
= Pr

[
Y2i−1 ≤

(
1− n− 2r

2(n− r)

)(
n

2r −
1
2

)]
≤ exp

(
− n

16r ·
(n− 2r)2

n(n− r)

)
<

1
6r .

If Y2i > n/4r and Y2i−1 > n/4r, then at least n/4r elements in ith block need to be changed
to make it sorted, as all the indices with value 2i in the first half or all the indices with value
2i− 1 in the last half need to be changed. By the union bound,

Pr

 r∨
j=1

(
Yj ≤

n

4r

) ≤ r · Pr
[
Y1 ≤

n

4r

]
<

1
6 .

With probability at least 5/6, we have Y2i > n/4r and Y2i−1 > n/4r for all i ∈ [r/2].
This implies that at least n/4r elements need to be changed in each of the r/2 blocks to
make it sorted. Hence, with probability at least 5/6, the array A is 1

8 -far from sorted. J

Denote the conditional distribution N|E by N̂ . Any instance sampled according to N̂ is
1
8 -far from sorted. The statistical distance SD(N , N̂) can be bounded using the following
lemma proven by Raskhodnikova and Smith [39].

I Lemma 6.2 ([39, Claim 4]). Let E be an event that happens with probability at least 1− δ
under the distribution D. Then, D ≈δ′ D|E, where δ′ = 1

1−δ − 1.

Applying Lemma 6.2 to N and N̂ , we get N ≈1/5 N̂ .
Consider any 1

8 -tester for sortedness that makes q queries where q ≤
√
r/5. Define P-view

to be the distribution of values at the q locations queried by the tester in an array sampled
according to P. Similarly, define N -view and N̂ -view. Next, we show that it is hard to
distinguish P-view from N̂ -view.

I Lemma 6.3.
SD(P-view, N̂ -view) < 1

3 .

Proof. Let F denote the event that at least 2 out of the tester’s q uniform samples from an
array A are from the same block. An upper bound on the probability of this event can be
obtained using the following lemma.

I Lemma 6.4 (Bellare and Rogaway [3]). Consider q balls and N bins, where each ball is
assigned uniformly and independently at random to one of the bins. The probability that there
exists a pair of balls assigned to the same bin is at most q(q−1)

2N .

By Lemma 6.4, we get Pr[F] ≤ q(q−1)
2·r/2 < q2

r = 1
25 . Then, by Lemma 6.2,

P-view ≈1/24 P-view|F ; (1)
N -view ≈1/24 N -view|F . (2)

Since N ≈1/5 N̂ , the definition of statistical difference implies that

N -view ≈1/5 N̂ -view. (3)

XX:14 Parameterized Property Testing of Functions

It remains to show that P-view|F = N -view|F . Let x be an index in the ith block, for
some i ∈ [r/2]. If x is neither the first nor the last index of ith block, then Pr[A[x] =
(2i− 1)] = Pr[A[x] = 2i] = 1/2 irrespective of whether A← P or A← N . If x is the first or
the last index of the ith block, then A[x] is fixed to the same value under both P and N . If F
holds, then at most 1 index from each block is sampled by the tester. By the definition of P
and N , for any two indices from different blocks, the values assigned to them are independent
of each other. Hence, P-view|F = N -view|F . By (1)-(3),

SD(P-view, N̂ -view) ≤ 1
24 + 1

24 + 1
5 <

1
3 .

This completes the proof of Lemma 6.3. J

By Yao’s principle [41], as stated in [39, Claim 5], for q ≤
√
r/5, it is hard for any 1

8 -tester
using q uniform queries to distinguish P from N̂ . Thus, uniform testers for sortedness of
arrays with values in [r] require Ω(

√
r) queries. This completes the proof of Theorem 1.6. J

7 Testing Convexity

In this section, we describe a nonadaptive tester for convexity of functions f : [n] 7→ R and
prove Theorem 1.8. Recall that a function f : [n] 7→ R is convex if f(i)−f(i−1) ≤ f(i+1)−f(i)
for 1 < i ≤ n. Our convexity tester is Algorithm 5. It uses the nonadaptive convexity tester
of Parnas et al. [37] as a black box.

Algorithm 5: The Convexity Tester
input : query access to f : [n] 7→ R, an upper bound r on |Im(f)|, and a distance

parameter ε ∈ (0, 1).

if r ≥ εn
3 then

1 Run the ε-tester for convexity by Parnas et al. [37] on f and reject if it rejects.
else

2 Let M ← [r + 1, . . . , n− r].
3 Sample

⌈ 4
ε

⌉
indices from M uniformly and independently at random.

4 Reject if f restricted to those indices is not constant.
5 Accept.

The query complexity of our tester is O(1/ε) when r < εn/3, as is evident from its
description. In the other case, n ≤ 3r/ε, our tester runs the tester of [37], which makes
O(logn/ε) queries. Substituting the upper bound on n, we get the query complexity bound
claimed in Theorem 1.8.

Given a function f : [n] 7→ R and a set S ⊆ [n], let fS denote the restriction of f to
the indices in S whenever S 6= ∅. To prove the correctness of our tester, we first prove the
following characterization of convex functions with image size at most r.

I Claim 7.1. If f : [n] 7→ R is convex and |Im(f)| ≤ r, then fM for M = [r + 1..n− r] is a
constant function.

Proof. We can assume that r < n/2, for otherwise, M = ∅. Assume for the sake of
contradiction that there exists points x, x + 1 ∈ M such that fM (x) 6= fM (x + 1). If
fM (x) < fM (x+ 1), then f has to be monotonically increasing on the domain restricted to
[x + 1, . . . , n], which has more than r elements in it as x < n − r + 1. By the pigeonhole

R. Pallavoor, S. Raskhodnikova and N. Varma XX:15

principle, this results in a contradiction, as |Im(f)| ≤ r. If fM (x) > fM (x+ 1), then f has
to be monotonically decreasing on the set [1, . . . , x+ 1], which has more than r elements in
it since x ≥ r. By the pigeonhole principle, this also leads to a contradiction, as |Im(f)| ≤ r.
Hence, f can take only one value on M and therefore, fM is a constant function. J

We will now show that the tester accepts every function that is convex and rejects with
probability at least 2/3, every function that is ε-far from convex.

I Lemma 7.2. Consider a function f : [n] 7→ R. Algorithm 5, on input r ≥ |Im(f)| and ε,
accepts if f is convex and rejects, with probability at least 2/3, if f is ε-far from convex.

Proof. If r ≥ εn
3 , Algorithm 5 runs the tester for convexity by [37], and so the correctness

follows from their analysis.
Consider the case where r < εn/3. It follows from Claim 7.1 that Algorithm 5 accepts

f if it is convex. Now assume that f is ε-far from convex. It remains to prove that fM
is ε/3-far from being a constant function, where M = [r + 1, . . . , n − r]. Assume for the
sake of contradiction that fM is ε/3-close to constant. We will construct a convex function
g : [n] 7→ R such that g is ε-close to f and satisfies |Im(g)| ≤ r. This will give us the required
contradiction. Let the constant function closest to fM be h, where h(x) = c for every x ∈M .
The function g is then defined as a constant function taking the value c on all points in [n].
Since the Hamming distance of fM from h is at most εn/3, the total Hamming distance of
f from g is at most εn/3 + 2r < εn. This contradicts the fact that f is ε-far from convex.
Hence, fM is ε

3 -far from being a constant function. The probability that 4/ε samples fail to
detect that fM is ε/3-far from constant is at most (1− ε/3)4/ε ≤ exp(−4/3) < 1/3. J

References

1 Nir Ailon and Bernard Chazelle. Information theory in property testing and monotonicity
testing in higher dimension. Inf. Comput., 204(11):1704–1717, 2006.

2 Tugkan Batu, Ronitt Rubinfeld, and Patrick White. Fast approximate PCPs for multidi-
mensional bin-packing problems. Inf. Comput., 196(1):42–56, 2005.

3 Mihir Bellare and Phillip Rogaway. Lecture notes on modern cryptography, 2005. URL:
https://cseweb.ucsd.edu/~mihir/cse207/w-birthday.pdf.

4 Aleksandrs Belovs and Eric Blais. Quantum algorithm for monotonicity testing on the
hypercube. Theory of Computing, 11:403–412, 2015.

5 Aleksandrs Belovs and Eric Blais. A polynomial lower bound for testing monotonicity. In
Proceedings of the 48th Annual ACM SIGACT Symposium on Theory of Computing, STOC
2016, Cambridge, MA, USA, June 18-21, 2016, pages 1021–1032, 2016.

6 Sagi Ben-Moshe, Yaron Kanza, Eldar Fischer, Arie Matsliah, Mani Fischer, and Carl
Staelin. Detecting and exploiting near-sortedness for efficient relational query evaluation.
In Database Theory - ICDT 2011, 14th International Conference, Uppsala, Sweden, March
21-24, 2011, Proceedings, pages 256–267, 2011.

7 Piotr Berman, Meiram Murzabulatov, and Sofya Raskhodnikova. The power and limita-
tions of uniform samples in testing properties of figures. In 36th IARCS Annual Conference
on Foundations of Software Technology and Theoretical Computer Science, FSTTCS 2016,
December 13-15, 2016, Chennai, India, pages 45:1–45:14, 2016.

8 Piotr Berman, Meiram Murzabulatov, and Sofya Raskhodnikova. Testing convexity of
figures under the uniform distribution. In 32nd International Symposium on Computational
Geometry, SoCG 2016, June 14-18, 2016, Boston, MA, USA, pages 17:1–17:15, 2016.

https://cseweb.ucsd.edu/~mihir/cse207/w-birthday.pdf

XX:16 Parameterized Property Testing of Functions

9 Piotr Berman, Sofya Raskhodnikova, and Grigory Yaroslavtsev. Lp-testing. In Symposium
on Theory of Computing, STOC 2014, New York, NY, USA, May 31 - June 03, 2014,
pages 164–173, 2014.

10 Arnab Bhattacharyya, Elena Grigorescu, Kyomin Jung, Sofya Raskhodnikova, and David P.
Woodruff. Transitive-closure spanners. SIAM J. Comput., 41(6):1380–1425, 2012.

11 Eric Blais, Joshua Brody, and Kevin Matulef. Property testing lower bounds via commu-
nication complexity. Computational Complexity, 21(2):311–358, 2012.

12 Eric Blais, Sofya Raskhodnikova, and Grigory Yaroslavtsev. Lower bounds for testing
properties of functions over hypergrid domains. In IEEE 29th Conference on Computational
Complexity, CCC 2014, Vancouver, BC, Canada, June 11-13, 2014, pages 309–320, 2014.

13 Jop Briët, Sourav Chakraborty, David García-Soriano, and Arie Matsliah. Monotonicity
testing and shortest-path routing on the cube. Combinatorica, 32(1):35–53, 2012.

14 Deeparnab Chakrabarty. Monotonicity testing. In Encyclopedia of Algorithms, pages 1352–
1356. Springer, 2016.

15 Deeparnab Chakrabarty, Kashyap Dixit, Madhav Jha, and C. Seshadhri. Property testing
on product distributions: Optimal testers for bounded derivative properties. In Proceedings
of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2015,
San Diego, CA, USA, January 4-6, 2015, pages 1809–1828, 2015.

16 Deeparnab Chakrabarty and C. Seshadhri. Optimal bounds for monotonicity and Lipschitz
testing over hypercubes and hypergrids. In Symposium on Theory of Computing Conference,
STOC’13, Palo Alto, CA, USA, June 1-4, 2013, pages 419–428, 2013.

17 Deeparnab Chakrabarty and C. Seshadhri. An optimal lower bound for monotonicity test-
ing over hypergrids. Theory of Computing, 10:453–464, 2014.

18 Deeparnab Chakrabarty and C. Seshadhri. An o(n) monotonicity tester for Boolean func-
tions over the hypercube. SIAM J. Comput., 45(2):461–472, 2016.

19 Xi Chen, Anindya De, Rocco A. Servedio, and Li-Yang Tan. Boolean function monotonicity
testing requires (almost) n1/2 non-adaptive queries. In Proceedings of the Forty-Seventh
Annual ACM on Symposium on Theory of Computing, STOC ’15, pages 519–528, New
York, NY, USA, 2015.

20 Xi Chen, Rocco A. Servedio, and Li-Yang Tan. New algorithms and lower bounds for mono-
tonicity testing. In 55th IEEE Annual Symposium on Foundations of Computer Science,
FOCS 2014, Philadelphia, PA, USA, October 18-21, 2014, pages 286–295, 2014.

21 Kashyap Dixit, Sofya Raskhodnikova, Abhradeep Thakurta, and Nithin M. Varma. Erasure-
resilient property testing. In 43rd International Colloquium on Automata, Languages, and
Programming, ICALP 2016, July 11-15, 2016, Rome, Italy, pages 91:1–91:15, 2016.

22 Yevgeniy Dodis, Oded Goldreich, Eric Lehman, Sofya Raskhodnikova, Dana Ron, and Alex
Samorodnitsky. Improved testing algorithms for monotonicity. In RANDOM-APPROX’99,
Berkeley, CA, USA, August 8-11, 1999, Proceedings, pages 97–108, 1999.

23 Funda Ergün, Sampath Kannan, Ravi Kumar, Ronitt Rubinfeld, and Mahesh Viswanathan.
Spot-checkers. J. Comput. Syst. Sci., 60(3):717–751, 2000.

24 Eldar Fischer. On the strength of comparisons in property testing. Inf. Comput.,
189(1):107–116, 2004.

25 Eldar Fischer, Oded Lachish, and Yadu Vasudev. Trading query complexity for sample-
based testing and multi-testing scalability. In IEEE 56th Annual Symposium on Founda-
tions of Computer Science, FOCS 2015, Berkeley, CA, USA, 17-20 October, 2015, pages
1163–1182, 2015.

26 Eldar Fischer, Eric Lehman, Ilan Newman, Sofya Raskhodnikova, Ronitt Rubinfeld, and
Alex Samorodnitsky. Monotonicity testing over general poset domains. In Proceedings
on 34th Annual ACM Symposium on Theory of Computing, May 19-21, 2002, Montréal,
Québec, Canada, pages 474–483, 2002.

R. Pallavoor, S. Raskhodnikova and N. Varma XX:17

27 Oded Goldreich, Shafi Goldwasser, Eric Lehman, Dana Ron, and Alex Samorodnitsky.
Testing monotonicity. Combinatorica, 20(3):301–337, 2000.

28 Oded Goldreich, Shafi Goldwasser, and Dana Ron. Property testing and its connection to
learning and approximation. J. ACM, 45(4):653–750, 1998.

29 Oded Goldreich and Dana Ron. On proximity-oblivious testing. SIAM J. Comput.,
40(2):534–566, 2011.

30 Oded Goldreich and Dana Ron. On sample-based testers. TOCT, 8(2):7, 2016.
31 Shirley Halevy and Eyal Kushilevitz. A lower bound for distribution-free monotonicity test-

ing. In APPROX-RANDOM 2005, Berkeley, CA, USA, August 22-24, 2005, Proceedings,
pages 330–341, 2005.

32 Shirley Halevy and Eyal Kushilevitz. Testing monotonicity over graph products. Random
Struct. Algorithms, 33(1):44–67, 2008.

33 Kazuo Iwama and Yuichi Yoshida. Parameterized testability. In Innovations in Theoretical
Computer Science, ITCS’14, Princeton, NJ, USA, January 12-14, 2014, pages 507–516,
2014.

34 Madhav Jha and Sofya Raskhodnikova. Testing and reconstruction of Lipschitz functions
with applications to data privacy. SIAM J. Comput., 42(2):700–731, 2013.

35 Subhash Khot, Dor Minzer, and Muli Safra. On monotonicity testing and Boolean iso-
perimetric type theorems. In IEEE 56th Annual Symposium on Foundations of Computer
Science, FOCS 2015, Berkeley, CA, USA, 17-20 October, 2015, pages 52–58, 2015.

36 Eric Lehman and Dana Ron. On disjoint chains of subsets. J. Comb. Theory, Ser. A,
94(2):399–404, 2001.

37 Michal Parnas, Dana Ron, and Ronitt Rubinfeld. On testing convexity and submodularity.
SIAM J. Comput., 32(5):1158–1184, 2003.

38 Sofya Raskhodnikova. Testing if an array is sorted. In Encyclopedia of Algorithms, pages
2219–2222. Springer, 2016.

39 Sofya Raskhodnikova and Adam D. Smith. A note on adaptivity in testing properties
of bounded degree graphs. Electronic Colloquium on Computational Complexity (ECCC),
13(089), 2006.

40 Ronitt Rubinfeld and Madhu Sudan. Robust characterizations of polynomials with applic-
ations to program testing. SIAM J. Comput., 25(2):252–271, 1996.

41 Andrew Chi-Chih Yao. Probabilistic computations: Toward a unified measure of complexity
(extended abstract). In 18th Annual Symposium on Foundations of Computer Science,
Providence, Rhode Island, USA, 31 October - 1 November 1977, pages 222–227, 1977.

	Introduction
	Parameters and Properties Studied in this Work
	Our Results
	Related Work

	The Nonadaptive Sortedness Tester
	The Sortedness Tester with O(logr) Query Complexity
	The Monotonicity Tester over Hypergrids
	The Uniform Tester for Sortedness
	A Lower Bound for the Uniform Sortedness Tester
	Testing Convexity

