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Abstract

Property testers are algorithms that distinguish inputs with a given property from those
that are far from satisfying the property. Far means that many characters of the input must
be changed before the property arises in it. Property testing was introduced by Rubinfeld
and Sudan in the context of linearity testing and first studied in a variety of other contexts
by Goldreich, Goldwasser and Ron. The query complexity of a property tester is the number
of input characters it reads. This thesis is a detailed investigation of properties that are
and are not testable with sublinear query complexity.

We begin by characterizing properties of strings over the binary alphabet in terms of
their formula complexity. Every such property can be represented by a CNF formula. We
show that properties of n-bit strings defined by 2CNF formulas are testable with O(

√
n)

queries, whereas there are 3CNF formulas for which the corresponding properties require
Ω(n) queries, even for adaptive tests.

We show that testing properties defined by 2CNF formulas is equivalent, with respect
to the number of required queries, to several other function and graph testing problems.
These problems include: testing whether Boolean functions over general partial orders are
close to monotone, testing whether a set of vertices is close to one that is a vertex cover of
a specific graph, and testing whether a set of vertices is close to a clique.

Testing properties that are defined in terms of monotonicity has been extensively inves-
tigated in the context of the monotonicity of a sequence of integers and the monotonicity of
a function over the m-dimensional hypercube {1, . . . , a}m. We study the query complexity
of monotonicity testing of both Boolean and integer functions over general partial orders.
We show upper and lower bounds for the general problem and for specific partial orders.

A few of our intermediate results are of independent interest.
1. If strings with a property form a vector space, adaptive 2-sided error tests for the

property have no more power than non-adaptive 1-sided error tests.

2. Random LDPC codes with linear distance and constant rate are not locally testable.

3. There exist graphs with many edge-disjoint induced matchings of linear size.

In the final part of the thesis, we initiate an investigation of property testing as applied
to images. We study visual properties of discretized images represented by n× n matrices
of binary pixel values. We obtain algorithms with the number of queries independent of n
for several basic properties: being a half-plane, connectedness and convexity.

Thesis Supervisor: Michael Sipser
Title: Professor of Mathematics
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Chapter 1

Introduction

1.1 Property Testing

Practical computations are typically associated with polynomial time algorithms. However,

with the emergence of the Internet, we are often faced with massive datasets which are so

huge that in some scenarios it is impractical to read every single bit of them. Examples

of such large datasets include all documents in the World Wide Web, measurements from

scientific experiments, the human DNA sequence of the 3.2 billion base pairs recently com-

pleted by the genome project, high-resolution images and census data. Given that reading

some data takes too long, it is natural to ask what properties of the data can be detected

by sublinear algorithms that read only a small portion of the data.

Since, in general, most problems are not solvable exactly and deterministically with this

restriction, the question becomes more interesting when sublinear algorithms considered

are allowed to be probabilistic and approximate. The traditional notion of approximation

requires that the output should be close to the desired value. This thesis studies decision

problems, where the desired answer is either accept or reject. For such problems, the tradi-

tional notion of approximation is meaningless because there are only two possible answers.

A notion of approximation tailored for decision problems, called property testing, was in-

troduced by Rubinfeld and Sudan [RS96] in the context of testing of linearity of functions.

It was first applied to combinatorial objects, such as graphs, by Goldreich, Goldwasser and

Ron [GGR98]. Property testing approaches approximation of decision problems by trans-

forming languages into promise problems [ESY84] where certain inputs are excluded from

consideration.
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A standard probabilistic algorithm accepts positive instances (that have the property)

and rejects negative instances (that do not have the property) with high probability. A

property testing algorithm is still required to accept positive instances with high probabil-

ity1. However, only those negative instances that are far away from every positive instance

should be rejected with high probability1. How far is dictated by a distance parameter ε,

which plays a role similar to that of an approximation factor in standard approximation

algorithms. Two instances are ε-far if they differ on an ε-fraction of their characters.2

Thus, we exclude from consideration negative instances which are borderline, that is, close

to positive instances. We cannot hope that a sublinear algorithm will find the few places

on which borderline instances differ from positive instances. Allowing arbitrary errors on

borderline instances enables us to design much more efficient tests.

Property testing algorithms, as we defined them, can in general have 2-sided error and

be adaptive, namely, they can make input queries that depend on answers to previous

queries. An algorithm has 1-sided error if it always accepts an input that has the property.

An algorithm is non-adaptive if it makes all input queries in advance, before getting the

answers. In addition to possible practical significance, 1-sided error and non-adaptivity are

useful theoretical tools for obtaining hardness results.

Property testing algorithms offer several benefits: they save time, are good in settings

where some errors are tolerable and where the data is constantly changing, and can also

provide a fast sanity check to rule out bad inputs. They are also useful as a theoretical tool:

for example, linearity testers have been used in PCP constructions [RS96]. An additional

motivation for studying property testing is that this area is abundant with fascinating

combinatorial problems. Property testing has recently become an active research area. An

interested reader is referred to surveys [Ron01, Fis01] on the topic.

1.2 Characterizing Testable Properties

One of the important questions in property testing is characterizing properties that can

be tested with a sublinear number of queries into the input. A series of works identified

classes of properties testable with constant query complexity (dependent only on distance

1In this paragraph, “high probability” means “probability at least 2/3”. However, it can always be
amplified to 1− µ by running O(log(1/µ)) iterations of the algorithm and outputting the majority function
of its answers.

2This corresponds to the Hamming distance.
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parameter ε). Goldreich et al. [GGR98] identified many such graph properties. Exam-

ples include being k-colorable and having a clique with ρ fraction of the nodes. Alon et

al. [AKNS01] proved that all regular languages are testable with constant complexity.

Newman [New02] extended their result to properties that can be computed by oblivious

read-once constant-width branching programs. Fischer and Newman [FN02] demonstrated

a property computable by a read-twice constant-width branching program which required

super-constant query complexity, thus showing that Newman’s result does not generalize

to read-twice branching programs. Several papers [AFKS00, Fis01a] worked on the logical

characterization of graph properties testable with a constant number of queries.

One of the goals of this thesis is to characterize properties testable with a sublinear

number of input queries. We first attempt characterization of properties over the binary al-

phabet, {0, 1}, in terms of formula complexity. For every fixed property, the set of strings of

length n with that property (as any set of binary strings of length n) can be represented by

a truth table on n variables, where each variable corresponds to a position in the string. We

can write out a Boolean formula corresponding to the truth table and convert it to the con-

junctive normal form. Thus, every property over the binary alphabet can be represented by

a CNF formula. Testing that property can be viewed as testing whether a given assignment

to Boolean variables of the corresponding CNF is close to one that satisfies the formula.

Goldreich et al. [GGR98] prove that there exist properties over the binary alphabet which

require testing algorithms to read a linear portion of the input. This implies that testing

assignments to general CNF formulas is hard. A natural question is whether restricting

CNF formulas to have a constant number of variables k per clause allows for faster testers.

At first sight, there is hope for obtaining good testers for every fixed k because for any

assignment that does not satisfy the formula there exists a set of k queries that witnesses

this fact. Moreover, the exact version of the problem is easy. However, we will show that

already for k = 3 testing whether an input assignment is close to satisfying a fixed kCNF

formula might require a linear number of queries.

Observe that in our testing question a CNF formula is not part of the input; instead,

it describes the property. Our problem is different from testing whether an input kCNF

formula is satisfiable. The exact version of this problem is a classical NP-complete problem

and the property testing version was studied by Alon and Shapira [AS02]. They showed

that testing satisfiability of kCNF formulas can be done with complexity independent of

9



Problem Exact Testing

Is a 3-CNF satisfiable? (3SAT) NP-complete easy

Does an assignment satisfy a fixed 3-CNF? easy hard

Figure 1-1: The world of property testing is different from the world of exact problems.

the input size. By contrast, our problem is very easy in its exact version, but hard in its

property testing version for k ≥ 3. Figure 1-1 contrasts our 3CNF testing question with

testing satisfiability of 3CNF formulas [AS02].

1.3 Testing 2CNF Properties

A property is a collection of n-character strings. Informally, one can think of this collection

as strings that satisfy some property. A natural place to start investigating testability of

properties corresponding to kCNF formulas is k = 1. This turns out to be very easy as

1CNFs can only describe sets of strings with certain positions fixed. Testing whether an

input string is in such a set or is ε-far from it can be done by querying the input on 1/ε

random positions fixed by the 1CNF formula and rejecting if one of them is not set to the

right value.

2CNFs offer a richer set of properties. Chapter 3 describes some natural properties which

are equivalent to properties describable by 2CNF formulas with respect to the number of

queries required for testing. These results provide additional motivation for studying 2CNF

properties. The equivalent properties include being a vertex cover in a graph fixed in

advance, being a clique in a graph fixed in advance and monotonicity of graph labelings

over the binary alphabet. In the latter problem, each character of the input is viewed as a

label of the corresponding node of a fixed directed n-node graph. A labeling of the graph is

monotone if labels are non-decreasing along every edge. In general, labelings can come from

an arbitrary alphabet. The monotonicity property for a given graph is a collection of all

monotone labelings for that graph. Every directed graph3 defines a property. Conversely,

every problem, where we have to determine whether the input satisfies some partial ordering,

3The graph does not have to be acyclic. If a labeling is monotone for a cyclic graph, all nodes in a cycle
must have the same labels.
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corresponds to a graph. For example, a line where all edges are pointing in the same direction

defines a property of sorted labels:

- - - - - - - - -s s s s s s s s s sx1 x2 x3 x4 · · · xn

A two-dimensional grid with edges pointing up and to the right defines a property where

all labels are sorted along all rows and columns:

- - -

- - -

- - -

- - -

6

6

6

6

6

6

6

6

6

6

6

6

s s s s
s s s s
s s s s
s s s s

x11 x12 x1a

x21 x22 x2a

...
· · ·

xa1 xa4 xaa

In fact, every partially-ordered set (poset) can be represented by a directed graph. Monotone

functions on a poset correspond to monotone labelings for the corresponding graph.

In the context of property testing, monotonicity of functions was first considered by

Goldreich et al. [GGL+00]. Before that, a special case of this problem, testing whether a

list is sorted, was studied by Ergün et al. [EKK+98]. Along with linearity and low-degree

testing, monotonicity is one of the more studied properties in the context of property testing

(see also [DGL+99, BRW99, Ras99, FN01, Fis]).

After proving that monotonicity of graph labelings over the binary alphabet is equivalent

to 2CNF properties with respect to the number of queries required for testing, we proceed

to analyze testability of monotonicity properties. We choose to work with monotonicity

properties instead of equivalent 2CNF properties for two reasons. First, graphs provide a

useful pictorial tool and are easier to work with. Second, monotonicity is a more general

property, as it is not restricted to the binary alphabet.

All previous monotonicity results deal with posets that happen to be hypercubes of

different sizes and dimensions. Chapter 4 gives an algorithm and a lower bound for

general graphs. Our test for monotonicity of labelings on graphs with n nodes queries

O(
√

n/ε) input characters, and works for all alphabets, addressing an open problem posed

by [DGL+99, Ras99]. This, in turn, yields O(
√

n/ε) query tests for all equivalent properties,

including 2CNF properties. We then show that there are graphs for which no non-adaptive

monotonicity test makes only a polylogarithmic number of queries. To be more precise, the

11



non-adaptive lower bound is n
Ω

“
log 1/ε
log log n

”
queries. This implies an adaptive lower bound of

Ω
(

log 1/ε log n
log log n

)
. The lower bounds are for the binary alphabet case, which is equivalent to

2CNF properties and other properties from Chapter 3.

To achieve our non-adaptive lower bound, we prove that on graphs with m edge-

disjoint induced matchings of linear size, every non-adaptive monotonicity test makes

Ω(
√

m) queries. Then we prove that there are n-node graphs that can be partitioned

into n
Ω

“
log 1/ε
log log n

”
induced matchings of size εn.

We call graphs that can be partitioned into many large induced matchings Ruzsá-

Szemerédi graphs. The reason for this name is that Ruzsá and Szemerédi [RS78] constructed

such graphs for one extreme setting of parameters: with n/3 matchings of near-linear size.

Their graphs are based on Behrend’s construction [Beh46] of sets of integers that contain

no three terms in arithmetic progression. Ruzsá and Szemerédi employed their construction

in a lower bound proof for a Turán-like theorem. Recently, H̊astad and Wigderson [HW01]

used the graphs of Ruzsá and Szemerédi for improving linearity tests4. Motivated by conjec-

tures in graph theory, Roy Meshulam [Personal communication] constructed similar graphs

with different parameters.

Our approach is different from those of Ruzsá and Szemerédi and of Meshulam. We

present four constructions, starting with a very intuitive one with relatively weak parameters

and finishing with a technically difficult one with the desired parameters. The constructions

improve on each other, gradually introducing new ideas. They all give bipartite Ruzsá-

Szemerédi graphs. In the simplest construction, nodes in each layer are associated with

binary strings of length log n. A node from the first layer is connected to a node in the

second layer if they differ in exactly one coordinate. This construction yields a logarithmic

number of matchings of linear size. In the final construction, the strings associated with

the nodes are over more general alphabets, and nodes are matched based on their values

in a subset of coordinates. Improving our final construction of Ruzsá-Szemerédi graphs

would lead to better lower bounds for monotonicity tests and, possibly, to improvements in

the above-mentioned applications. Other applications are likely because Ruzsá-Szemerédi

graphs are easily describable combinatorial objects.

Chapter 5 deals with algorithms and lower bounds for specific graphs, such as the

4Substituting the graphs we construct for the graphs of Ruzsá and Szemerédi in [HW01] yields a family
of linearity tests. These tests are incomparable to these of H̊astad and Wigderson, they could be better or
worse depending on the distance of the tested function to the closest linear function.
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hypercube. We give the first non-trivial lower bound for monotonicity testing on the well-

studied hypercube. The question arises as to what graphs, besides the hypercube, can

be tested more efficiently than the general lower bound. We find many families of graphs

for which monotonicity is testable with a small number of queries. Different families use

different combinatorial techniques.

1.4 Testing kCNF Properties For k ≥ 3

Testing kCNF properties becomes hard for k = 3. We present a gap between 2CNFs and

3CNFs by showing the existence of families of 3CNF formulas which require a linear number

of queries. Our lower bound applies to adaptive tests, i.e. tests where queries might depend

on the answers to previous queries. This gives a class of properties which are easy to decide

exactly (linear time), but are hard to test.

The hard 3CNF properties we find are vector spaces. As the first step towards proving

the hardness result, Chapter 6 shows that every adaptive 2-sided error test for checking

membership in a vector space can be converted to a non-adaptive 1-sided error test with

the same query complexity and essentially identical parameters. This result applies to

properties over arbitrary alphabets and is of independent interest. It allows us to consider

only 1-sided error non-adaptive tests. Chapter 7 gives sufficient conditions for a vector

space to be hard to test, and then proves that random Low Density Parity Check Codes

(LDPC codes) satisfy these conditions. Finally, it shows how to convert the resultant codes

to vector spaces expressible by 3CNF formulas.

Our results shed some light on the question of the existence of locally testable codes with

linear distance and constant rate. An infinite family of codes {C}n is called locally testable

if the property Cn is testable with constant query complexity. Locally testable codes play a

vital role in PCP constructions, and are of fundamental importance in theoretical computer

science. Recently Ben-Sasson et al. [BSVW03], following the work of Goldreich and Sudan

[GS02], gave an explicit construction of such codes which achieve linear distance and near

constant rate, resulting in better PCP constructions.

The vector spaces we use (which are hard to test) are built upon random (c, d)-regular

LDPC codes. These codes, introduced by Gallager [Gal63], are known to achieve linear

distance and constant rate. We show that this important class of codes is not locally

13



testable by a long shot. Moreover, the property that makes random codes so good in terms

of minimal distance, namely expansion, is also behind the poor testability of these codes.

Our techniques might be useful in proving that locally testable codes with linear distance

and constant rate do not exist. Whether or not such codes exist remains an interesting

open problem.

1.5 Testing Visual Properties

In the last chapter of the thesis, we propose to apply property testing to images. Image

analysis is one area potentially well suited to the property testing paradigm. Images contain

a large amount of data which must be analyzed quickly in a typical application. Some salient

features of an image may be tested by examining only a small part thereof. Indeed, one

motivation for this study is the observation that the eye focuses on relatively few places

within an image during its analysis. The analogy is not perfect due to the eye’s peripheral

vision, but it suggests that property testing may give some insight into the visual system.

We present algorithms for a few properties of images. All our algorithms have complexity

independent of the image size, and therefore work well even for huge images. We use

an image representation popular in learning theory (see, e.g., [MT89]). Each image is

represented by an n× n matrix of pixel values. We focus on black and white images given

by matrices with entries in {0, 1} where 0 denotes white and 1 denotes black.

We present tests for three visual properties: being a half-plane, convexity and connect-

edness. The algorithm for testing if the input is a half-plane is a 1-sided error test with
2 ln 3

ε +o(1
ε ) queries. The convexity test has 2-sided error and makes O(1/ε2) queries. Finally,

the connectedness test has 1-sided error and makes O
(

1
ε2 log2 1

ε

)
queries.

In some sense, it is amazing that such global properties as connectedness can be tested

with the number of queries independent of the size of the image. Marvin Minsky and

Seymour Papert write in their book “Perceptrons” [MP69]:

We chose to investigate connectedness because of a belief that this predicate is

nonlocal in some very deep sense; therefore it should present a serious challenge

to any basically local, parallel type of computation.
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1.6 Organization of this thesis

The rest of the thesis is organized as follows.

Chapter 2 – Preliminaries. We introduce basic definitions and general tools.

Chapter 3 – Properties Equivalent to 2CNF Properties. We show that testing

2CNFs is equivalent to a few other testing problems, such as testing monotonicity of graph

labelings over binary alphabet, testing whether a set of vertices is a vertex cover for a fixed

graph and testing whether a set of vertices is a clique in a fixed graph.

Chapter 4 – Bounds on Query Complexity for Monotonicity Testing. We

present a 1-sided error algorithm with an O(
√

n/ε) query complexity for testing mono-

tonicity over general graphs with n nodes. This, in turn, yields 1-sided error O(
√

n/ε)

query tests for all equivalent properties from Chapter 3. The corresponding hardness re-

sult is a lower bound of n
Ω

“
log 1/ε
log log n

”
queries for general Boolean non-adaptive monotonicity

testing. This implies an adaptive lower bound of Ω
(
(log 1/ε) log n

log log n

)
. The hardness proof

shows that graphs with many edge-disjoint matchings of linear size are hard to test. We

call these graphs Ruzsá-Szemerédi graphs. The last section is devoted to constructions of

Ruzsá-Szemerédi graphs and a discussion of which parameters for those graphs are currently

attainable.

Chapter 5 – Monotonicity Testing on Special Graphs. We present lower bounds

for non-adaptive monotonicity tests over the (Boolean) m-dimensional hypercube. We prove

an Ω(
√

m) lower bound for 1-sided error algorithms, and an Ω(log m) lower bound for 2-

sided error algorithms. These results imply the corresponding adaptive lower bounds of

Ω(log m) and Ω(log log m), respectively.

This Chapter also contains efficient algorithms for testing monotonicity on several special

classes of graphs. We show that certain types of graphs have monotonicity tests with a

number of queries that is independent of the size of the graph. For Boolean labelings, this

includes graphs whose undirected versions are trees, graphs of constant width, and what

we call top-parallel graphs. For labelings with arbitrary ranges, this applies to graphs with

a linear number of edges in the transitive closure. We also prove that for graphs with

bounded separators, monotonicity testing of labelings with arbitrary ranges requires only a

logarithmic number of queries.

Chapter 6 – Testing Vector Spaces. A property is linear if it forms a vector space.
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We prove that in the context of linear property testing, adaptive 2-sided error tests have no

more power than non-adaptive 1-sided error tests. The reduction to simpler tests proceeds

in two stages. First, we convert adaptive 2-sided error tests for linear properties to adaptive

1-sided error ones by shifting all error probability to one side and preserving the query

complexity of the test. Then we convert adaptive 1-sided error tests for linear properties to

non-adaptive 1-sided error tests, keeping all parameters unchanged.

Chapter 7 – Some 3CNF Properties Require a Linear Number of Queries.

We prove that there are 3CNF properties that require a linear number of queries, even for

adaptive tests. We work with linear properties and later show how to represent the hard

properties we find by 3CNF formulas. Working with linear properties allows us to use the

reduction from Chapter 6 and concentrate on non-adaptive 1-sided error tests. We provide

sufficient conditions for linear properties to be hard to test, and prove that random linear

LDPC codes with linear distance and constant rate satisfy these conditions. Then we show

how to convert them to properties representable with 3CNF formulas.

Chapter 8 – Testing Visual Properties. We propose to explore property testing

as applied to visual properties of images. We study visual properties of discretized images

represented by n × n matrices of 0–1 pixel values and obtain algorithms with the number

of queries independent of n for several basic properties: being a half-plane, connectedness

and convexity.

Chapter 9 – Conclusion and Open Problems. We make some concluding remarks

and discuss directions for further research.

Bibliographic note. The results on monotonicity testing appearing in Chapters 2–5 were

co-authored with Eldar Fischer, Eric Lehman, Ilan Newman, Ronitt Rubinfeld and Alex

Samorodnitsky [FLN+02]. The material on testing vector spaces and testing 3CNF formulas

in Chapters 6 and 7 is a result of collaboration with Eli Ben-Sasson and Prahladh Harsha

[BHR03]. The second reduction in Chapter 6 was suggested by Madhu Sudan. The chapter

on testing visual properties will also appear as a separate paper [Ras]. Looking at visual

properties in the context of property testing was suggested by Michael Sipser.
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Chapter 2

Preliminaries

Property testing

A property is a collection of strings of a fixed size n over a fixed alphabet L. The distance

dist(x,P) of a string x to a property P is minx′∈P dist(x, x′), where dist(x, x′) denotes the

Hamming distance between the two strings. The relative distance of x to P is its distance

to P divided by n. A string is ε-far from P if its relative distance to P is at least ε.

A test for property P with distance parameter ε, positive error µ+, negative error µ−

and query complexity q is a probabilistic algorithm that queries at most q characters of

the input, rejects strings in P with probability at most µ+ and accepts strings that are

ε-far from P with probability at most µ−, for some 0 ≤ µ+, µ− ≤ 1. A test is said to

have error µ if µ+ ≤ µ and µ− ≤ µ (for µ < 1
2). If a test T accepts input x, we say

T (x) = 1. Otherwise, we say T (x) = 0. A test with distance parameter ε, positive error

µ+, negative error µ− and query complexity q is referred to as an (ε, µ+, µ−, q)-test. Often,

we want to bound the error of the test by a small constant µ < 1/2. The exact value of the

constant does not matter, as the error can always be made smaller without affecting the

asymptotics of other parameters by standard probability amplification techniques. When

µ is not explicitly specified, we mean µ = 1/3. In particular, (ε, q)-test is a test with

distance parameter ε, query complexity q and error 2/3, unless specified otherwise. An

ε-test denotes a test with distance parameter ε. A property is (ε, q)-testable if it has an

(ε, q)-test; (ε, µ+, µ−, q)-testable is defined analogously.

A couple of special classes of tests are of interest. An algorithm is non-adaptive if it

asks all queries in advance, before getting the answers. Namely, a query may not depend
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on the answers to previous queries. An algorithm has 1-sided error if it always accepts an

input that has the property (soundness s = 1).

CNF formulas

Recall that a Boolean formula is in conjunctive normal form (CNF) if it is a conjunction

of clauses, where every clause is a disjunction of literals. (A literal is a Boolean variable or

a negated Boolean variable.) If all clauses contain at most three literals, the formula is a

3CNF.

Let ϕ be a formula on n variables. An n-bit string satisfies ϕ if it satisfies all clauses

of the formula. An n-bit string is ε-far from satisfying ϕ if at least an ε fraction of the

bits need to be changed to make the string satisfy ϕ. Each formula ϕ defines a property

SAT (ϕ) = {x| x satisfies ϕ}. For brevity, we refer to a test for this property as a test for ϕ.

Monotonicity

We defined property as a collection of n-character strings over alphabet L. Sometimes it is

useful to think of these strings as functions over a fixed domain V with n elements. Each

string x ∈ Ln can be represented by a function f : V → L where x is the concatena-

tion of evaluations of f on all elements of V . For example, an assignment x1, . . . , xn to

variables X1, . . . , Xn can be treated both as a string x1 . . . xn ∈ {0, 1}n and as a function

f : {X1, . . . , Xn} → {0, 1}. Properties over L = {0, 1} alphabet are called Boolean because

they correspond to Boolean functions.

Let G = (V,E) be a directed graph. Let f : V −→ L be a labeling of V with members

of a linear order L. Then f is monotone on G if f(v) ≤ f(u) for all (v, u) ∈ E. The

monotonicity property, denoted by MON(G), is the set of monotone labelings of G. If

there is a directed path from v to u in G, we say that v is below u (or u is above v) and

denote it by v ≤G u (which is not an order relation in general). Every such pair of vertices

of G imposes a constraint f(v) ≤ f(u). A pair of vertices (v, u) is violated if v ≤G u and

f(v) > f(u). Vertices v and u are equivalent in G if v ≤G u and u ≤G v, namely, if both

are in the same strongly connected component.

Note that monotonicity of labelings of acyclic graphs corresponds to monotonicity of

functions on posets. We often consider a special case of monotonicity restricted to Boolean

functions or labelings (namely, with L = {0, 1}), which we call Boolean monotonicity.
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Handy lemmas for monotonicity testing

A transitive closure of a graph G = (V,E), denoted by TC (G), is a graph (V,E′) where

(v1, v2) is in E′ if there is a directed path from v1 to v2 in G. Observe that two graphs with

the same transitive closure give rise to the same monotonicity property MON(G).

Lemma 2.1 Let f be a labeling for a graph G(V,E). If f is monotone on an induced

subgraph G′ = (V ′, E′) of TC (G), then f ’s distance to monotone is at most |V − V ′|.

Proof. Assuming that f is monotone on an induced subgraph G′ = (V ′, E′) of TC (G), we

make f monotone on TC (G) by relabeling only vertices in V − V ′.

Indeed, fix V ′ and let f |V ′ be the partial labeling on V ′ that is monotone on G′(V ′, E′).

We extend f |V ′ to V for one vertex v ∈ V −V ′ at a time, always keeping the partial labeling

monotone on the induced current graph. We now show how to extend the domain of f by

one vertex. Let v ∈ V − V ′ be a ‘minimal’ element in V − V ′ (namely, v is unreachable

from any other vertex w ∈ V − V ′ that is not equivalent to it). Let T = {u ∈ V ′| u ≤G v}.

We extend f to V ∪ {v} by letting f(v) be maxu∈T {f(u)} if T 6= ∅ and the minimum value

in the range otherwise. By transitivity, since f was monotone on V ′, the extended f is

monotone on V ∪ {v}. 2

Corollary 2.2 Let f be a labeling of G = (V,E). Then dist(f,MON(G)) is equal to the

minimum vertex cover of the graph of violated edges of TC (G).

A matching in a graph is a collection of edges that share no common vertex. The next

two lemmas relate a function’s distance to monotone to the number of edges it violates in

the transitive closure of the graph. The first of them follows from Corollary 2.2 and the

fact that the size of a maximum matching is at least 1/2 of the size of a minimum vertex

cover.

Lemma 2.3 ([DGL+99]) Let f be a labeling which is ε-far from monotone on a graph G

with n nodes. Then TC (G) has a matching of violated edges of size εn/2.

Lemma 2.4 Let f be a Boolean labeling which is ε-far from monotone over a graph G with

n nodes. Then TC (G) has a matching of violated edges of size εn.

Proof. Let P ′ be a poset of vertices in V with partial order defined by v ≤ u if (v, u) is a

violated pair in G. Let A ⊆ V be a maximal antichain in P ′. Certainly, f is monotone on
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the subgraph of TC (G) induced by A, as A contains no violated pairs. Then by Lemma 2.1,

dist(f,MON(G)) ≤ |V | − |A|. By Dilworth’s theorem [Dil50], |A| is equal to the minimum

number of disjoint chains that cover P ′. However, a chain in P ′ consists of at most two

vertices as (v, u) and (u, w) cannot be both violated by a Boolean function. Hence, to cover

|V | elements, at least |V |−|A| out of |A| chains have to be of length exactly two (otherwise,

less than |V | elements are covered). This collection of at least |V |−|A| ≥ dist(f,MON(G))

disjoint chains of size two is a matching of violated pairs. 2
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Chapter 3

Properties equivalent to 2CNF

properties

In this chapter, we show that 2CNF properties are equivalent with respect to the number

of queries required for testing to a few other classes of properties. The first one is Boolean

monotonicity of graph labelings. In the second class, each property is a set of vertex covers

for a fixed graph. Each graph gives rise to a property of binary strings corresponding to

vertex covers of that graph, with each bit representing whether the corresponding vertex

is in the cover. Here distance captures the number of vertices that need to be added to

make the set into a vertex cover. In the third class, each property is a set of cliques for

a fixed graph. Here distance refers to the number of vertices that need to be removed to

make the set into a clique. We also show that testing monotone 2CNFs (i.e., 2CNFs with

only positive literals) is as hard as the general 2CNF testing problem. In addition, for all

labeling alphabets, testing monotonicity on bipartite graphs (X, Y ;E) with |X| = |Y | and

all edges directed from X to Y is as hard as monotonicity testing on general graphs. The

last result will be used in the presentation of our monotonicity test of Chapter 4.

Our proofs of equivalence are reductions that transform instances of one problem into

another, so that the tests for the second problem could be used for the first. Intuitively, we

need three features from our reductions. First, they have to transform positive instances into

positive instances. Second, negative instances (i.e. instances which are ε-far from having

the property) should be transformed into instances which are reasonably far from having

the property. Our reductions change distances by at most a constant factor. Third, every
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query for the original problem should be computable from a constant number of queries

for the new problem. Notice that the first requirement ensures that a 1-sided error test for

the new problem yields a 1-sided error test for the original problem. The third requirement

guarantees that a non-adaptive test for the new problem can be converted to a non-adaptive

test for the original problem.

3.1 Boolean monotonicity is equivalent to 2CNF properties

We start by showing that Boolean monotonicity reduces to 2CNF properties.

Theorem 3.1 For every graph G with n vertices, there is a corresponding 2CNF ϕG on n

variables such that if SAT (ϕG) is (ε, µ+, µ−, q)-testable then MON(G) is also (ε, µ+, µ−, q)-

testable for Boolean labelings.

Proof. Let G = (V,E) be a directed graph. With each v ∈ V associate a Boolean variable

xv. Define the 2CNF formula ϕG on the set of variables X = {xv| v ∈ V } as follows: for

each edge (u, v) ∈ E, form the clause (xu ∨ xv). A Boolean labeling f on V (G) defines

an assignment f̃ on X by f̃(xv) = f(v). Clearly, dist(f,MON(G)) = dist(f̃ , SAT (ϕG)).

Thus, a test for SAT (ϕG) can be used as a test for MON(G). 2

Our next step is the reduction in the other direction.

Theorem 3.2 For every 2CNF ϕ on n variables, there is a corresponding graph Gϕ with

2n vertices such that if MON(Gϕ) is (ε/2, µ+, µ−, q)-testable for Boolean labelings then

SAT (ϕ) is (ε, µ+, µ−, q)-testable.

Proof. Let ϕ be a satisfiable 2CNF formula on a set X of n variables. (If ϕ is unsatisfiable, it

has a trivial test that rejects all assignments). With each Boolean variable x ∈ X, associate

two vertices vx and vx that represent literals corresponding to x. We use the convention

vx = vx and vx = vx. Define the implication graph, Gϕ, on the set of the corresponding

2n vertices, as follows: for each clause x ∨ y, where x and y are literals, add edges (vy, vx)

and (vx, vy). For any edge (u, v) call edge (v, u) its dual edge. Note that dual edges appear

in the implication graph in pairs, with the exception of edges of the form (u, u), which are

dual to themselves.
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Let f : X → {0, 1} be an assignment to ϕ. Define the associated Boolean labeling fG of

Gϕ by fG(vx) = f(x) for all literals x. If f satisfies ϕ, the corresponding labeling fG is mono-

tone on Gϕ. It remains to prove that dist(f, SAT (ϕ)) ≤ dist(fG,MON(Gϕ)). To show this

we transform f into a satisfying assignment for ϕ by changing at most dist(fG,MON(Gϕ))

variable assignments. To this end, a Boolean labeling of an implication graph is called

negation-compliant if vx and vx have different labels for all literals x. Note that every

negation-compliant labeling of Gϕ has a corresponding assignment to ϕ. Furthermore, if

f̃ is monotone and negation-compliant for Gϕ then the corresponding assignment f for ϕ,

given by f(x) = f̃(vx) for every literal x, is a satisfying assignment for ϕ.

Note that for every literal x, vx and vx are never in the same strongly connected com-

ponent because ϕ is satisfiable. Also, if vx is equivalent to vy in Gϕ then vx is equivalent

to vy.

The following algorithm transforms fG into a nearby monotone, negation-compliant

labeling.

1. Convert fG to a nearest monotone assignment f̃G on Gϕ. (f̃G is not necessarily

negation-compliant.)

2. While Gϕ has nodes vx with f̃G(vx) = f̃G(vx) = 0 :

Find a maximal vx (with respect to Gϕ) among those with f̃G(vx) = f̃G(vx) = 0.

Change f̃G(vz) to 1 for all vz that are equivalent to vx (including vx itself).

3. While Gϕ has nodes vx with f̃G(vx) = f̃G(vx) = 1 :

Find a minimal vx among those with f̃G(vx) = f̃G(vx) = 1. Change f̃G(vz) to 0 for

all vz that are equivalent to vx (including vx itself).

First, we show that the resulting labeling f̃G is monotone on Gϕ. Indeed, f̃G is monotone

after step 1. Since it is monotone, nodes in the same strongly connected component (i.e.,

equivalent nodes with respect to Gϕ) have the same labels. Hence, after each change in

step 2, equivalent nodes still have the same labels. Suppose f̃G is monotone on G before

some iteration of step 2 and is not monotone after it. Then some edge (vx, vy) is violated

by changing f̃(vx) to 1. Then f̃G(vy) = 0 both before and after this iteration, and vy is not

equivalent to vx. Since vy ≥G vx, it must be that f̃G(vy) = 1 (otherwise, vy would have

changed before vx). But then the dual edge (vy, vx) is violated before the iteration, giving

a contradiction.
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Similarly, if f̃G is monotone on G before some iteration of step 3 then it is monotone

after it.

Secondly, the resulting labeling f̃G is negation-compliant because step 2 relabels all

nodes vx with f̃(vx) = f̃(vx) = 0, and step 3 relabels all nodes with f̃(vx) = f̃(vx) = 1.

Finally, let f̃ be the assignment to X with f̃(x) = f̃G(vx) for every literal x ∈ X. By

the remarks above, f̃ is a satisfying assignment for ϕ. To calculate dist(f, f̃), note that f

and f̃ may disagree for a variable x only if f̃G(vx) 6= fG(vx), where f̃G is the outcome of

the algorithm above. Let f̃ ′G be the labeling resulted after step 1.

Now, step 1 modifies fG on dist(fG,MON(Gϕ)) places which correspond to a set of

variables D = {x|f̃ ′G(vx) 6= fG(vx), or f̃ ′G(vx) 6= fG(vx)}. Successive steps change

f̃ ′G on vx only if f̃ ′G(vx) = f̃ ′G(vx). Since the original fG is negation-compliant, it

can only happen if step 1 modifies fG on vx or vx. Hence, there is no variable x in

{x|f̃ ′G(vx) 6= f̃G(vx), or f̃ ′G(vx) 6= f̃G(vx)} that is not already in D. Therefore, dist(f, f̃) ≤

dist(fG,MON(Gϕ)). 2

We completed the proofs of theorems 3.1 and 3.2, which show that monotonicity of

Boolean graph labelings is equivalent to 2CNF properties with respect to the number of

queries required for testing.

3.2 Other testing problems equivalent to 2CNF testing

In this section, we present a reduction from monotonicity on general graphs to monotonicity

on a special kind of bipartite graphs. The reduction works for all labeling alphabets. Then

we give reductions between 2CNF properties, monotone 2CNF properties, and properties

of being a vertex cover and being a clique in a fixed graph.

From monotonicity on general graphs to monotonicity on bipartite graphs

We now prove that testing monotonicity on arbitrary graphs is equivalent to testing mono-

tonicity on balanced bipartite graphs with all edges directed to the same layer. The bipartite

graphs we consider are formally defined below.

Definition 3.1 For each directed graph G = ({v1, . . . , vn}, E), let BG be the bipartite graph

({v1, . . . , vn}, {v′1, . . . , v′n};EB) where EB = {(vi, v
′
j)| vj is reachable from vi in E}. For

each labeling f of G, define the corresponding labeling fB of BG by fB(vi) = fB(v′i) = f(vi).
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Note that BG is a transitively closed DAG with 2n vertices and the same number of

edges as TC (G).

Claim 3.3 Let f be a labeling on a graph G. Then dist(f,MON(G)) = dist(fB,MON(BG)).

Proof. Assume that dist(fB,MON(BG)) = k and let S̃ be a set of vertices in BG of size

k such that fB is monotone on the subgraph of BG induced by remaining vertices. Let S

be the corresponding set of nodes in G. Note that S has size of at most k (it could be

smaller as two vertices in S̃ might correspond to the same vertex in S). By the definition

of fB, labeling f is monotone on the subgraph of TC (G) induced by V \S. By Lemma 2.1,

dist(f,MON(G)) ≤ dist(fB,MON(BG)).

To prove that dist(fB,MON(BG)) ≤ dist(f,MON(G)), assume dist(f,MON(G)) = k.

By Corollary 2.2, the graph of violated edges of TC (G) has a vertex cover S of size k. It is

enough to show how to construct a vertex cover S̃ of the graph of violated edges of BG of

size k. We do so inductively by moving one vertex at a time from S to S̃, making sure every

violated edge (v, u) in TC (G) is covered by S or has its counterpart (v, u′) in BG covered

by S̃. Initially, S̃ is empty. When S becomes empty, S̃ is the required vertex cover.

It remains to show how to move a vertex from S to S̃. Let x be a minimal vertex

in S according to the partial order imposed by the graph of violated edges of TC (G). If

all violated edges of BG incoming into x′ are covered by S̃, move x from S to S̃ to cover

outgoing violated edges from x in BG. Otherwise, let (u, x′) be an uncovered violated edge

in BG. Remove x from S and put x′ into S̃. Now, all incoming edges into x′ are covered by

S̃. We claim that if there is a violated edge (x, v′) not covered by S̃ then (x, v) is covered

by S, i.e. v ∈ S. By transitivity of TC (G) and definition of fB, edge (u, v′) is also violated.

Since it is not covered by S̃, its counterpart (u, v) in TC (G) must be covered by S. Since

x was minimal in S, u /∈ S. Hence, v ∈ S, as claimed. 2

The next lemma shows that testing monotonicity on G reduces to testing monotonicity

on BG.

Theorem 3.4 If MON(BG) is ( ε
2 , µ+, µ−, q)-testable for a graph G then MON(G) is

(ε, µ+, µ−, q)-testable. The reduction preserves 1-sided error: a 1-sided test for MON(BG)

gives a 1-sided test for MON(G).

Proof. Let f be a labeling of G and let BG be the associated graph with labeling fB as

defined above. By Claim 3.3, dist(f,MON(G)) = dist(fB,MON(BG)). If f is ε-far from
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monotone on G then fB is ε/2-far from monotone on BG because BG has twice as many

nodes. A test for G on input f can simulate a test for BG on input fB, asking at most the

same number of queries. 2

Testing monotone 2CNFs

Recall that a monotone CNF is a CNF with only positive literals. We prove that testing

2CNFs is equivalent to testing monotone 2CNFs. One direction is obvious, for if all 2CNFs

are testable, clearly all monotone 2CNFs are testable. To show that testability of monotone

2CNFs implies testability of all 2CNFs, recall that 2CNF testing is equivalent to testing

Boolean monotonicity over general graphs (Theorems 3.1 and 3.2), which is equivalent

to testing Boolean monotonicity on special kind of bipartite graphs (Definition 3.1 and

Theorem 3.4). Therefore, to show the second direction, it is enough to prove that testability

of monotone 2CNFs implies testability of Boolean monotonicity on this special kind of

bipartite graphs.

Theorem 3.5 Let G = (X, Y ;E) be a bipartite digraph with all edges directed from X to Y

and |X| = |Y | = n. For each G there is a corresponding monotone 2CNF ϕG on n variables

such that if SAT (ϕG) is (ε, µ+, µ−, q)-testable then monotonicity of Boolean functions over

G is also (ε, µ+, µ−, q)-testable.

Proof. Associate a variable zv with every node v in X ∪Y . Each node y in Y is represented

by zy, while each node x in X is represented by zx. Define a Boolean formula ϕG on the set

of variables Z = {zv| v ∈ X ∪Y } as follows: form a clause (zx∨zy) for each edge (x, y ∈ E).

A Boolean labeling f of G defines an assignment f̃ for Z by f̃(zx) = 1 − f(x) if x ∈ X

and f̃(zx) = f(y) if y ∈ Y . Then an edge (x, y) is violated if and only if the corresponding

clause (zx ∨ zy) is unsatisfied. Therefore, dist(f,MON(G)) = dist(f̃ , SAT (ϕG)), and each

test for ϕG can be used as a test for MON(G). 2

Vertex cover and clique testing

Let U = (V,E) be an undirected graph. For a S ⊆ V , let fS : V → {0, 1} be a characteristic

function of S, i.e. f(v) = 1 if and only if v ∈ S. A vertex cover of U is a subset of the

vertices where every edge of U touches one of those vertices. A clique in U is a subset

of the vertices that induces a complete graph in U . The property V C(U) is the set of
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all characteristic functions fS such that S is a vertex cover of U . Similarly, the property

CLIQUE(U) is the set of all characteristic functions fS such that S is clique of U .

Theorem 3.6 The following statements are equivalent:

• SAT (ϕ) is (ε, µ+, µ−, q)-testable for every monotone 2CNF ϕ on n variables.

• V C(U) is (ε, µ+, µ−q)-testable for every graph U on n nodes.

• CLIQUE(U) is (ε, µ+, µ−q)-testable for every graph U on n nodes.

The theorem follows from the following three lemmas.

Lemma 3.7 For every undirected graph U on n nodes there is a corresponding monotone

2CNF ϕU on n variables s. t. if SAT (ϕU ) is (ε, µ+, µ−, q)-testable then so is V C(U).

Proof. Let U = (V,E) be an undirected graph. Associate a Boolean variable xv with

each v ∈ V . Define the 2CNF formula ϕU on the set of variables X = {xv| v ∈ V } as

follows: form the clause (xu ∨ xv) for each edge (u, v) ∈ E. A subset S of vertices in V

defines an assignment f̃ to variables in X by f̃(xv) = fS(v). Clearly dist(fS , V C(U)) =

dist(f̃ , SAT (ϕU )), and every ε-test for SAT (ϕ) can be used as a test for V C(Uϕ). 2

Lemma 3.8 For every undirected graph U on n nodes there is a corresponding graph U ′

on n nodes s. t. if V C(U ′) is (ε, µ+, µ−, q)-testable then so is CLIQUE(U).

Proof. Let U = (V,E) be an undirected graph. Define U ′ = (V,E′) where E′ is the set

of vertex pairs that are not edges in E. For a subset S of V , let S′ = V \S. Clearly,

dist(fS , CLIQUE(U)) = dist(fS′ , V C(U ′)), and every ε-test for V C(U ′) can be used as an

ε-test for CLIQUE(U). 2

Lemma 3.9 For every monotone 2CNF ϕ on n variables, there is a corresponding undi-

rected graph Uϕ on n nodes such that if CLIQUE(Uϕ) is (ε, µ+, µ−, q)-testable then so is

SAT (ϕ).

Proof. Let ϕ be a monotone 2CNF. Associate a node vx with each variable x of ϕ. Define

the undirected graph Uϕ on the set of vertices V = {vx| x ∈ ϕ} as follows: start with a

complete graph on V and then for each clause (x ∨ y) in ϕ delete an edge (ux, uy) from

U . An assignment f to the variables of ϕ defines a subset S of the vertices of V by

S = {vx| f(x) = 0}. Clearly, dist(f, SAT (ϕU )) = dist(fS , CLIQUE(Uϕ)), and every ε-test

for CLIQUE(U) can be used as a test for SAT (ϕU ). 2
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Chapter 4

Bounds on Query Complexity for

Monotonicity Testing

In this Chapter, we present upper and lower bounds on complexity of monotonicity tests

on general graphs. All bounds apply to testing 2CNF properties and all other equivalent

testing problems from Chapter 3. Instead of working with general graphs, we restrict our

attention to bipartite graphs G = (X, Y ;E) with all edges directed from X to Y , described

in Definition 3.1. By Theorem 3.4, testing monotonicity on such graphs is equivalent to

testing monotonicity on general graphs.

The Chapter is organized as follows. In section 4.1, we present an algorithm for mono-

tonicity on bipartite graphs that works for all labeling alphabets. In section 4.2, we define

Ruzsá-Szemerédi graphs and show that non-adaptive monotonicity tests on these graphs

require many queries. Section 4.3 contains constructions of Ruzsá-Szemerédi graphs, which

imply lower bounds on monotonicity testing.

4.1 General upper bound

We present a simple 1-sided error ε-test for monotonicity (not necessarily Boolean) on

bipartite graphs G = (X, Y ;E) with |X| = |Y | = n and all edges are directed from X to

Y . By Theorems 3.4–3.6, it implies 1-sided error ε-tests with the same query complexity

for monotonicity over general graphs and four properties in Chapter 3.
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Test T1 for G = (X, Y ;E)

1. Query q =
⌈
2
√

n/ε
⌉

vertices uniformly and independently from each of X

and Y .

2. Reject if a violated pair of vertices is found; otherwise, accept.

Theorem 4.1 If G = (X, Y ;E) as above, then algorithm T1 is a 1-sided error
(
ε, O(

√
n/ε)

)
-

test for MON(G).

Proof. The test accepts all monotone functions. Suppose a function is ε-far from monotone.

Then by Lemma 2.3, there are εn/2 vertex-disjoint violated pairs. Call them witness-pairs

and their vertices, witnesses. A randomly chosen X-vertex is a witness with probability ε.

Let F be the event that no violated pair is detected, FX be the event that ≤ εq/2

X-witnesses are queried, and FY be the event that ≤ εq/2 Y -witnesses are queried.

Pr[F ] ≤ Pr[FX ] + Pr[FY ] + Pr[F |FX ∧ FY ]

≤ e−8 + e−8 +
(

1− εq/2
εn/2

)εq/2

≤ 2e−8 + e−
εq2

2n <
1
3
.

Thus, the test fails with probability less than 1/3. 2

Corollary 4.2 The following problems can be solved with O(
√

n/ε) queries by algorithms

with 1-sided error:

1. monotonicity testing of functions with arbitrary ranges on general graphs;

2. testing if an assignment satisfies a 2CNF formula;

3. testing if a subset of vertices is a vertex cover;

4. testing if a subset of vertices is a clique.

4.2 General lower bound

This section develops tools for a lower bound for testing monotonicity on general graphs.

We restrict our attention to the Boolean case which implies matching lower bounds for all

properties in Theorem 3.6. The lower bound is proved for bipartite graphs G = (X, Y ;E)
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where all edges are directed from X to Y (and hence longest directed path is of length 1).

Definition 3.1 and Theorem 3.4 imply that this is in fact the general case. We first define

what we call Ruzsá-Szemerédi graphs. We then show that monotonicity over such graphs

(with suitable parameters) is hard to test non-adaptively.

Definition 4.1 Let U = (V,E) be an undirected graph and let M ⊆ E be a matching in U ,

i.e. no two edges in M have a vertex in common. Let V (M) be the set of the endpoints of

edges in M . A matching M in U is called induced if the induced graph U [V (M)] contains

only the edges of M . Namely, (u, v) ∈ E(U) if and only if (u, v) ∈ M for all u, v ∈ V (M).

A (bipartite) graph U = (X, Y ;E) is called (s, t)- Ruzsá-Szemerédi if its edge set can be

partitioned into at least s induced matchings M1, . . . ,Ms, each of size at least t.

The following theorem relates Ruzsá-Szemerédi graphs to lower bounds on monotonicity

testing.

Theorem 4.3 Let U = (X, Y ;E) be an (m, εn)-Ruzsá-Szemerédi graph with |X| = |Y | =

n. Direct all edges of U from X to Y to obtain a graph G. Then any non-adaptive ε
6 -test

for MON(G) requires Ω(
√

m) queries.

Proof. We use Yao’s principle, which says that to show a lower bound on the complexity of a

randomized test, it is enough to present an input distribution on which any deterministic test

with that complexity is likely to fail. Namely, we define distributions DP , DN on positive

(monotone) and negative (ε-far from monotone) inputs, respectively. Our input distribution

first chooses DP or DN with equal probability and then draws an input according to the

chosen distribution. We show that every deterministic non-adaptive test with q = o(
√

m)

queries has error probability larger than 1/3 (with respect to the induced probability on

inputs).

We now define the distributions DP and DN , as well as the auxiliary distribution D̃N .

For DP and D̃N , choose a random i ∈ {1, . . . ,m} uniformly. For all nodes x ∈ X and

y ∈ Y outside of matching Mi, set f(x) = 1 and f(y) = 0. For DP , uniformly choose

f(x) = f(y) = 0 or f(x) = f(y) = 1 independently for all edges (x, y) ∈ Mi. For D̃N ,

uniformly choose f(x) = 1 − f(y) = 0 or f(x) = 1 − f(y) = 1 independently for all

(x, y) ∈ Mi.

DP is supported only on monotone labelings, but D̃N is not supported only on negative

inputs. However, for n large enough, with probability more than 8/9 at least 1/3 of the
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edges of Mi are violated when the input is chosen according to D̃N , making the input ε/6-

far from monotone. Denote the latter event by A and define DN = D̃N |A, namely, DN is

D̃N conditioned on the event A. Note that for D̃N an edge is violated only if it belongs to

Mi, since the matchings are induced.

Given a deterministic non-adaptive test that makes a set V ′ of q queries, the probability

that one or more of Mi’s edges have both endpoints in V ′ is at most q2/(4m) for both

DP , D̃N . This is because the matchings are disjoint, and the vertex set V ′ induces at most

q2/4 edges of G. For q = o(
√

m), with probability more than 1 − o(1) no edge of Mi has

both endpoints in V ′. Conditioned on any choice of i for which Mi has no such edge, the

distribution of f |V ′ is identical for both D̃N and DP : every vertex outside of Mi is fixed

to 1 if it is in X and to 0 if it is in Y , and the value of every other vertex is uniform and

independent over {0, 1}. Let C(ϕ) denote the set of inputs consistent with query answers

ϕ : V ′ → {0, 1}. Then PrDP
[C(ϕ)|no edge in Mi] = PrD̃N

[C(ϕ)|no edge in Mi]. For every

tuple of answers ϕ, the error probability under the above conditioning (with negative inputs

chosen under D̃N rather than DN ) is 1/2. As the probability of the condition is ≥ 1− o(1),

the overall error probability without the conditioning is ≥ 1/2 − o(1). Since negative

inputs are chosen under DN , not D̃N , the success probability is (1/2 + o(1)) · (Pr[A])−1 ≤

(1/2 + o(1)) · 9/8 ≤ 9/16 + o(1). Thus, the error probability is ≥ 7/16− o(1). 2

4.3 Construction of Ruzsá-Szemerédi graphs

This section presents a construction of Ruzsá-Szemerédi graphs that yields the n
Ω

“
log 1/ε
log log n

”
non-adaptive lower bound for monotonicity testing. We give four different constructions,

starting from a very intuitive one with relatively weak parameters and gradually improv-

ing it to the final technically involved construction with the desired parameters. All our

constructions yield bipartite graphs. We commence with an extremely simple “toy” con-

struction of Ruzsá-Szemerédi graphs whose edge sets can be partitioned into a logarithmic

number of matchings of linear size. The main idea in the construction is to identify each

layer of the bipartite graph with the set of binary strings of length log n, and then match a

top node with a bottom node when they differ in exactly one coordinate. This construction

is extended to the second “toy” construction resulting in graphs whose edge sets can be

partitioned into a polylogarithmic number of matchings of linear size. The idea behind the
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improvement is to match vertices based on values in a subset of coordinates.

After the toy constructions, we present a simplified version of the real construction.

It yields Ruzsá-Szemerédi graphs with n
Ω

“
1

log log n

”
matchings of size almost n/3. In this

construction, the strings corresponding to the nodes of the graph are over a larger alphabet,

and they are matched according to the sum of values in a subset of coordinates. In the final

construction, the sums of values are weighted. The last construction proves the following

theorem.

Theorem 4.4 For every n and 1/4 ≥ ε > 0, there exists a
(

n
Ω

“
log 1/ε
log log n

”
, εn

)
-Ruzsá-

Szemerédi graph U = (X, Y ;E) with |X| = |Y | = n.

In conjunction with Theorem 4.3, this implies the desired lower bound for monotonicity

testing.

Corollary 4.5 For some 2n-vertex graphs G, every non-adaptive (2-sided error) (ε/6)-test

for MON(G) requires n
Ω

“
log 1/ε
log log n

”
queries.

Closing the gap between the upper and the lower bound for monotonicity testing on

general graphs remains an interesting open question. One possible method for improving the

lower bound is finding better constructions of Ruzsá-Szemerédi graph graphs. In addition,

as we discussed in the introductory Chapter, these graphs have other applications. In the

final subsection of this Chapter, we discuss parameters of Ruzsá-Szemerédi graphs that are

currently attainable.

4.3.1 Toy constructions

This subsection introduces two toy constructions of Ruzsá-Szemerédi graphs formalized in

the lemmas below. The main purpose of these constructions is to ease the introduction of

the real ones.

Lemma 4.6 For every n, there exists a (2 log n, n/2)-Ruzsá-Szemerédi graph U = (X, Y ;E)

with |X| = |Y | = n.

Proof. Let m = log n. Set both X and Y to {0, 1}m. Connect a node in X and a node

in Y if they differ in exactly one coordinate. There are 2m matchings, each corresponding

to a pair (i, xi) where i is a coordinate in [m] and xi ∈ {0, 1}. To obtain a matching
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corresponding to (i, xi), take all nodes in X with xi in coordinate i and match them with

the nodes in Y with the opposite value in that coordinate. It is evident that the resulting

graph has 2m = 2 log n edge-disjoint matchings of size n/2. To see that the matchings are

induced, observe that if nodes x ∈ X and y ∈ Y both appear in the same matching, but are

not matched in it, they differ on the coordinate corresponding to the matching and some

other coordinate. Therefore, no edge in U connects x to y. 2

Our first improvement idea is to match nodes based on values at several coordinates.

This modification to the construction above yields the following lemma.

Lemma 4.7 For every n, there exists a
(

1
ε

(
log n

log 1/ε

)log 1/ε
, εn

)
-Ruzsá-Szemerédi graph

U = (X, Y ;E) with |X| = |Y | = n.

Proof. As before, let m = log n and X = Y = {0, 1}m. Let p be a parameter which

dictates how many coordinates are used for defining a matching. We set p = log 1/ε.

Connect a node in X and a node in Y if they differ in exactly p coordinates. Each matching

corresponds to a pair (T, xT ) where T is a subset of coordinates [m] of size |T | = p and

xT ∈ {0, 1}p. To obtain a matching corresponding to (T, xT ), take all nodes in X with

xT in coordinates T and match them with the nodes in Y with the opposite values in

those coordinates. It is evident that each such set of edges is a matching and that it has

size n/2p = εn. By definition, matchings are edge-disjoint. The number of matchings is

2p
(
n
p

)
≥ 2p

(
m
p

)p
= 1

ε

(
log n

log 1/ε

)log 1/ε
. To see that the matchings are induced, observe that

if nodes x ∈ X and y ∈ Y both appear in the same matching, but are not matched in it,

they differ on the coordinates T corresponding to the matching and some other coordinate.

Therefore, no edge in U connects x to y. 2

This completes the two toy constructions. They produced Ruzsá-Szemerédi graphs with

a polylogarithmic number of linear matchings.

4.3.2 A simple construction

This subsection improves on the toy constructions by identifying the nodes of the graph with

strings over a larger alphabet and by using the sum of a subset of coordinates as a criterion

for matching two nodes. It yields Ruzsá-Szemerédi graphs with much better parameters.

Lemma 4.8 For every n, there exists a
(

n
Ω

“
1

log log n

”
, n/3− o(n)

)
-Ruzsá-Szemerédi graph

U = (X, Y ;E) with |X| = |Y | = n.
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Proof.Let a,m be two integers where m is divisible by 3 and m = o(a). The vertex set of U

is X = Y = [a]m, thus n = am. We define a family of (partial) matchings on the vertices of

U and take the edge-set of the graph to be the union of the edge-sets of these matchings.

The matchings are indexed by a family of m
3 -subsets of [m]. Let T ⊆ [m], |T | = m

3 . Let

p = m
3 .

Definition of a matching MT . Color the points in the two copies of [a]m by blue, red

and white. The color of a point x is determined by
∑

i∈T xi. First, partition the vertex set

into levels, where the level Ls is the set
{
x :
∑

i∈T xi = s
}
. Then combine levels into strips,

where for an integer k = 1...a, the strip Sk = Lkp ∪ ...∪L(k+1)p−1. Color the strips Sk with

k ≡ 0( mod 3) blue, the strips with k ≡ 1( mod 3) red, and the remaining strips white.

The matching MT is defined by matching blue points in X to red points in Y as follows: If

a blue point b in X has all its T -coordinates greater than 2, match it to a point r = b−2 ·1T

in Y . The vector 1T is the characteristic vector of T ; it is 1 on T and 0 outside T . Note

that r is necessarily red. MT is clearly a matching. Our next step is to show that it is large.

Lemma 4.9 |MT | ≥ n/3− o(n).

Proof. Consider the “projected” matching M on the vertices of the bipartite graph UT =(
[a]T , [a]T

)
, which is defined by T . Namely, partition the points of [a]T as described above,

coloring them by blue, red and white, and match a blue point in one copy of [a]T to a red

one in another, by subtracting 2 · 1T . Since MT is determined by the coordinates in T , it is

enough to show that |M | ≥ P/3 − o(P ), where P = ap. Let B,R, W ⊆ [a]T be the sets of

the blue, red and white points, respectively. Then P = |B|+ |R|+ |W |.

First, we claim that |W | ≤ |R| +
∣∣ {x : ∃i, xi = 1}

∣∣. Indeed, consider a new matching

between W and R defined by matching w ∈ W to w − 1T . Assume that a ≡ 0( mod 3).

Then the only unmatched points in W are contained in the set {x : ∃i, xi = 1}, proving

this claim. Similarly |W | ≤ |B|+
∣∣ {x : ∃i, xi = a}

∣∣.
Next, observe that the only blue and red points (in the corresponding copies of [a]T )

unmatched by M are these which have a coordinate whose value is in {1, 2, a − 1, a}. It
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follows that

|M | > (|R|+ |B|)/2−
∣∣ {x : ∃i, xi ∈ {1, 2, a− 1, a}}

∣∣
> P/3−

(∣∣ {x : ∃i, xi ∈ {1, 2, a− 1, a}}
∣∣+ ∣∣ {x : ∃i, xi = 1, a}

∣∣)
≥ P/3− 6p

a
· P.

Since p = o(a), the claim of the lemma follows. 2

Now, let T, T1 be two m
3 -sets in [m], such that |T ∩T1| ≤ m/7. We claim that no edge of

MT is induced by MT1 . Indeed, let b be matched to r by MT , in particular b− r = 2 · 1T . If

the edge (b, r) is induced by MT1 , then b is colored blue and r is colored red in the coloring

defined by T1. By the definition of the coloring, since
∑m

i=1 bi >
∑m

i=1 ri, b is located in a

blue level separated by a white level from the red level of r. This implies that

∣∣∑
i∈T1

bi −
∑
i∈T1

ri

∣∣ ≥ m

3
.

On the other hand,

∣∣∑
i∈T1

bi −
∑
i∈T1

ri

∣∣ = ∣∣∑
i∈T1

(bi − ri)
∣∣ = ∣∣∑

i∈T1

(2 · 1T )i

∣∣ = 2 · |T ∩ T1| ≤
2m

7
<

m

3
,

reaching a contradiction.

We would like to have a large family F of m
3 -subsets of [m], such that the intersection

between any two of them is of size at most m
7 , or, equivalently, such that the Hamming

distance between any two of them is at least 2m
3 − 2m

7 = 8m
21 . So we need a lower bound on

the size of a constant weight binary error-correcting code F with the following parameters:

block length m, weight w = m
3 , distance d = 8m

21 . The Gilbert-Varshamov (or the “greedy”)

bound for constant weight codes [Lev71] gives, for d ≤ 2w(m−w)
m :

1
m

log |F| ≥ H
(w

m

)
− w

m
H

(
d

2w

)
−
(
1− w

m

)
H

(
d

2(m− w)

)
− o(1).

Substituting the values of d and w, we get

1
m

log |F| ≥ H(1/3)− 1/3 ·H(4/7)− 2/3 ·H(2/7)− o(1) = 0.014− o(1).
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Choose a = m2 and define the edge-set E(U) of U by

E(U) =
⋃

T∈F
MT .

By the preceding discussion, U is a graph on n = m2m vertices, whose edge-set is a disjoint

union of 2Ω(m) = n
Ω

“
1

log log n

”
induced matchings of size n/3− o(n). 2

4.3.3 A more general construction

The construction of the previous section has a weakness - even if we allow the required size

of the matching to be ’small’, the number of matchings is bounded from above by 2m - since

the matchings are indexed by subsets of [m]. This section tries to deal with this problem,

by presenting a slightly more general construction. There will be sufficient similarities for

us to skip some details.

Let 1/4 ≥ ε > 0 be given. We construct a graph with n vertices and edge-set which can

be partitioned into n
Ω

„
log 1

ε
log log n

«
induced matchings of size εn, thus proving Theorem 4.4.

Let θ = 2ε
1−2ε . (We will need θ later.) We will assume that k = 1

θ is an integer.

Let a,m, p be three integers. We think about m as large, and require also m = O(p),

kmp = o(a).

The vertex set of G is still [a]m. In particular, n = am. The edges of G will be defined,

as before, as a union of edge-sets of a family of matchings.

The matchings will be indexed by a family of vectors in (k[p])m = {k, 2k...pk}m. (This

is the generalization.) Let v ∈ (k[p])m. Note that θv is an integer vector.

Definition of a matching Mv. We still color the points in [a]m by three colors blue, red

and white. The color of a point x will be determined by 〈x, v〉 =
∑m

i=1 vixi. We partition

the vertex set into levels, where the level Ls is the set {x : 〈x, v〉 = s}. We combine levels

into strips and color the consecutive strips red, white, blue, white, red, white, blue... as

before. The only difference is the width of the strips. The non-white strips will be of width

〈θv, v〉, while the white strips will be of width 〈v, v〉.

The matching Mv matches blue points to red points. If a blue point bi satisfies bi ≥

(1+θ)vi for all 1 ≤ i ≤ m, we match it to a point r = b− (1+θ)v. Note that r is necessarily

red. Mv is a matching. We need to show that it is large.
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Lemma 4.10

|Mv| ≥ εn− o(n).

Proof. Once again, let B,R, W ⊆ [a]m be the sets of the blue, red and white points

respectively. Clearly, n = |B|+ |R|+ |W |.

We claim that |W | ≤ k(|B|+ |R|)+
∣∣ {x : ∃i, xi ≤ vi}

∣∣. To see this, partition each white

strip into k consecutive strips of width 〈θv, v〉. Let these substrips be numbered 1...k. For

j = 1...k, let Wj be the union over all the white strips of the substrips numbered j. Then

W = W1 ∪W2...∪Wk, a disjoint union. Now, we match each of the Wj to B ∪R, matching

w ∈ Wj to w − j · θv. Assuming a ≡ 2(4), the only unmatched points in Wj are contained

in the set {x : ∃i, xi ≤ vi}. Consider the union of these k matchings. It defines a function

from W \ {x : ∃i, xi ≤ vi} to B ∪ R, such that any point in B ∪ R is covered at most k

times. The claim is proved.

Next, observe that the only blue and red points unmatched by Mv are these which have

a coordinate i whose value lies in {1...(1 + θ)vi} ∪ {a− (1 + θ)vi + 1...a}. It follows that

|Mv| ≥ (|B|+ |R|)/2−
∣∣ {x : ∃i, xi ∈ {1...(1 + θ)vi} ∪ {a− (1 + θ)vi + 1...a}}

∣∣
≥ θ

2 + 2θ
· n

−
(∣∣ {x : ∃i, xi ∈ {1...(1 + θ)vi} ∪ {a− (1 + θ)vi + 1...a}}

∣∣+ ∣∣ {x : ∃i, xi ≤ vi}
∣∣)

≥ ε · n− (3 + 2θ)kmp

a
· n.

The last inequality uses the identity θ
2+2θ = ε. Since knp = o(m), the claim of the lemma

follows. 2

Now, let v, w be two vectors in (k[p])m, such that 〈v, w〉 < 1
1+θ 〈w,w〉. We claim that

no edge of Mv is induced by Mw. Indeed, let b be matched to r by Mv, in particular

b− r = (1 + θ)v. If the edge (b, r) is induced by Mw, then b and r are not colored white in

the coloring defined by w. This, by the definition of the coloring, implies that

∣∣ 〈b, w〉 − 〈r, w〉 ∣∣ ≥ 〈w,w〉 .

On the other hand,

∣∣ 〈b, w〉 − 〈r, w〉 ∣∣ = ∣∣ 〈b− r, w〉
∣∣ = ∣∣ 〈(1 + θ)v, w〉

∣∣ = (1 + θ) · 〈v, w〉 < 〈w,w〉 ,
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reaching a contradiction.

It remains to construct a large family F of vectors in (k[p])m, such that for any two

vectors v, w ∈ F holds
∣∣ 〈v, w〉

∣∣ < 1
1+θ 〈w,w〉.

A natural way to generalize the preceding section construction, would be to choose F

as a spherical code of an appropriate distance. For this approach to work, we need a good

lower bound on the size of a spherical code which is also a subset of a lattice (k[p])m. To

obtain such bound seems to be not entirely trivial. For this reason, we choose a slightly

different way to proceed.

First, we need the Berry-Esseen theorem ([Dur96], p. 126):

Theorem 4.11 Let X1, X2... be i.i.d. random variables with EXi = 0, EX2
i = σ2, and

E|X|3i = ρ. If Fm(x) is the distribution of (X1 + ... + Xm)/σ
√

m and \(x) is the standard

normal distribution then ∣∣Fm(x)− \(x)
∣∣ ≤ 3ρ

σ3
√

m
.

For v ∈ (k[p])m, let Y (v) = ‖v‖2 be the square of the Euclidean norm of v. If v is

distributed uniformly over (k[p])m, then Y is a sum of m i.i.d. random variables Z1...Zm,

distributed uniformly over k2, (2k)2, ...(pk)2. The expectation of Zi is (pk)2/3 + O
(
pk2
)
,

implying EY = mEZ1 = mp2k2/3 + O
(
mpk2

)
. Let Xi = Zi − EZi, and apply the Berry-

Esseen theorem to the distribution of Y − EY =
∑m

i=1 Xi. It is not hard to see that

EX2
i = σ2 = Θ

(
(pk)4

)
, while E|X|3i = ρ = O

(
(pk)6

)
. Therefore ρ/σ3 = O(1). It follows

that for any x > 0,

∣∣∣∣P{EY − xσ(Y ) ≤ Y ≤ EY + xσ(Y )
}
− 1√

2π

∫ x

−x
e−t2/2dt

∣∣∣∣ ≤ O

(
1√
m

)
.

Here σ(Y ) =
√

mσ = Θ
(√

mp2k2
)
. Note also that, for a sufficiently large m, the second

order term O
(
mpk2

)
in EY = mp2k2/3 + O

(
mpk2

)
is negligible compared to σ(Y ). Ap-

plying (4.1) with an appropriate x close to 1, we see that, for a sufficiently large m, Y lies

in the interval mp2k2/3±
√

mp2k2 with bounded away from 0 probability.

In other words, a constant fraction of points of (k[p])m lie in the m-dimensional spherical

annulus A =
{

x :
(
1− 3√

m

)
R2 ≤ ‖x‖2 ≤

(
1 + 3√

m

)
R2
}

, where we have set R = pk
√

m/3.

Lemma 4.12 Let R > 0, 0 ≤ α ≤ β, and let v, w be two points in a spherical annulus
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{x : αR ≤ ‖x‖ ≤ βR} with ‖v − w‖ >
√

β2 − 1−θ
1+θα2 ·R. Then

〈v, w〉 <
1

1 + θ
〈w,w〉 .

Proof. Let δ =
√

β2 − 1−θ
1+θα2. Expand 〈v − w, v − w〉 to obtain

δ2R2 < 〈v − w, v − w〉 = 〈v, v〉+ 〈w,w〉 − 2 〈v, w〉 .

Therefore 〈v, w〉 < 〈v,v〉+〈w,w〉−δ2R2

2 . We want the RHS of this inequality not to exceed
1

1+θ 〈w,w〉. This is equivalent to

〈v, v〉 − δ2R2 ≤ 1− θ

1 + θ
〈w,w〉 .

In the last inequality the worst possible case is when v is of the maximal possible norm in

the annulus and w is of the minimal possible norm. Substituting the corresponding norms

and the value of δ, we obtain an equality. 2

Lemma 4.13 An m-dimensional Euclidean ball of radius r contains at most
(
O
(

r
k
√

m
+ 1
))m

points of the lattice kZm.

Proof. Let B be an m-dimensional Euclidean ball of radius r containing I points of the

lattice kZm. Take an m-dimensional cube with sides of length k around each lattice point in

B. These cubes have disjoint interiors and they are contained in a ball of radius r + k
√

m.

Recall that the volume of an m-dimensional Euclidean ball of radius t is π
m
2

Γ(m
2

+1) · t
m =

O

((√
2πe
m · t

)m
)

. Since the volume of each cube is km,

I ≤ O


(√

2πe
m · (r + k

√
m)
)m

km

 ≤
(

O

(
r

k
√

m
+ 1
))m

.

2

We now choose F to be a subset of (k[p])m ∩ A, such that for any two distinct points

v, w ∈ A holds ‖v − w‖ > δR =
√

2θ
1+θ + 6√

m
· R. By lemma 4.12, with α =

√
1− 3√

m
and

β =
√

1 + 3√
m

, any two distinct points v, w ∈ A satisfy 〈v, w〉 < 1
1+θ 〈w,w〉. By lemma 4.13,
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there exists such a family with at leastΩ

 p(
δR

k
√

m
+ 1
)
m

≥
(

Ω
(

1
δ

))m

points. To see the inequality, recall that R = pk
√

m/3, and therefore δR
k
√

m
= Ω(δp) � 1

since, by our (soon to be specified) choice of parameters, p = Ω(n). It remains to write
1
δ in terms of ε. By the definition of θ, δ =

√
2θ

1+θ + 6√
m

=
√

4ε + 6√
m

= O (
√

ε), for

ε ≥ Ω (1/
√

m). We will deal with subconstant ε in the next section. For now we have

proved the following claim: For any constant ε and for a sufficiently large m, there exists a

family F of size
(
Ω
(

1
ε

))m
2 .

We choose p = m and m = kn3 = 1−2ε
2ε n3, and define the edge-set E(G) of G as follows:

E(G) =
⋃
v∈F

Mv.

By the preceding discussion, G is a graph on n =
(

1−2ε
2ε

)m ·m3m vertices, whose edge-set is

a disjoint union of
(
Ω
(

1
ε

))m
2 = n

Ω

„
log 1

ε
log log n

«
induced matchings of size εn− o(n).

4.3.4 Attainable parameters of (s, t)-Ruzsá-Szemerédi graphs

Consider the following question: For which values of s and t is there an (s, t)-Ruzsá-

Szemerédi graph? We are interested in the asymptotic version of this question as n → ∞.

Call a sequence of pairs (s(n), t(n))-realizable if there is an infinite sequence of n, and

graphs Un with n vertices, that are (s(n), t(n))-Ruzsá-Szemerédi. Define P to be the set

{(s(n), t(n))} of realizable sequences. Note that P is monotone in the natural order on

pairs, namely if it contains (s, t), and s′ ≤ s, t′ ≤ t, then it contains (s′, t′). Therefore it is

defined by its set of maximal points.

Two trivial maximal points in P are
((

n
2

)
, 1
)
, coming from a complete graph on n ver-

tices, and (1, n/2), coming from a perfect matching on n vertices. A much more interesting

point in P is given by a construction of Ruzsá and Szemerédi [RS78], following Behrend

[Beh46]. Their result, with some abuse of notation, can be stated as follows:

Theorem 4.14 (
n/3, n/2O(

√
log n)

)
∈ P.
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Our goal here is to check what realizable pairs could be obtained by the construction of

the previous section. We have already seen in section 4.3.2 that for ε = Ω(1) there is

an absolute constant c, such that (nc/log log n, εn) ∈ P. This trivially implies that there is

a constant c such that for any positive ε,
(
1/ε · nc/log log n, εn

)
∈ P. A more technically

involved construction of section 4.3.3 gives the following theorem.

Theorem 4.15 There is a constant c such that for any constant positive ε ≤ 1/4,

(
n(c·log 1/ε)/log log n, εn

)
∈ P.

The case of a constant ε is the interesting case from the “testing” point of view.

Consider now the construction of the previous section, and let ε go to 0 as n grows. As

a matter of fact, since we first choose ε and then define the other parameters m,n, p, the

right order of things should be as follows: We choose a sequence εi → 0 and then define

mi, ni, pi as functions of εi. Having this in mind, since (for a fixed i) everything depends on

one parameter, it will be convenient to choose this basic parameter to be m (and drop i).

Let us first look at ε = Ω (1/
√

m). This is an easy case, since it is not hard to see

that the only change that needs to be introduced to the analysis of the preceding section is

ensuring that the error term in lemma 4.10 is in fact o(εn). For this it is sufficient to require
knp
m = o(ε), or equivalently np

ε2 = o(m). Choosing p = m and m = n3

ε2 we obtain a graph on

n =
(

1
ε

)2n · n3n vertices, whose edge set is a disjoint union of
(
Ω
(

1
ε

))m
2 induced matchings

of size εn− o(n). Expressing everything through n, we see that for ε = Ω
(√

log n
log log n

)
, the

point

(
n

Ω

„
log 1

ε
log log n

«
, εn

)
∈ P. In particular, for some absolute constant c < 1, such that(

nc, n/O
(√

log n/ log log n
))

∈ P.
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Chapter 5

Monotonicity Testing on Special

Graphs

This Chapter contains results on monotonicity testing for specific graphs which can be

tested with much better query complexity than given by the general lower bound. The first

section deals with lower bounds for the well-studied Boolean hypercube. The second section

identifies new families of graphs which are testable with constant or logarithmic number of

queries.

5.1 Lower bounds for the Boolean hypercube

The Boolean hypercube is a directed graph with vertex set {0, 1}m and the edge set

{(x, y) | xi ≤ yi ∀i ∈ [m]}. Throughout this Chapter, ‖x‖ denotes the Hamming weight of

vector x. This section contains lower bounds on the query complexity of non-adaptive mono-

tonicity tests for Boolean functions over the Boolean hypercube. In the first subsection, we

present a lower bound of Ω(
√

m) for the 1-sided error case. In the second subsection, we

give a lower bound of Ω(log m) for the 2-sided error case. The corresponding adaptive lower

bounds can be obtained by taking a logarithm of the non-adaptive bounds. The justifica-

tion for this is very simple: every adaptive test can be simulated by a non-adaptive test

that makes all queries that the adaptive test could have made on all its branches. There

is still a large gap between our lower bounds and the best-known upper bound of O(m/ε)

by Dodis et al. [DGL+99]. This upper bound is given by a non-adaptive algorithms with

1-sided error.
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5.1.1 1-sided error non-adaptive lower bound

We give a Ω(
√

m) lower bound on the query complexity of non-adaptive 1-sided error mono-

tonicity tests for Boolean functions over the Boolean hypercube. This implies a logarithmic

lower bound for adaptive 1-sided error testing of this property.

Theorem 5.1 ∃ε > 0 such that every non-adaptive 1-sided error ε-test for monotonicity

of Boolean functions on the m-dimensional Boolean hypercube requires Ω(
√

m) queries.

Proof. Note that a 1-sided error test must accept if no violation is uncovered; otherwise, the

test fails on monotone functions consistent with the query results. For i = 1, ...,m define a

function fi : {0, 1}m → {0, 1} by

fi(x1, . . . , xm) =


1 if ‖x‖ > m/2 +

√
m

0 if ‖x‖ < m/2−
√

m

1− xi otherwise

It is easy to see that for all 1 ≤ i ≤ m, fi is ε-far from monotone, for some constant ε > 0

independent of m. Lemma 5.2 immediately implies our theorem. 2

Lemma 5.2 For every non-adaptive q-query monotonicity test, there exists an index i ∈

[m], such that the test succeeds (finds a violation) on fi with probability at most O(q/
√

m).

Proof. It suffices to prove the claim for tests that only query vertices with Hamming weight

in the range m/2±
√

m, as vertices outside of this range do not participate in any violations.

We show that every set of q queries reveals a violation for at most O(q
√

m) of the func-

tions fi. It follows that for every test that makes q queries,
∑m

i=1 Pr[a violation for fi is found] =

O(q
√

m), and so there exists an fi for which the test finds a violation with probability at

most O(q/
√

m), as claimed.

Let Q be the set of queried vertices of {0, 1}m of size q. The queries detect a pair of

vertices violated by fi only if Q contains comparable vertices u and v that differ in coordinate

i. Construct an undirected graph with vertex set Q, by drawing an edge between x and y

if they are comparable. Consider a spanning forest of this graph. If such vertices u and v

exist, they must lie in the same tree. Furthermore, there must exist adjacent vertices on the

path between u and v that differ in coordinate i. Therefore, the number of functions fi for

which the queries reveal a violation is at most the maximum number of edges in the forest

44



(which is at most q − 1) multiplied by the maximum possible distance between adjacent

vertices (2
√

m). The total is at most O(q
√

m). 2

5.1.2 2-sided error non-adaptive lower bound

We give a logarithmic lower bound on the query complexity of non-adaptive 2-sided error

monotonicity tests for Boolean functions over the Boolean hypercube. This implies a non-

constant (though doubly logarithmic) lower bound for adaptive 2-sided error testing of this

property.

Theorem 5.3 ∃ε > 0 such that every non-adaptive ε-test for monotonicity of Boolean

functions on the m-dimensional Boolean hypercube requires Ω(log m) queries.

Proof. The lower bound uses Yao’s method. We define two kinds of input functions –

trimmed oligarchy and trimmed anti-oligarchy functions (see Definition 5.1). Lemma 5.4

proves that trimmed oligarchy functions are monotone and trimmed anti-oligarchy functions

are ε-far from monotone for a constant ε. Then definition 5.2 gives distributions DP and

DN over trimmed oligarchy and anti-oligarchy functions, correspondingly. Lemma 5.5 shows

that for every set of q ≤ 1
20 log m vertices of the hypercube, the distributions induced on

{0, 1}q by restricting the functions to the q vertices are < 1
3 close. By Yao’s minimax

principle, this proves the theorem. 2

For x ∈ {0, 1}m, we view x both as a binary vector of length m and a subset {i : xi = 1}

of [m].

Definition 5.1 Let α = 1
100 . Given B ⊆ [m], let maj(x∩B) be 1 when |x∩B| > 1

2 |B| and

0 otherwise.

The trimmed oligarchy function according to B is

fB(x) =


1 if ‖x‖ > m/2 + α

√
m

0 if ‖x‖ < m/2− α
√

m

maj(x ∩B) otherwise
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The trimmed anti-oligarchy function according to B is

fA
B (x) =


1 if ‖x‖ > m/2 + α

√
m

0 if ‖x‖ < m/2− α
√

m

1−maj(x ∩B) otherwise

Lemma 5.4 There exists ε > 0, such that for any nonempty set B, fB is monotone and

fA
B is ε-far from monotone.

Proof. It is easy to see that trimmed oligarchy functions are monotone. For trimmed

anti-oligarchy functions, we will find ε2m vertex-disjoint violated pairs.

Let b = |B|. For every integer w such that m/2− α
√

m ≤ w < m/2, and every integer

v such that 0 ≤ v < b/2, let Uw,v denote the set {x ∈ {0, 1}m : ‖x‖ = w and |x ∩ B| = v},

and Vw,v denote the set {x ∈ {0, 1}m : ‖x‖ = m − w and |x ∩ B| = b − v}. By definition,

f(x) = 1 for every x ∈ Uw,v and f(x) = 0 for every x ∈ Vw,v. Sets Uw,v and Vw,v have the

same size, since x is in Uw,v iff the complement of x is in Vw,v. We want to find a bijection

σ : Uw,v → Vw,v such that x � σ(x) for every x ∈ Uw,v.

Consider the bipartite graph over Uw,v ∪ Vw,v with the poset relations as edges. By

symmetry, this graph has a constant degree, so a matching exists (by Hall’s Theorem) if

this degree is nonzero. This happens if w, v satisfy b/2 − v ≤ m/2 − w in addition to the

conditions above. The union over all such w, v of the sets Uw,v ∪Vw,v covers a fixed fraction

of the hypercube, so we are done. 2

Definition 5.2 To define DP and DN pick a random set B ⊂ [m] by independently choos-

ing each coordinate to lie in B with probability 1
10
√

m
. For DP , take the corresponding fB

and for DN , take the corresponding fA
B .

Lemma 5.5 DN and DP restricted to any set of q = 1
20 log m queries are ε-close, for any

ε > 0.

Proof. Let q = 1
20 log m and let x1, . . . , xq be the queries. Since we are considering only

non-adaptive tests, queries x1, . . . , xq form a fixed subset of {0, 1}m. Let dP and dN be the

induced distributions on {0, 1}q obtained by restricting DP and DN to the queries. Our

goal is to show ‖dP − dN‖1 = o(1).
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We can assume, without loss of generality, that the queries satisfy m/2−α
√

m ≤ ‖xi‖ ≤

m/2 + α
√

m. This is because functions fB and fA
B are constant and identical outside this

range. Inside the range, for every B, fB and fA
B complement each other. Therefore, the

induced distributions dP and dN on {0, 1}q are mirror images of each other: dP (a) = dN (ā)

for any a ∈ {0, 1}q, where ā is the complement of a. For a distribution d on {0, 1}q, let d̄

be its mirror image. Call d symmetric if d = d̄.

Our claim amounts to showing that dP is almost symmetric. Namely, we construct a

symmetric distribution s, such that ‖dP − s‖1 = o(1). This implies our claim since

‖dP − dN‖1 = ‖dP − d̄P ‖1 ≤ ‖dP − s‖1 + ‖d̄P − s̄‖1 = 2‖dP − s‖1.

We exhibit two intermediate distributions, d2 and d3, such that every distribution in the

sequence d1 = dP , d2, d3, s is close to its predecessor. The triangle inequality then im-

plies that the distance between dP and s is at most the sum of the distances between the

consecutive elements of the sequence.

We define distribution d2 by replacing each query vertex with a nearby vertex from

the middle layer of the hypercube. For 1 ≤ i ≤ q, fix yi ∈ {0, 1}m with ‖yi‖ = m/2 and

‖xi− yi‖ ≤ α
√

m. Let d2 be the distribution on {0, 1}q induced by restricting the functions

in DP to y1, ..., yq. Then d2 is close to d1 because with high probability over the choice of

a function f from DP , changing the queries by at most O(
√

m) bits, does not change the

value of f on the queries.

To see that d2 is close to d1, let us look again at the way d1 and d2 are obtained from

DP . Let p = 1
10m−

1
2 , and let Ω be the probability space of all subsets B of [m] endowed

with product measure µ(B) = p|B|(1 − p)m−|B|. Let X1, X2 : Ω → {0, 1}q be two random

variables, defined as follows: X1(B) = (f(x1)...f(xq)), and X2(B) = (f(y1)...f(yq)), where

f is the oligarchy function corresponding to B. Then the distribution of X1 on {0, 1}q is d1

and the distribution of X2 is d2.

Now we need a following standard and easy fact: for two random variables defined on the

same probability space, the l1-distance between their distributions is at most 2Pr{X 6= Y }.
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Therefore, ‖d1 − d2‖

≤ 2Prµ{X1 6= X2} = 2PrDP
{∃i : f(xi) 6= f(yi)}

≤ 2Prµ

{
∃i :

∣∣|yi ∩B| − 1
2
|B|
∣∣ ≤ m

1
3

∨ ∣∣|yi ∩B| − |xi ∩B|
∣∣ ≥ m

1
3

}
≤ 2

(
q∑

i=1

Prµ

{∣∣|yi ∩B| − 1
2
|B|
∣∣ ≤ m

1
3

}
+

q∑
i=1

Prµ

{∣∣|yi ∩B| − |xi ∩B|
∣∣ ≥ m

1
3

})

≤ O

(
q

m
1
6

)
= O

(
log m

m
1
6

)
.

The last inequality follows from two simple applications of Chebyshev’s inequality to the

random variables |yi ∩B| − 1
2 |B| and |yi ∩B| − |xi ∩B|.

The sets y1...yq induce a standard partition of [m] into 2q disjoint subsets, indexed by

{0, 1}q. For I ∈ {0, 1}q, the I’th element of the partition is AI =
⋂

i:Ii=1 yi ∩
⋂

i:Ii=0 yc
i .

Here yc
i is the set complement of yi. We define 2q random variables on Ω by setting

RI(B) = |B ∩AI |. If AI is empty, RI is identically 0.

Note that {RI} are independent binomially distributed variables, and that they deter-

mine X2. In fact, the i’th coordinate of X2(B) is 1 if and only if |yi ∩B| > |yc
i ∩B|, which

is equivalent to
∑

I:i∈I RI >
∑

I:i/∈I RI .

Since E
(∑

I:i∈I RI

)
= mp/2 = E

(∑
I:i/∈I RI

)
, we can replace each RI by a random

variable ZI = RI −ERI with zero expectation.

Next, we would like to replace each ZI by a symmetric random variable. We know,

say by the Berry-Esseen theorem, that if R has a binomial distribution with parameters

k and p, such that kp � 1, then the distribution of R is, in some sense, close to the

normal distribution which is, of course, symmetric. We will give a precise meaning to this

intuition shortly. However, first we have to get rid of ZI corresponding to small AI . Let

X3 : Ω → {0, 1}q be defined as follows: the i’th coordinate of X3(B) is 1 if and only if∑
I:i∈I,|AI |≤m3/5 ZI >

∑
I:i/∈I,|AI |≤m3/5 ZI . Let d3 be the distribution of X3. We claim that

‖d2 − d3‖ ≤ o(1).

48



Indeed, Let Ã =
⋃

I:|AI |≤m3/5 AI . Clearly, |Ã| ≤ 2q ·m3/5 < m7/10. We estimate from above

the probability that X2 differs from X3. Similarly to what we had before,

Prµ{X2 6= X3} ≤ Prµ

{
∃i :

∣∣|yi ∩B| − 1
2
|B|
∣∣ ≤ m

9
40

∨
|Ã ∩B| ≥ m

9
40

}
≤

q∑
i=1

Prµ

{∣∣|yi ∩B| − 1
2
|B|
∣∣ ≤ m

9
40

}
+ Prµ

{
|Ã ∩B| ≥ m

9
40

}
≤ O

(
log m

m
1
40

)
.

Let us prove the last inequality. |Ã ∩ B| is a binomial random variable with expecta-

tion |Ã| · p ≤ m
1
5 and variance of a similar magnitude. Therefore, by the Chebyshev

inequality, Prµ

{
|Ã ∩B| ≥ m

9
40

}
≤ O

(
1

m
5
20

)
. On the other hand, |yi ∩ B| − 1

2 |B| =
1
2 (|yi ∩B| − |yc

i ∩B|), is a difference of two independent identically distributed binomial

random variables with parameters m/2 and p. By the extended version for different ran-

dom variables [Dur96] of the Berry-Esseen theorem, the distribution of |yi ∩ B| − 1
2 |B| is

close, up to O
(

1

m
1
4

)
in the supremum norm, to the normal distribution with mean 0 and

variance Θ
(
m

1
5

)
. Therefore Prµ

{∣∣|yi ∩B| − 1
2 |B|

∣∣ ≤ m
9
40

}
≤ O

(
1

m
1
40

)
, and we are done.

Now we are left only with ZI for which |AI | ≥ m
3
5 . We replace them by symmetric

random variables SI without losing much, due to the following claim.

Claim 5.6 Let R be a binomial random variable with parameters k and p, p ≤ 1
2 , such that

ER = kp is integer. Let Z = R − ER = R − kp. Let S be a symmetric random variable

with integer values, such that Pr(S = t) = 1
2 · (Pr(Z = t) + Pr(Z = −t)). Let dZ , dS be the

distributions of Z and S correspondingly. Then

‖dZ − dS‖1 ≤ O

(
log3/2(kp)√

kp

)
.

Proof. First, we may clearly assume that kp is sufficiently large, in particular kp � log3(kp).

Let ε = log3/2(kp)√
kp

. By the standard large deviation inequalities [AS00], Pr{|Z| ≥ t} ≤

exp
{
−2t2

kp + t3

2k2p2

}
. Therefore, for some constant c,

‖dZ − dS‖1 ≤
1
2
·

c
√

kp log(kp)∑
t=1

|Pr(Z = t)− Pr(Z = −t)|

+ O(ε).
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It follows that in order to prove the claim, it suffices to show that for any 1 ≤ t ≤

O
(√

kp log(kp)
)

holds

1−O(ε) ≤ θ :=
Pr(Z = t)

Pr(Z = −t)
≤ 1 + O(ε).

Let q = 1− p. 1 By direct computation,

θ =
p2t

q2t
· (kq + t)!(kp− t)!
(kq − t)!(kp + t)!

=
kp− t

kq − t
· p

2t+1

q2t+1
·

t∏
i=1

k2q2 − i2

k2p2 − i2
=

kpq − tq

kpq − tp
· p

2t+2

q2t+2
·

t∏
i=1

k2q2 − i2

k2p2 − i2
.

Note that, for every i, k2q2−i2

k2p2−i2
≥ p2

q2 , and therefore θ ≥ kpq−tq
kpq−tp ≥ 1− t

kp ≥ 1− ε.

On the other hand, using the fact that for 0 ≤ δ ≤ 1
2 holds 1

1−δ ≤ 1 + 2δ,

θ ≤
(

k2p2q2 − t2p2

k2p2q2 − t2q2

)t

≤
(

1 +
2t2

k2p2

)t

≤ exp

{
2t3

k2p2

}
≤ 1 + O(ε).

2

Using the claim, for each remaining random variable ZI , we construct a symmetric

random variable SI .2 By the claim, for each I with |AI | ≥ m
3
5 the distributions of ZI and

SI are O

(
log

3
2 m

m
1
10

)
-close.

Now, consider a new random variable X4 : Ω → {0, 1}q, defined as follows: the i’th

coordinate of X4(B) is 1 if and only if
∑

I:i∈I,|AI |≤m3/5 SI >
∑

I:i/∈I,|AI |≤m3/5 SI . Let d4 be

the distribution of X4. We claim that

‖d3 − d4‖1 = o(1).

To show this, we will need a following simple and well-known fact: let X1, X2, Y1, Y2 be two

pairs of independent random variables, and let dX denote the distribution of X. Then

‖dX1+X2 − dY1+Y2‖1 ≤ ‖dX1 − dY1‖1 + ‖dX2 − dY2‖1.

1For the sake of this proof only. No confusion with q as the number of queries should occur.
2In fact, there is a technical difficulty we don’t deal with, since the expectations of ZI don’t necessarily

have to be integer. However, since these expectations are large, at least Ω
“
m

1
10

”
, we may, in fact, assume

their integrality. We leave the details to the full version of the paper.
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Now, making a couple of simple shortcuts, Prµ{X3 6= X4} ≤

q∑
i=1

Prµ

 ∑
I:i∈I,|AI |≤m3/5

SI −
∑

I:i/∈I,|AI |≤m3/5

SI 6=
∑

I:i∈I,|AI |≤m3/5

ZI −
∑

I:i/∈I,|AI |≤m3/5

ZI

 .

For any 1 ≤ i ≤ q, the corresponding summand is bounded by the l1 distance between

the distributions of
∑

I:i∈I,|AI |≤m3/5 SI −
∑

I:i/∈I,|AI |≤m3/5 SI and of
∑

I:i∈I,|AI |≤m3/5 ZI −∑
I:i/∈I,|AI |≤m3/5 ZI . Since the {SI} and the {ZI} are families of independent random vari-

ables, the subadditivity property above implies that this distance is at most O

(
2q · log

3
2 m

m
1
10

)
=

O

(
log

3
2 m

m
1
20

)
. Therefore ‖d3 − d4‖ = O

(
log

5
2 m

m
1
20

)
= o(1), as claimed.

We are almost done. Since SI are symmetric random variables, it is easy to see that

‖d4 − d̄4‖1 ≤
q∑

i=1

Pr

 ∑
I:i∈I,|AI |≤m3/5

SI =
∑

I:i/∈I,|AI |≤m3/5

SI

 ≤

q∑
i=1

Pr

 ∑
I:i∈I,|AI |≤m3/5

ZI =
∑

I:i/∈I,|AI |≤m3/5

ZI

+ O

(
log

5
2 m

m
1
20

)
.

The last inequality follows, as before, from the proximity of SI to ZI , and from the subad-

ditivity of distances.

Now, for each i, the RHS probability is the probability that two independent binomial

variables with parameters k1, k2 = m/2 − o(m) and p are equal. It is easy to see, for

instance by the Berry-Esseen theorem, that this probability is at most O
(

1√
mp

)
= O

(
1

m
1
4

)
.

Therefore ‖d4 − d̄4‖1 ≤ O

(
log

5
2 m

m
1
20

)
.

Finally, let s = 1
2 ·(d4+d̄4). This is a symmetric distribution over {0, 1}q, with ‖s−d4‖1 =

1
2‖d4 − d̄4‖1 ≤ o(1), and we are done. 2

5.2 Families of graphs with efficient monotonicity tests

This section describes several families of efficiently testable graphs, including graphs with

few edges in the transitive closure, graphs with small width, top-parallel graphs, trees and

graphs with small separators. All tests presented have 1-sided error. Hence, we only need

to analyze the probability of error for functions that are far from monotone. Throughout

the section, we denote the transitive closure of a graph G by TC (G).
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5.2.1 Graphs with sparse transitive closure

We start with an easy test that samples q edges from the transitive closure of the graph

where q is a parameter.

Test T2(q)

1. Pick q edges from the transitive closure of the graph uniformly and indepen-

dently.

2. For each edge, query its endpoints. Reject if it is violated; otherwise, accept.

Note that test T2(q) queries at most 2q vertices.

Lemma 5.7 If G is a graph with at most cn edges in TC (G), then algorithm T2 with

parameter q set to 4c/ε is a 1-sided error (ε, 8c/ε)-test for monotonicity on G.

Proof. If a function is ε-far from monotone, by Lemma 2.3, it violates at least εn/2 edges

in the transitive closure. With probability at least 1 − q−2 > 2/3, the test will find one of

them. 2

5.2.2 Boolean functions over small width graphs

A graph G has width w if every set of mutually incomparable vertices has size at most w.

The following shows that T2 can be used to test small width graphs.

Lemma 5.8 If G is a graph of width w, then algorithm T2 with q set to 2w/ε2 is a 1-sided

error (ε, 4w/ε2)-test for monotonicity of Boolean functions on G.

Proof.[of Lemma 5.8] Let G be a graph of width w and let f be a Boolean labeling of

V (G) that is ε-far from monotone. We will show that the number of violated edges in the

transitive closure is at least ε2n2/(2w)− o(1). Since the total number of edges in the graph

is at most n2/2, the test will find a violated edge with probability at least 1− q−2 > 2/3.

Claim 5.9 If dist(f,G) ≥ d for a Boolean labeling f , then there is a set T, |T | ≤ w, of

0-labeled vertices, such that T is incident to at least d violated pairs.

Proof.[of claim]If dist(f,monG) ≥ d, by Lemma 2.4, TC (G) has a matching of violated

edges of size d. Call endpoints of the edges in the matching witnesses. Let Z be the set of

0-labeled witnesses and let T ⊆ Z be a minimal set of vertices such that ∀z ∈ Z,∃t ∈ T
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with z ≤G t. Clearly, T contains no comparable pairs, and hence is of size at most w. Each

1-labeled witness is below one of the nodes in Z and hence in T . 2

To end the proof, we apply the claim to G and remove the nodes in T from G. We get

a new graph for which the restricted f is of distance εn − w from monotone (by Lemma

2.1). Repeating until no vertices are left, we observe that the number of violated edges in

TC (G) is at least

εn + (εn− w) + (εn− 2w) + · · ·+ (εn mod w) ∼ (ε2n2)/(2w). 2

5.2.3 Boolean functions over top-parallel graphs

Here we define top-parallel graphs and show that they are efficiently testable.

Let G1 = (V1, E1) and G2 = (V2, E2) be disjoint graphs. Graph G obtained by con-

necting G1 and G2 in parallel is defined by G = (V1 ∪ V2, E1 ∪ E2). Graph G obtained by

connecting G1 and G2 using the top operation is defined by G = (V1 ∪ V2, E1 ∪ E2 ∪ Ex),

where Ex = {(v2, v1)|v1 ∈ V1 and v2 ∈ V2}. Top-parallel graphs are defined recursively:

the 1-vertex graph is top-parallel, and a graph formed by top or parallel operations from

two top-parallel graphs is also top-parallel. Note that top-parallel graphs are transitively

closed. Examples of top-parallel graphs include the transitive closure of a rooted tree with

all edges directed either towards the root or away from the root, and the transitive closure

of a complete layered graph.

The rest of this subsection is devoted to proving the following lemma.

Lemma 5.10 If G is a top-parallel graph, it has a 1-sided (ε, 4/ε2)-test for Boolean mono-

tonicity.

A distribution D on the edges of a transitive closure of a graph G is called detecting

if for every Boolean labeling which is ε-far from monotone on G, the probability that D

selects a violated edge is at least ε2. A graph is detectable if it has a detecting distribution.

Claim 5.11 Let G1 = (V1, E1) and G2 = (V2, E2) be disjoint detectable graphs. Then the

graph G = (V1 ∪ V2, E1 ∪ E2) is also detectable.

Proof. Let n1 = |V1| and n2 = |V2|. Suppose D1 and D2 are detecting distributions for

G1 and G2, correspondingly. We define a distribution D for G by D = p1D1 + p2D2 where

p1 = n1/(n1 + n2) and p2 = n2/(n1 + n2). It remains to show that D is detecting.
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Consider a function f : V1 ∪ V2 → {0, 1} with (absolute) distance d from monotone on

G. Suppose f restricted to G1 has distance d1 to monotone, and f restricted to G2 has

distance d2. Since there are no edges between G1 and G2, d = d1 +d2. We can lower bound

the probability that D selects a violated edge as follows.

Pr
D

[violated edge] ≥ p1 ·
(

d1

n1

)2

+ p2 ·
(

d2

n2

)2

=
d2

1

n1(n1 + n2)
+

d2
2

n2(n1 + n2)
.

This quantity is at least (d1+d2)2/(n1+n2)2. This fact follows from straightforward algebra:

(n1d2 − n2d1)2 ≥ 0

n2
1d

2
2 + n2

2d
2
1 ≥ 2n1n2d1d2

n2
1d

2
2 + n1n2d

2
1 + n2

2d
2
1 + n1n2d

2
2 ≥ n1n2d

2
1 + 2n1n2d1d2 + n1n2d

2
2

(n1 + n2)n2d
2
1 + (n1 + n2)n1d

2
2 ≥ n1n2(d1 + d2)2

d2
1

n1(n1 + n2)
+

d2
2

n2(n1 + n2)
≥ (d1 + d2)2

(n1 + n2)2

Thus, D is a detecting distribution for G. 2

Claim 5.12 Let G1 = (V1, E1) and G2 = (V2, E2) be disjoint detectable graphs. Then the

graph G = (V1 ∪ V2, E1 ∪ E2 ∪ Ex), where Ex = {(v2, v1)|v1 ∈ V1 and v2 ∈ V2}, is also

detectable.

Proof. Let n1 = |V1| and n2 = |V2|. Suppose D1 and D2 are detecting distributions for G1

and G2, correspondingly. Denote the uniform distribution over the edges of Ex by Ux. We

define a distribution D for G by D = p1D1 + p2D2 + pxUx, where

p1 =
n2

1

(n1 + n2)2
; p2 =

n2
2

(n1 + n2)2
; px = 1− p1 − p2 =

2n1n2

(n1 + n2)2
.

It remains to show that D is detecting. Consider a function f : V1 ∪ V2 → {0, 1} with

(absolute) distance d to monotone on G. By lemma 2.4, TC (G) contains d independent

edges violated by f . Let d1 be the number of these edges in TC (G1), d2 be the number in

TC (G2), and dx be the number in Ex. Then G1 contains at least d1 +dx 0-labeled vertices,

and G2 contains at least d2 + dx 1-labeled vertices. Since every vertex in G2 is connected

to every vertex in G1, the number of violated edges in Ex is at least (d1 + dx)(d2 + dx).
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Also note that f restricted to G1 is d1/n1-far from monotone, and f restricted to G2 is

d2/n2-far from monotone. We can lower bound the probability that D selects a violated

edge as follows.

Pr
D

[violated edge] ≥ p1 ·
(

d1

n1

)2

+ p2 ·
(

d2

n2

)2

+ px ·
d2

x + dxd1 + dxd2 + d1d2

n1n2

=
d2

1 + d2
2 + 2(d2

x + dxd1 + dxd2 + d1d2)
(n1 + n2)2

≥ (d1 + d2 + dx)2

(n1 + n2)2
.

Since d = d1 + d2 + dx, distribution D is detecting. 2

Proof.[of Lemma 5.10] By claims 5.11 and 5.12, G has a detecting distribution D. Consider

the test that repeats the following 2ε−2 times: query both endpoints of an edge selected

according to D and reject if the edge is violated. If a Boolean function is ε-far from

monotone, the test will detect a violated edge with probability at least 1− e−2 > 2/3. 2

5.2.4 Boolean functions over tree-like graphs

Another example of efficiently testable graphs is forests with edges directed arbitrarily.

These graphs are defined formally below.

Definition 5.3

1. A directed graph G(V,E) is tree-like if it is obtained by arbitrarily directing each edge

of a forest T = (V,E).

2. If G is obtained as above from a tree T = (V,E) by choosing a special vertex r ∈ V

and directing the edges along paths from other vertices to r, then G is called a rooted

tree.

Note that a rooted tree is a special case of a tree-like graph. We use the following notation:

For a directed acyclic graph G = (V,E) and v ∈ V , let Low(v) = {u ∈ V |u ≤G v}

and High(v) = {u| v ≤G u}. Observe that in a rooted tree, Low(x) ∩ Low(y) = ∅ for

every pair of incomparable vertices x, y. In a tree-like graph, Low(v) ∩ Low(u) = ∅ or

High(v) ∩ High(u) = ∅ (or both) for every pair of incomparable vertices x, y. We start

with a simple algorithm for testing rooted trees and then treat more general tree-like graphs.

Rooted trees

Here we present an (ε, O(poly(1/ε)))-test for rooted trees.
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Definition 5.4 Let f be a Boolean labeling of a rooted tree G = (V,E) and 0 < ε < 1. A

vertex v ∈ V is ε-bad with respect to f if f(v) = 0 and more than ε fraction of vertices in

Low(v) are labeled 1 by f . A vertex is ε-good if it is not ε-bad.

The following lemma is the heart of the algorithm:

Lemma 5.13 Let f be a Boolean labeling on a rooted tree G = (V,E). If less than an ε/2

fraction of vertices in G are ε/2-bad then f ’s relative distance to monotone is less than ε.

Proof. Assume that less than an ε/2 fraction of vertices in G are ε/2-bad with respect to

a Boolean labeling f . We can obtain a monotone Boolean labeling f ′ on G by changing f

on less than an ε fraction of the vertices. Let Z be the set of ε/2-good 0-labeled vertices,

and S be the set of maximal nodes of Z. Set f ′(x) to 0 if x ∈ Low(v) for some v ∈ S and

to 1 otherwise. Note that by the definition of S, ∪v∈SLow(v) includes every ε/2-good 0-

labeled vertex. Hence less than an ε/2 fraction of the vertices (the 0-labeled vertices outside

∪v∈SLow(v)) change labels to 1 in f ′. Also, as G is a rooted tree, Low(u) ∩ Low(v) = ∅

for all u, v ∈ S and hence f ′ differs from f on at most ε/2 fraction of ∪v∈SLow(v) (as each

v ∈ S is ε/2-good). Thus, dist(f, f ′) ≤ ε · |V |.

It remains to show that f ′ is monotone. Consider nodes x and y where f ′(x) = 0 and y

is below x. Since f ′(x) = 0, x is in Low(v) for some v ∈ S. Then y is also in Low(v) for

the same v, and therefore f ′(y) = 0. Thus, there are no violated pairs. 2

Test for rooted trees, T3(ε)

1. Query k = 4/ε vertices uniformly and independently at random.

2. For each queried vertex with label 0, query k vertices below it uniformly and

independently at random and reject if a violated pair is found; otherwise,

accept.

Lemma 5.14 Let G be a rooted tree. Then algorithm T3 is a 1-sided error
(
ε, O

(
ε−2
))

-test

for monotonicity of Boolean functions on G.

Proof. Clearly the test cannot reject a monotone function. If a Boolean function is ε-far

from monotone then, by Lemma 5.13, at least an ε/2 fraction of vertices are ε/2-bad. Hence

step 1 of the algorithm will select an ε/2-bad vertex v with probability at least 1 − e−2.

Step 2 will find a vertex with label 1 below v with probability at least 1− e−2. Therefore,

the failure probability is at most 2e−2 < 1/3. 2

56



Tree-like graphs

This subsection generalizes the rooted tree test to tree-like graphs. One of the difficulties in

generalizing the algorithm is that for two incomparable nodes u, v in a tree-like graph, the

sets of elements below them might not be disjoint (contrary to the rooted tree case). We

will generalize the definition of ε-good after introducing necessary notation. For a directed

acyclic graph G = (V,E) and v ∈ V , let Low(v) = {u ∈ V |u ≤G v} and High(v) = {u| v ≤G

u}. Observe that in a tree-like graph, Low(v) ∩ Low(u) = ∅ or High(v) ∩High(u) = ∅ (or

both) for every pair of incomparable vertices x, y.

Definition 5.5 Let f be a Boolean labeling of a tree-like graph G = (V,E). The principal

cone of v, denoted by C∗(v), is Low(v) if f(v) = 0 and High(v) if f(v) = 1. We denote by

C(v) = Low(v) ∪High(v), the set of all vertices that are comparable to v.

Definition 5.6 Let f be a Boolean labeling of a tree-like graph G = (V,E) and 0 < ε < 1.

A vertex v ∈ V is ε-bad with respect to f if more than ε fraction of vertices in C∗(v) are

labeled 1− f(v) by f ; namely, if v belongs to more than ε|C∗(v)| violated pairs. A vertex is

ε-good if it is not ε-bad.

Lemma 5.15 Let f be a Boolean labeling on a tree-like graph G, obtained from a forest

T = (V (T ), E(T )). If less than an ε/2 fraction of vertices in G are ε/2-bad then f ’s relative

distance to monotone is less than ε.

Proof. We may assume w.l.o.g that T is a tree rather than a forest, since it is enough to prove

the lemma separately for each connected component. Let ε and f be fixed. Throughout the

proof, we call v good if it is ε/2-good with respect to f and bad if it is ε/2-bad with respect

to f . The set of good vertices is denoted by VG. The main part of the proof is to show that

there is a Boolean labeling f ′ which is monotone on VG and so that dist(f, f ′) ≤ ε
2 · |V (T )|.

Given that, the lemma follows by lemma 2.1.

We show inductively how to change f into f ′ such that f ′ is monotone on VG. Our

inductive process works in phases. After the kth phase a labeling fk, and a set Bk ⊆ V (T )

are defined, so that Bk−1 ⊂ Bk and fk differs from fk−1 only on Bk −Bk−1. For k ≥ 1 we

denote ∆k = Bk −Bk−1. Also, let L(v) = {u| f(u) = f(v)}, and let f0 = f .

We keep the following invariants for every phase k ≥ 1:

1. fk is monotone on Bk ∩ VG.
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2. The induced undirected graph T [Bk] is connected.

3. ∆k contains all points that are comparable to any point in Bk−1 and are not already

in Bk−1.

4. For every node v ∈ Bk either Low(v) ⊆ Bk or High(v) ⊆ Bk.

5. There is a set of points V ∗k ⊆ ∆k ∩VG such that C∗(v), C∗(w) are pairwise disjoint for

every v, w ∈ ∪k
1V
∗
i and such that fk differs from fk−1 only in points in ∪v∈Vk

(C∗(v)−

L(v)).

Note that if we show that we can construct B1, ..., Bk and fk as above with VG ⊆ Bk we

are done as by requirement 1 fk is monotone on VG while by requirement 5 dist(f, fk) ≤

∪k
i=1 ∪v∈V ∗

k
|C∗(v) − L(v)| ≤ ε

2Σk
i=1Σv∈V ∗

k
|C∗(v)| ≤ ε

2 |T | (the 2nd inequality is by the fact

that Vk ⊆ VG, the 3rd is by condition 5).

To start, let v be any maximal element among the set of all vertices in VG that are

labeled by ‘0′. Let B1 = C(v) and f1 be defined by f1(x) = 0 for all x ∈ Low(v) and

f1 remains identical to f for every other vertex. Let V ∗1 = {v}. Then, by definition,

requirements 1,2,4,5 are met while requirement 3 is met vacuously. Note, if there is no such

v then either there is an analogous minimal ‘1′ vertex in VG or VG = ∅ for which the lemma

trivially holds.

Assume that we have already constructed B1, ..., Bk, fk, and V ∗1 , . . . , V ∗k meeting re-

quirements 1,2,3,4,5 for each i ≤ k. Assume also that VG − Bk 6= ∅. Let X be the set of

all vertices not in Bk that are adjacent to Bk. Since T is a tree, and using condition 2, for

each x ∈ X there is a unique corresponding y = yx ∈ Bk so that (y, x) ∈ E(T ). To obtain

the construction for (k + 1)th phase we do the following for every x ∈ X. Let x ∈ X and

assume w.l.o.g that yx <G x (the analogue case is completely symmetric). Note, as x /∈ Bk

it follows (by condition 4) that Low(yx) ⊆ Bk. There are three cases to consider:

Assume first that there is a good vertex labeled by ‘1′ in C(x) − Bk and let z be a

minimal such vertex. If z ∈ Low(x) we put z in Vk+1 and add C(z) to Bk+1. We set fk+1

to be identical to fk except in High(z) = C∗(z) in which every vertex is labeled by ‘1′. If

there is such z but z ∈ High(x) then add C(x) to Bk+1. We then take all such minimal z

and define fk+1 to be ‘1′ on each vertex in High(z) = C∗(z) for all such z’s, and let it be

identical to fk for every other vertex.
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The last case is when there is no such z at all. Namely, every good vertex in C(x)−Bk

is labeled by ‘0′. In this case we add C(x) to Bk+1 without adding a new vertex to Vk+1 or

making any changes in fk.

Note, in all cases we add to Bk+1 a C(u) for some u /∈ Bk and such that u ≤G x which

immediately implies that condition 4 is met. Condition 2 will also be met, as by induction

T [Bk] is connected and each C(u) is connected and also connected to Bk. Moreover, if we

do this for every x ∈ X, then ∆k+1 certainly contains all points that are comparable to Bk

and are not already in Bk (note that when we add x as above we also add every x′ >G x).

Hence requirement 3 holds, too. Also, it is quite clear, by the definition of fk+1 that fk+1

is monotone on each individual piece C(u) that we add to Bk. It is quite easy to realize

that this is true for all Bk+1 which is condition 1.

It remains to show that requirement 5 holds with the set Vk+1. We first note that for any

z added to Vk+1, C∗(z) is disjoint form Bk and hence from any C∗(w), w ∈ Vj , j < k + 1.

To see that assume for the contrary that C∗(z)∩Bk 6= ϕ and that z was added due to some

x as above, and such that yx ≤G x. Then by our definition of C∗(z) it cannot contain yx

(as yx ≤G x and using condition 4). But then there is a cycle in T : There is the edge (x, yx)

while there is a path from x to yx going through the non empty intersection and Bk (using

the fact that Bk is connected).

Assume now that z ∈ Vk+1, C∗(z) = High(z) and C∗(z)∩C∗(w) 6= ϕ for some w ∈ Vk+1.

Assume that w was added due to some x̃ with a corresponding yx̃. It cannot be that both

w and z are added due to the same x, as then both are above x and then there will be two

different paths between z and w (one through the intersection and one through x). Hence

we may assume that x 6= x̃. This, however, would again result in a in T : There is the edge

(x, yx), while there is another path going from x through C∗(z) to C∗(w) to x̃ and yx̃ and

then to yx through Bk. This completes the proof of the lemma. 2

We now present a test for monotonicity on tree-like graphs. The test is essentially

identical to the test for rooted trees except for the change due to the alternative definition

of “good”:
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Test for tree-like graphs, T4(ε)

1. Query k = 4/ε vertices uniformly and independently.

2. For each queried vertex v, query k vertices in C∗(v) uniformly and indepen-

dently and reject if a violated pair is found; otherwise, accept.

Lemma 5.16 Let G be a tree-like graph. Then algorithm T4 is a 1-sided error (ε, 16/ε2)-

test for monotonicity of Boolean functions on G.

Proof. If a Boolean function is ε-far from monotone then, by Lemma 5.15, at least an ε/2

fraction of vertices are ε/2-bad. Hence step 1 of the algorithm will select an ε/2-bad vertex

v with probability at least 1 − e−2. Step 2 will find a vertex with label 1 − f(v) in C∗(v)

with probability at least 1− e−2. Therefore, the failure probability is at most 2e−2 < 1/3.

2

5.2.5 A test for graphs with small separators

Here we consider graphs that can be broken into relatively small connected components by

removing a few vertices.

Definition 5.7 Let U be an infinite family of undirected graphs that is closed under taking

subgraphs. We say that U is k-separable if every n-vertex graph U ∈ U can be broken into

connected components of size at most 2n/3 by removing a subset of at most k vertices, called

a separator.

For example, forests are 1-separable, bounded tree-width graphs have bounded separators

and planar graphs are O(
√

n)-separable [LT79]. In the sequel k might be a sublinear non-

decreasing function of n.

Let G = (V,E) be a directed graph. Let UG be the undirected graph obtained from G

by undirecting its edges. Call G k-separable if UG belongs to a k-separable family of graphs.

Consider a ‘standard’ tree structure over disjoint subgraphs of G generated by induc-

tively taking out separators. Namely, generate a rooted tree T where each node x in T is

associated with a set of vertices V (x) of G. Let V0 be a separator for UG of size ≤ k, and

suppose that UG(V − V0) has l components. The root x of T is associated with V0 (i.e.,

V (x) = V0) and has l children, one for each component. The subtrees of the children are
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generated recursively from their respective components by the same procedure. The recur-

sion stops at components of size less than k log n. The leaves are associated with vertex

sets of their components. Note that the depth of the tree is O(log n).

Let r = x0, x1, ..., xj = x be the path from the root to a node x in T . Denote ∪j
i=0V (xi)

by Path(x). Namely, Path(x) contains all vertices of G associated with x and all vertices

from separators that appear on the path from the root of T to x. For a vertex v ∈ V let

T (v) denote the node x of T so that v ∈ V (x).

We present a 1-sided error test for G using the structure T .

Test for graphs with small separators, T4(ε)

1. Pick 4
ε nodes of G uniformly and independently.

2. For each node v, query all nodes in Path(T (v)). Reject if a violated pair is

found; otherwise, accept.

Call a vertex v bad if Path(T (v)) contains a violated pair.

Claim 5.17 If a function is ε-far from monotone, at least ε/2 fraction of vertices are bad.

Proof. Consider a violated pair (v, u). We will prove that either v or u is bad. The claim

then follows as the graph has at least εn/2 vertex-disjoint violated pairs (by Lemma 2.3).

If T (v) and T (u) are on the same path from the root to a leaf in T , then v ∈ Path(T (u))

or u ∈ Path(T (v)). W.l.o.g., suppose v ∈ Path(T (u)), then u is bad because Path(T (u))

contains a violated pair (v, u). If T (v) and T (u) are not on the same path from the root to

a leaf, they got separated when T was constructed, i.e., some vertex w on a directed path

from v to u, in G, is in a common ancestor of T (v) and T (u). Since (v, w) or (w, u) has to

be violated, either v or u is bad. 2

Lemma 5.18 Let G = (V,E) be a k-separable n-vertex graph. Then algorithm T4 is a

1-sided error
(
ε, O

(
k
ε log n

))
-test for monotonicity of functions (with general ranges) on G.

Proof. Whenever step 1 selects a bad vertex, step 2 finds a violated pair. If f is ε-far

from monotone, by claim 5.17, step 1 will select a bad vertex with probability at least

1− e−2 > 2/3. The bound on the number of queries follows form the fact that Path(T (v))

contains at most O(k log n) vertices. 2

This generalizes the more efficient tests for Boolean functions over tree-like graphs and

bounded-width graphs for which tighter results (by log n factor) are obtained in lemmas 5.16
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and 5.8. It also provides an alternative (ε, O (
√

n log n))-test for planar graphs, which

performs more queries than the general algorithm from section 4.1, but requires fewer label

comparisons. We note that this result cannot be dramatically improved as the general

monotonicity test for the line (which is 1-separable) requires Ω(log n) queries [Fis].
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Chapter 6

Testing Vector Spaces

Obtaining lower bounds for general property tests proved much more difficult than for

non-adaptive error case. There are many examples of properties where the gap between the

known non-adaptive and adaptive lower bounds is exponential, even though the best-known

test for the problem is non-adaptive. Examples of such properties include monotonicity on

general graphs, considered in Chapter 4, and monotonicity on the Boolean hypercube,

considered in Chapter 5.

To the best of our knowledge, currently there is only one technique in property testing

for obtaining adaptive lower bounds from the non-adaptive ones. It is based on the easy

observation that every adaptive test can be simulated by a non-adaptive test that asks

queries for all possible answers that the adaptive test might get. This allows us to obtain

an adaptive lower bound for any property by taking a logarithm of the corresponding non-

adaptive lower bound1. The obvious disadvantage of this technique is that it gives very

weak adaptive bounds when adaptivity does not help significantly.

In this Chapter, we describe a different method for obtaining adaptive lower bounds

from non-adaptive ones, which avoids this shortcoming, but applies only to a special class

of properties. An additional advantage of our technique is that it also provides a trans-

formation from 1-sided error to 2-sided error tests for this special class of properties. An

example of a problem with an exponential gap between the best-known 1-sided error and

2-sided error lower bounds is monotonicity testing on the Boolean hypercube, presented in

Section 5.1.

1This is tight for some properties.
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The class of properties for which our method works is linear properties. Recall that a

property is a collection of strings of a fixed size n. A property is linear if it forms a vector

space. This Chapter shows that for linear properties, 1-sided error non-adaptive tests are

as powerful as general tests.

Theorem 6.1 Let F be a finite field and V ⊆ Fn be a vector space. For every 2-sided error

adaptive (ε, µ+, µ−, q)-test T for V, there is a 1-sided error non-adaptive (ε, 0, µ+ + µ−, q)-

test T ′ for V.

The reduction to simpler tests shifts the error from the positive instances to the negative

instances and preserves all other parameters. We perform this reduction in two stages:

we first reduce an adaptive test with 2-sided error to an adaptive test with 1-sided error

(Theorem 6.3) maintaining the sum of the positive and negative errors (µ+ + µ−) and

then reduce this to a non-adaptive test with 1-sided error (Theorem 6.5) maintaining all

parameters. The second reduction was suggested by Madhu Sudan.

A natural test for checking membership in a linear subspace V is one that is determined

by a distribution over sets of constraints in the dual space V⊥. This test chooses a set

of constraints from the dual space V⊥ according to this distribution, queries all variables

that appear in this set of constraints and accepts or rejects depending on whether the

constraints are satisfied or not. Clearly, this is a 1-sided error non-adaptive test. The

proofs of Theorem 6.3 and Theorem 6.5 demonstrate that any test of a linear property can

be converted into one of the above form maintaining the query complexity and the sum of

the errors.

Preliminaries

The following notation, terminology and lemma will be useful in analyzing the reductions.

Any probabilistic test can be viewed as a distribution over deterministic tests and each

deterministic test can be represented by a decision tree. Thus, any test T can be represented

by an ordered pair (∓T ,DT ) where ∓T = {Γ1,Γ2, . . .} is a set of decision trees and DT is a

distribution on this set such that on input x, T chooses a decision tree Γ with probability

DT (Γ) and then answers according to Γ(x).

We say that a test detects a violation if no string in V is consistent with the answers to

the queries. By linearity, it is equivalent to having a constraint α in V⊥ such that 〈x, α〉 6= 0
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for all x ∈ Fn which are consistent with the answers to the queries.

Let V be a vector space. For any leaf l of decision tree Γ, let Vl be the set of all vectors

in V that are consistent with the answers along the path leading to l. Similarly, for any

string x ∈ Fn, let Vx
l be the the set of all vectors in x + V that are consistent with the

answers along the path leading to l.

Lemma 6.2 Let F be a finite field and V ⊆ Fn be a vector space. Let x ∈ Fn. For any

decision tree Γ and a leaf l in Γ, if both Vl and Vx
l are non-empty, then |Vl| = |Vx

l |.

Proof. Let U be the set of all strings in V which have the element 0 in all the positions

queried along the path leading to l. Since 0n ∈ U , we have that U is non-empty. Observe

that if u ∈ U and v ∈ Vl, then u + v ∈ Vl. In fact, if Vl 6= ∅, Vl = v + U for any v ∈ Vl.

Hence, |Vl| = |U |. Similarly, if Vx
l 6= ∅, we have that Vx

l = y + U for any y ∈ Vx
l . Hence,

|Vx
l | = |U | and the lemma follows. 2

6.1 Reduction from 2-sided to 1-sided error

This section shows how to convert a 2-sided error (adaptive) test to a 1-sided error (adaptive)

test without increasing the sum of the errors on the positive and negative side and without

altering the query complexity.

Theorem 6.3 Let F be a finite field and V ⊆ Fn be a vector space. For every adaptive

(ε, µ+, µ−, q)-test T for V, there is a 1-sided error adaptive (ε, 0, µ+ + µ−, q)-test T ′ for V.

Proof. Let T = (∓T ,DT ) be a 2-sided error (adaptive) (ε, µ, q)-test for V. To convert T to

a 1-sided error test, we modify the test so that it rejects if and only if it observes that a

constraint in V⊥ has been violated. We say that a leaf l is labelled optimally if its label is

0 when the query answers on the path to l falsify some constraint in V⊥, and 1 otherwise.

We relabel the leaves of each tree Γ in ∓T optimally to obtain the tree Γopt.

Relabelling produces a 1-sided error test with unchanged query complexity. However,

the new test performs well only on “average”. To get good performance on every string, we

randomize the input x by adding a random vector v from V to it and perform the test on

x + v instead of x. Now we formally define the 1-sided error T ′ corresponding to T .
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Definition 6.1 (1-Sided Error Test) Given a 2-sided error (adaptive) test T for V, de-

fine the test T ′ as follows: On input x, choose a decision tree Γ according to the distribution

DT as T does, choose a random v ∈ V and answer according to Γopt(x + v).

Clearly, T ′ has 1-sided error as it rejects only if it detects a violation. Also, T ′ has the same

query complexity as T . It remains to check that T ′ has error µ+ +µ− on negative instances.

For any x ∈ Fn and any test T , let ρT
x be the average acceptance probability of test

T over all strings in V + x, i.e., ρT
x = avey∈V+x

(
Pr[T (y) = 1]

)
. For notational brevity, we

denote ρT
0n , the average acceptance probability of strings in V, by ρT . Observe that for the

new test T ′, for each input x, Pr[T ′(x) = 1] = ρT ′
x .

The following lemma shows that the transformation to a 1-sided error test given by

Definition 6.1 increases the acceptance probability of any string not in V by at most ρT ′−ρT .

Notice that all vectors in V + x have the same distance to V. Therefore if x is ε-far from V

then ρT
x ≤ µ−. Together with Lemma 6.4, it implies that for all vectors that are ε-far

from V, the error is low:

Pr[T ′(x) = 1] = ρT ′
x ≤ ρT ′ − ρT + ρT

x ≤ 1− (1− µ+) + µ− = µ+ + µ−.

This completes the proof of Theorem 6.3 2

Lemma 6.4 ρT − ρT
x ≤ ρT ′ − ρT ′

x for any vector x ∈ Fn.

Proof. Let x ∈ Fn. It is enough to prove that relabeling one leaf l of a decision tree Γ in

∓T optimally does not decrease ρT − ρT
x . Then we obtain the lemma by relabelling one leaf

at a time to get T ′ from T . There are two cases to consider.

Case (i) The path to l falsifies some constraint in V⊥. Then l is relabelled from 1 to 0.

This change preserves ρT because it only affects strings that falsify some constraint.

Moreover, it can only decrease the acceptance probability for such strings. Therefore,

ρT
x does not increase. Hence, ρT − ρT

x does not decrease.

Case(ii) The path to l does not falsify any constraint in V⊥. Then l is relabelled from

0 to 1. Let Vl and Vx
l respectively be the set of vectors in V and V + x that are

consistent with the answers observed along the path to l. Thus, every string in Vl∪Vx
l

was rejected before relabeling, but is accepted now. The behavior of the algorithm on
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the remaining strings in V and V+x is unaltered. Hence, the probability ρT increases

by the quantity DT (Γ1) · |Vl|
|V| . Similarly, ρT

x increases by DT (Γ1) ·
|Vx

l |
|V| .

It suffices to show that |Vl| ≥ |Vx
l |. Since the path leading to l does not falsify any

constraint, Vl is non-empty. If Vx
l is empty, we are done. Otherwise, both Vl and Vx

l

are non-empty, and by Lemma 6.2, |Vl| = |Vx
l |.

2

6.2 Reduction from adaptive to non-adaptive

In this section, we argue that adaptivity does not help to check linear constraints. The

intuition behind this is as follows: To check if a linear constraint is satisfied, a test needs

to query all the variables that participate in that constraint. Based on any partial view

involving some of the variables, the test cannot guess if the constraint is going to be satisfied

or not until it reads the final variable. Hence, any adaptive decision based on such a partial

view does not help.

Theorem 6.5 Let F be a finite field and V ⊆ Fn be a vector space. For every 1-sided

error adaptive (ε, 0, µ, q)-test T for V, there is a 1-sided error non-adaptive (ε, 0, µ, q)-test

T ′ for V.

Proof. Let T be a 1-sided error (adaptive) (ε, 0, µ, q)-test for V. Let ∓T and DT be the

associated set of decision trees and the corresponding distribution respectively. Since T has

1-sided error, T accepts if it does not detect a violation. Furthermore, we may assume that

T rejects if it detects a violation since this can only decrease the acceptance probability of

strings not in V. This implies that all the trees in ∓T are optimally labeled. We now define

the non-adaptive test T ′ corresponding to T .

Definition 6.2 (1-Sided Error Non Adaptive test) Given a 1-sided error (adaptive)

test T for V, define the test T ′ as follows: On input x, choose a random v ∈ V, query x on

all variables that T queries on input v, reject if a violation is detected, otherwise accept.

T ′ has 1-sided error because it rejects only if it detects a violation. T ′ asks the same

number of queries as T . Moreover, the queries depend only on the random v ∈ V and

not on the input x. Hence, the test T ′ is non-adaptive. The following lemma relates the

acceptance probability of T ′ to the average acceptance probability of T .
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Lemma 6.6 Let T be a 1-sided error (adaptive) test and T ′ the non-adaptive version of T

(as in Definition 6.2). Then, for any string x ∈ Fn,

Pr[T ′(x) = 1] = avev∈V (Pr[T (x + v) = 1]) .

Proof. For any decision tree Γ, let l1(Γ) denote the set of leaves in Γ that are labeled 1.

For any leaf l in a decision tree Γ, let var(l) denote the set of variables queried along the

path leading to l in the tree Γ. Following the notation of Lemma 6.2, let Vl and Vx
l be the

set of all vectors in V and x +V respectively that are consistent with the answers along the

path leading to l. Also let Ix
l be a binary variable which is set to 1 iff x does not violate

any constraint in V⊥ involving only the variables var(l). Observe that if test T ′ chooses the

decision tree Γ ∈ ∓T and the vector v ∈ V such that v ∈ Vl for some leaf l labeled 1 in the

tree Γ, then Ix
l = 1 iff T ′(x) = 1.

The quantity “avev∈V (Pr[T (x + v) = 1])” can be obtained as follows: First choose a

decision tree Γ ∈ ∓T according to the distribution DT and then for each leaf l labeled 1 in

Γ, find the fraction of vectors in x +V that follow the path leading to l. The weighted sum

of these fractions is avev∈V (Pr[T (x + v) = 1]). Thus,

avev∈V (Pr[T (x + v) = 1]) =
∑

Γ∈∓T

DT (Γ)

 ∑
l∈l1(Γ)

|Vx
l |
|V|

 . (6.1)

Now consider the quantity “Pr[T ′(x) = 1]”. Test T ′ can be viewed in the following fashion:

On input x, T ′ chooses a random decision tree Γ ∈ ∓T according to the distribution DT , it

then chooses a leaf l labeled 1 in Γ with probability proportional to the fraction of vectors

v ∈ V that are accepted along the path leading to l (i.e., |Vl|/|V|), queries x on all variables

in var(l), accepts if Ix
l = 1 and rejects otherwise. This gives us the following expression for

Pr[T ′(x) = 1].

Pr[T ′(x) = 1] =
∑

Γ∈∓T

DT (Γ)

 ∑
l∈l1(Γ)

|Vl|
|V|

· Ix
l

 (6.2)

From Equations (6.1) and (6.2), we obtain that it suffices to prove that |Vx
l | = Ix

l · |Vl| for

all leaves l labeled 1 in order to prove the lemma.

Observe that |Vl| is non-empty since l is labeled 1. Hence, by Lemma 6.2, |Vl| = |Vx
l | if

Vx
l is also non-empty. It now suffices to show that Vx

l is non-empty iff Ix
l = 1.
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Suppose Vx
l is non-empty. Then there exists y ∈ x + V that does not violate any

constraint involving only the variables var(l). But y and x satisfy the same set of constraints.

Hence, x also does not violate any constraint involving only the variables var(l). Thus,

Ix
l = 1.

Now, for the other direction, suppose Ix
l = 1. Then the values of the variables var(l) of

x do not violate any constraint in V⊥. Hence, there exists u ∈ V that has the same values

as x for the variables var(l). Let v ∈ Vl. Then, the vector x− u + v ∈ x + V has the same

values for the variables var(l) as v. Hence, Vx
l is non-empty. This concludes the proof of

the lemma. 2

The above lemma proves that T ′ inherits its acceptance probability from T . As men-

tioned earlier, T ′ inherits its query complexity from T . Hence T ′ is a 1-sided error non-

adaptive (ε, 0, µ, q)-test for V. 2
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Chapter 7

Some 3CNF Properties Require a

Linear Number of Queries

This chapter shows that there are 3CNF properties, for which every test requires a linear

number of queries. After discussing earlier work, we present a self contained proof of

the main result in section 7.1. The proofs of the claims needed for the proof follow in

sections 7.2-7.4.

Earlier work. There are two published linear lower bounds for property testing. One is

the generic bound due to Goldreich et al. [GGR98] and the other is for testing 3-coloring in

bounded degree graphs due to Bogdanov, Obata and Trevisan [BOT02]. There is a simple

and elegant unpublished linear lower bound observed by Sudan [Personal Communication].

His property consists of polynomials over Fn of degree at most n/2 where each polynomial

is given by its evaluation on all elements of the field. It is not hard to see that every

non-adaptive 1-sided error test for this property requires linear query complexity. Since the

property of low-degree polynomials is linear, our reduction from general to non-adaptive

1-sided error tests from Chapter 6 implies a linear lower bound for adaptive 2-sided tests

for this property. Observe that this property is easy to decide once all the input is read,

but is not expressible by a family of 3CNF formulas.

Both linear lower bounds of Sudan and Bogdanov et. al [BOT02] capitalize on the

existence of inputs that are far from having the property, yet any local view of a constant

fraction of them can be extended to an element having the property1. But if the property
1E.g. in Sudan’s example any evaluation of a polynomial on d points can be extended to an evaluation
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is defined by a kCNF ϕ this cannot happen. For, clearly, any string that does not have

the property must falsify at least one clause of ϕ. Thus, there is some view of the input

of size k, that proves the input does not have the property. Our result shows that in

certain cases, finding such a falsified clause requires reading a constant fraction of the

input, even if the assignment is far from any satisfying one. Another relevant result is the

lower bound of Goldreich and Ron on testing bipartiteness in 3-regular, n-vertex graphs

[GR02]. They showed a lower bound of Ω(
√

n) on the query complexity, yet short witnesses

of non-bipartiteness do exist, in the form of odd cycles of length poly (log n). Our result

strengthens this finding, since in our case the query complexity is linear whereas the witness

size is constant.

7.1 Main Theorem

In this section we state and prove the main theorem of Chapter 7, saying that some 3CNF

properties are hard to test.

Theorem 7.1 (Main) There exist 0 < δ, ε < 1, 0 < µ < 1
2 such that for every sufficiently

large n, there is a 3CNF formula ϕ on n variables such that every adaptive (ε, µ+, µ−, q)-test

for ϕ with the sum of errors µ+ + µ− ≤ µ asks at least q = δn queries.

To prove Theorem 7.1, we find hard 3CNF formulas that define linear properties. Recall

that Theorem 6.1 shows that adaptivity and 2-sided error do not help to test linear proper-

ties. We use this theorem for properties over the binary alphabet, namely with F = GF (2).

Equipped with this theorem, we can restrict our attention to proving Theorem 7.1 for

non-adaptive 1-sided error tests, provided that the formulas we work with define linear

properties. The goal of this section is to prove such a theorem, stated below:

Theorem 7.2 (Main for 1-Sided Non-adaptive) There exist 0 < δ, ε < 1, 0 < µ < 1
2

such that for every sufficiently large n, there is a 3CNF formula ϕ on n variables which

defines a linear property such that every 1-sided error non-adaptive ε-test for ϕ with error

µ asks at least δn queries.

Proof. We find linear properties that are hard to test and then represent them by CNFs.

Consider a vector space V ⊆ {0, 1}n. Denote the dual space by V⊥. Let A = (A1, . . . , Am)

of a polynomial of degree d′ > d. Thus, seeing n/2 − 1 values of the polynomial still does not mean the
polynomial has degree n/2.
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be a basis for V⊥. Let |x| denote the weight of vector x ∈ {0, 1}n. The ith coordinate of x is

denoted by xi. For two vectors x, y ∈ {0, 1}n, let 〈x, y〉 =
∑n

i=1 xiyi mod 2. By definition,

V = {x|〈x,Ai〉 = 0 for all Ai ∈ A}. We can view A as a collection of linear constraints on

Boolean variables x1, . . . , xn. The following definition introduces linear formulas formed by

linear constraits.

Definition 7.1 (dLIN Formulas) A linear (LIN) Boolean formula is a conjunction of con-

straints, where every constraint is satisfied if and only if the variables in the constraint add

up to 0 mod 2. If all constraints contain at most d literals, the formula is a dLIN.

Thus, viewing each Ai as a constraint, we can represent V as a dLIN formula where d =

maxAi∈A |Ai|. We work with an arbitrary constant d and later show how to reduce it to 3.

Since each 3LIN formula has an equivalent 3CNF, it is enough to find hard 3LINs.

We now present sufficient conditions for a vector space to be hard to test. To understand

the conditions, keep in mind that later we employ Yao’s minimax principle to show that

all vector spaces satisfying these conditions are hard for 1-sided non-adaptive tests. Yao’s

principle states that to prove that each low-query probabilistic test fails on some input, it is

enough to give a distribution on the inputs on which each low-query deterministic test fails.

We are only interested in 1-sided error tests which, by definition, have to accept unless no

vector in the tested vector space satisfies the answers to the queries. Therefore, to show that

a vector space satisfying our conditions is hard, we need to exhibit a distribution on vectors

which are far from the vector space, such that every low-query deterministic non-adaptive

test on this distribution fails to determine with non-negligible probability that the input

violates the constraints of the vector space.

Definition 7.2 (Hard Linear Properties) Let V ⊆ {0, 1}n be a vector space and let A

be a basis for V⊥. Fix 0 < ε, µ < 1.

• A is ε-separating if every x ∈ {0, 1}n that falsifies exactly one constraint in A has

|x| ≥ εn.

• A is (q, µ)-local if every α ∈ {0, 1}n that is a sum of at least µm vectors in A has

|α| ≥ q.
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Notice that if A is ε-separating, each string x falsifying exactly one constraint in A is ε-far

from V. To see why, let y ∈ V. Then x + y falsifies exactly one constraint in A. Since A is

ε-separating, dist(x, y) = |x + y| ≥ εn. By definition, dist(x,V) ≥ εn.

For the proof that every vector space satisfying the above conditions is hard to test, our

bad distribution that foils low-query tests is over strings that falsify exactly one constraint.

The falsified constraint is chosen uniformly at random. The first condition ensures that the

distributions is over vectors which are ε-far from the vector space.

The second condition ensures that the distribution is hard to test. To get the intuition,

suppose the second condition is violated. Then a µ fraction of the constraints sums up to a

low-weight vector, and the sum represents a constraint on fewer than q variables. Querying

variables in the new constraint would allow a test running on our bad distribution to deduce

that some constraint is violated with probability at least µ. The second condition disallows

this or, intuitively, ensures that to “get information” about a fraction µ of the constraints

in A, a test needs at least q queries.

The following theorem, proved in section 7.2, shows that any linear space conforming

to definition 7.2 is hard for 1-sided error non-adaptive tests.

Theorem 7.3 (Definition 7.2 ⇒ Lower Bound) Fix 0 < ε < 1, 0 < µ < 1
2 . Let V ⊆

{0, 1}n be a vector space. If V⊥ has an ε-separating (q, µ)-local basis A = (A1, . . . , Am),

then every non-adaptive 1-sided error ε-test for V with error 1− 2µ requires q queries.

Theorem 7.3 shows that every linear property conforming to definition 7.2 is hard to test.

The following theorem assures us that such linear properties exist. The proof of this theo-

rem, which uses the probabilistic method, appears in section 7.3.

Theorem 7.4 (Hard Linear Properties Exist) There exist integer d > 0 and constants

µ, ε, δ, such that for all sufficiently large n there is a collection An ⊂ {0, 1}n of vectors of

weight at most d which is linearly independent, ε-separating and (δn, µ)-local.

We now have dLIN formulas that are hard to test. The following reduction brings d

down to 3 while preserving the properties of definition 7.2 (with smaller constants).

Theorem 7.5 (Reduction to 3CNFs) Every linearly independent, ε-separating, (δn, µ)-

local A ⊂ {0, 1}n of vectors of weight at most d can be converted to a linearly independent,

ε?-separating, (δ?n?, µ?)-local A? ⊂ {0, 1}n?
of vectors of weight at most 3. If ε, δ, µ are

strictly positive constants, so are ε?, δ?, µ?.
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Theorem 7.5 is proved in section 7.4. Recall that a 3LIN formula can be defined by a 3CNF.

Theorem 7.2 follows from definition 7.2 and theorems 7.3–7.5. 2

This completes the proof of the Main Theorem 7.1, showing that there are 3CNF prop-

erties that require a linear number of queries.

7.2 Lower bounds for non-adaptive 1-sided error tests

This subsection proves Theorem 7.3.

Proof of Theorem 7.3. We employ Yao’s minimax principle. It states that to prove that

every q-query randomized test fails with probability more than δ it is enough to exhibit a

distribution B on the inputs for which every q-query deterministic test fails with probability

more than δ.

For i = 1 . . .m let Bi be the uniform distribution over n-bit strings that falsify constraint

Ai and satisfy the rest. The distribution B is the uniform distribution over Bi’s. The

comment after definition 7.2 shows that distribution B is over strings which are ε-far from

V. Lemma 7.6 demonstrates that every low complexity deterministic test is likely to fail on

B, which completes the proof of Theorem 7.3. 2

Lemma 7.6 Let T be a deterministic 1-sided error non-adaptive test with < q queries. If

A is (q, µ)-local then Prx←B[T (x) = 0] < 2µ.

Proof. Let Q be the set of queries posed by T . A query to variable xi is viewed as a vector

of weight 1 in {0, 1}n which is 1 at coordinate i and 0 everywhere else. Observe that since

T has 1-sided error, it has to accept if there is a vector in V consistent with the answers

to the queries. By linearity, this is equivalent to saying that T rejects a vector in B only if

the falsified constraint can be expressed as a linear combination of queries and remaining

constraints. Thus, we need to show that < 2µ fraction of constraints in A can be expressed

as a linear combination of queries and remaining constraints.

Any such constraint belongs to some set C ⊆ A with
∑

c∈C c ∈ span(Q). We show that

fewer than 2µm constraints in A are in such sets. Let Γ be the family of such sets, i.e., of

subsets of A that sum up to a vector α ∈ span(Q).
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It remains to show
∣∣⋃

C∈Γ C
∣∣ < 2µm. Observe that if α1, α2 ∈ span(Q), so does α1 +α2.

In terms of C’s this implies that if C1, C2 ∈ Γ, so is C14C2
2. Since |Q| < q and A is

(q, µ)-local, |C| ≤ µm for all C ∈ Γ. We can now apply Lemma 7.7 to conclude that∣∣⋃
C∈Γ C

∣∣ < 2µm. 2

Lemma 7.7 Let Γ = {C|C ⊆ [m]} be a non-empty family of subsets of [m] such that Γ is

closed under symmetric difference and for all sets C in Γ, |C| ≤ w. Then
∣∣⋃

C∈Γ C
∣∣ < 2w.

Proof. Suppose x ∈ C for some C ∈ Γ. Observe that for any set C ′ in Γ (including C)

either x ∈ C ′ or x ∈ C4C ′ but not both. Since Γ is closed under symmetric difference and

C ′ = C4(C4C ′), each element in
⋃

C∈Γ C occurs in exactly half of the sets of Γ. Therefore,

|Γ|
2
·

∣∣∣∣∣ ⋃
C∈Γ

C

∣∣∣∣∣ = ∑
C∈Γ

|C| ≤ (|Γ| − 1)w < |Γ|w.

The first inequality holds because the empty set belongs to Γ, and |C| ≤ w for all other C

in Γ. Since |Γ| > 0, we conclude that |
⋃

C∈Γ C| < 2w. 2

7.3 Random codes require a linear number of queries

In this subsection we prove Theorem 7.4. In particular, we show that a random (c, d)-regular

code with high probability obeys definition 7.2, for large enough constants c, d. We start

by defining such codes, originally introduced and analyzed by Gallager [Gal63].

7.3.1 Random regular codes

Let G = 〈L,R,E〉 be a bipartite multi-graph, with |L| = n, |R| = m, and let d(v) be

the degree of a vertex v. G is called (c, d)-regular if for all v ∈ L, d(v) = c, and for all

v ∈ R, d(v) = d. A random (c, d)-regular graph with n left vertices and m = c
dn right

vertices, is obtained by selecting a random matching between cn “left” nodes, and dm = cn

“right” nodes. Collapse c consecutive nodes on the left to obtain n c-regular vertices, and

collapse d consecutive nodes on the right to obtain m d-regular vertices. Notice that the

resulting graph may be a multi-graph (i.e. have multiple edges between two vertices). The

code associated with G is obtained by letting R define C⊥, as in the following definition.
2For sets A, B, the symmetric difference of A and B, A4B = {x|x ∈ A and x /∈ B} ∪ {x|x /∈ A and x ∈

B}.
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Definition 7.3 Let G = 〈L,R, E〉 be a bipartite multi-graph, with |L| = n, |R| = m. Asso-

ciate a distinct Boolean variable xi with any i ∈ L. For each j ∈ R, let N(j) ⊆ L be the set

of neighbors of j. The j’th constraint is Aj =
∑

i∈N(j) xi mod 2. Let A(G) be the m × n

matrix where the jth row of A(G) is Aj. The code defined by G is

C(G) = (A(G))⊥ = {x ∈ {0, 1}n|A(G) · x = ~0}.

A random (c, d)-regular code is obtained by taking C(G) as in the previous definition,

for G a random (c, d)-regular graph. Notice that a variable may appear several times in a

constraint.

7.3.2 Some expansion properties of random regular graphs

To prove C(G) obeys definition 7.2, we use standard arguments about expansion of the

random graph G. We reduce each requirement on A(G) to a requirement on G, and then

show that the expansion of a random G implies that it satisfies the requirements. We need

the following notions of neighborhood and expansion.

Definition 7.4 (Neighbors) Let G = 〈V, E〉 be a graph. For S ⊂ V, let

• N(S) be the set of neighbors of S.

• N1(S) be the set of unique neighbors of S, i.e. the set of vertices with exactly one

neighbor in S.

• Nodd(S) be the set of neighbors of S with an odd number of neighbors in S.

Notice that N1(S) ⊆ Nodd(S).

Definition 7.5 (Expansion) Let G = 〈L,R,E〉 be a bipartite graph with |L| = n, |R| = m.

• G is called an (λ, γ)-right expander if

∀S ⊂ R, |S| ≤ γn, |N(S)| > λ · |S|.

• G is called an (λ, γ)-right unique neighbor expander if

∀S ⊂ R, |S| ≤ γn, |N1(S)| > λ · |S|.
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• G is called an (λ, γ)-right odd expander if

∀S ⊂ R, |S| ≥ γn, |Nodd(S)| > λ · |S|.

Notice that expanders and unique neighbor expanders discuss subsets of size at most γn,

whereas odd expanders discuss subsets of size at least γn. Left expanders (all three of them)

are defined analogously by taking S ⊂ L in definition 7.5.

The following lemmas are proved using standard techniques for analysis of expansion

of random graphs, such as those appearing in e.g. [CS88, Spi95]. The proofs appear in

subsection 7.3.3.

Lemma 7.8 There exists a constant r > 0 such that for any integers c ≥ 5, d ≥ 2, a random

(c, d)-regular graph is with high probability a (1, r · d−2)-left unique neighbor expander.

Lemma 7.9 For any odd integer c, any constants µ > 0, δ < µc, and any integer d >

2µc2

(µc−δ)2
, a random (c, d)-regular graph is with high probability a (δ, µ)-right odd expander.

7.3.3 Proofs of expansion Lemmas 7.8 and 7.9

Proof of Lemma 7.8. We need a couple of lemmas, the proof of which will follow.

Lemma 7.10 For any integers c ≥ 2, d, and any constant α < c−1, a random (c, d)-regular

bipartite graph with n left vertices, is with high probability a (α, ε)-left expander, for any ε

satisfying

ε ≤

(
2e(1+α) ·

(
αd

c

)(c−α)
)− 1

c−α−1

(7.1)

Lemma 7.11 Let G be a (c, d)-regular bipartite graph. If G is an (α, ε)-left expander, then

G is an (2α− c, ε)-left unique neighbor expander.

We do not try to optimize constants. Let α = c+1
2 , Noticing that for c ≥ 5, c

2 < α < c−1.

By lemma 7.10, G is a (α, ε)-right expander for any ε satisfying equation (7.10).

For our selection of α, and any c ≥ 5, the following inequalities can be verified:

(1 + α)
(c− α− 1)

≤ 3
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α

c
≤ 2/3

(c− α)
(c− α− 1)

≤ 2

Hence setting ε = (100 · d)−2 satisfies equation (7.10). Finally, by lemma 7.11, we get

that G is whp a (1, rd−2)-left unique neighbor expander. 2

Proof of Lemma 7.10. Let BAD be the event that the random graph is not an expander.

This means there is some S ⊂ L, |S| ≤ εn such that |N(S)| ≤ α · |S|.

Fix sets S ⊂ L, T ⊂ R, |S| = s ≤ εn, |T | = αs, and let Bs be the event that all edges

leaving S land inside T . We upper-bound the probability of this bad event.

Pr[Bs] =
c·s−1∏
i=0

αds− i

cn− i
≤
(

αds

cn

)cs

The inequality follows as long as αds < cn. We now use a union bound over all sets

S ⊂ L |S| = s ≤ εn and all sets T ⊂ R, |T | = αs. Let κ be the constant κ = e1+α ·
(

αd
c

)c−α
.

Pr[BAD] ≤
εn∑

s=1

(
n

s

)
·
(

m

αs

)
· Pr[Bs]

≤
εn∑

s=1

(en

s

)s
·
(em

αs

)αs
·
(

αds

cn

)cs

=
εn∑

s=1

[
e1+α ·

(
αd

c

)c−α

·
( s

n

)c−α−1
]s

=
εn∑

s=1

[
κ ·
( s

n

)c−α−1
]s

(7.2)

By definition of α, c− α− 1 > 0, hence
(

s
n

)c−α−1 ≤ 1. Set

ε ≤ (2κ)
−1

(c−α−1) =

(
2e(1+α) ·

(
αd

c

)(c−α)
)− 1

c−α−1

(7.3)

For this value of ε, each term of the sum (7.2) is at most 1/2. Set λ = min{1
3 , c−α−1

2 },

and split the sum (7.2) into two sub-sums.
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Pr[BAD] ≤
εn∑

s=1

[
κ ·
( s

n

)c−α−1
]s

≤
nλ∑
s=1

[
κ ·
( s

n

)c−α−1
]s

+
εn∑

s=nλ

[
κ ·
( s

n

)c−α−1
]s

≤ nλ · κ · n(λ−1)2λ + n · 2−nλ

= κ · n−λ+2λ2
+ n · 2−nλ

≤ κ · n−1/9 + n · 2−nλ
= o(1)

We conclude that with high probability, G is an (α, ε)-left expander. 2

Proof of Lemma 7.11. Let S ⊂ L, |S| ≤ ε|L|. Then by expansion we get

α · |S| < |N(S)|.

Any neighbor of S that is not a unique neighbor, must be touched by at least 2 edges leaving

S. Since the left degree of G is c, we get

|N(S)| ≤ |N1(S)|+ c · |S| − |N1(S)|
2

=
c · |S|+ |N1(S)|

2
.

Combining the two equations, we get our claim. 2

Proof of Lemma 7.9. In the proof, we make use of the following theorem (see [MR95]).

Theorem 7.12 (Azuma’s Inequality) If X0, . . . , Xt is a martingale sequence such that

|Xi −Xi+1| ≤ 1 for all i, then

Pr[|Xt −X0| ≥ λ
√

t] ≤ 2e−λ2/2.

Fix T ⊆ R |T | = t ≥ µm. Let X = |Nodd(T )|. We start by computing E[X]. For

i = 1 . . . n, let Xi be the random variable indicating whether vertex i ∈ L is in Nodd(T ).

Clearly X =
∑n

i=1 Xi, so by the linearity of expectation, we need only compute E[Xi].

Recall that cn = dm, Let odd(c) = {1, 3, 5, . . . , c} be the set of positive odd integers ≤ c,

and notice that c ∈ odd(c) because c is odd.
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E[Xi] =

∑
i∈odd(c)

(
µdm

i

)
·
(
(1−µ)dm

c−i

)(
cn
c

)
≥

(
µcn
c

)(
cn
c

) = µc −O(
1
n

)

We conclude by linearity of expectation:

E[X] ≥ µc · n−O(1)

We now make use of the following edge-exposure martingale to show concentration of X

around its expectation. Fix an ordering on the µdm edges leaving T , and define a sequence

of random variables Y0, . . . Yµdm as follows: Yi is the random variable that is equal to the

expected size of Nodd(T ) after the first i edges leaving T have been revealed. By definition,

Yµdm = X, Y0 = E[X], and the sequence is a martingale, where |Yi − Yi+1| ≤ 1 for all

i ≤ µdm. Since d > 2µc2

(µc−δ)2
, we apply Azuma’s inequality (Theorem 7.12) and get:

Pr[X ≤ δn] ≤ Pr[|Yµdm − Y0| ≥ (µc − δ)n]

= Pr[|Yµdm − Y0| ≥ (µc − δ)
d

c
m]

≤ 2e
− d(µc−δ)2

2µc2
·m ≤ 2e−(1+ε)m

Where ε = d(µc−δ)2

2µc2
− 1 > 0. There are at most 2m possible sets T ⊆ R, so a union bound

gives:

Pr[∃T ⊂ R |T | ≥ µm |
∑
j∈T

Aj | ≤ δn] ≤ 2m · 2e−(1+ε)m = o(1)

We conclude that A(G) is whp a (δ, µ)-right odd expander. 2

7.3.4 Random codes are hard to test

We are ready to prove Theorem 7.4.

Lemma 7.13 For any odd integer c ≥ 5, there exists an integer d > c, and constants
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ε, δ, µ > 0, such that for a random (c, d)-regular graph G, the set A(G) is with high proba-

bility (i) linearly independent, (ii) (δn, µ)-local, and (iii) ε-separating.

Proof of Theorem 7.4. Fix c = 5. Let d, ε, δ, µ be as in Lemma 7.13. The theorem follows.

2

Proof of Lemma 7.13. Given odd c ≥ 5 we will define the constants d, ε, δ, µ throughout the

course of the proof.

(i) We need to show that adding up any subset of A(G) cannot yield ~0. Since we are

working modulo 2, this is equivalent to proving

∀T ⊆ R, Nodd(T ) 6= ∅.

For small T we use unique neighbor expansion, and for large T we use odd neighbor

expansion.

Fix c, and reverse the roles of left and right in lemma 7.8. We conclude the existence

of constant r > 0, such that for any d ≥ 5, G is with high probability a (1, r ·c−2)-right

unique neighbor expander. This implies that if |T | ≤ r · c−2 · |R|, then Nodd(T ) 6= ∅

because Nodd(T ) ⊇ N1(T ) and N1(T ) 6= ∅.

Lemma 7.9 says that for any µ > 0, and large enough d, all sets of size at least µm have

nonempty odd neighborhood. (Actually, the lemma shows that the odd neighborhood

is of linear size, which is more than what we need here.) Fixing µ, δ, d to the following

values completes the proof of the first claim:

µ = r · c−2; δ = µ/2; d >
2µc2

(µc − δ)2
.

(ii) Notice that if T ⊆ R, then Nodd(T ) is exactly the support of
∑

j∈T Aj . Thus, it suffices

to show that Nodd(T ) is large for large subsets T .

By the definition of d, µ, δ from part (ii) and by lemma 7.9 G is whp a (δn, µ)-right

odd expander. This means A(G) is (δn, µ)-local. Part (ii) is proved.

(iii) Let G−j be the graph obtained from G by removing vertex j ∈ R and all edges

touching it. Since A(G) is linearly independent, it is sufficient to show that C(G−j)

has no element of Hamming weight < εn.
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Let x be a non-zero element of C(G−j), and let Sx ⊆ L be the set of coordinates at

which x is 1. Consider the graph G−j . In this graph, the set of unique neighbors of

Sx is empty because x ∈ C(G−j) (otherwise, some j′ ∈ N1(Sx), so 〈Aj′ , x〉 = 1, a

contradiction.) Thus,

N1(Sx) ⊆ {j} (7.4)

where N1(Sx) is the set of unique neighbors of Sx in G. Clearly, |Sx| > 1 because the

left degree of G is c > 1. But if |Sx| ≤ r ·d−2 ·n then by lemma 7.8 |N1(Sx)| ≥ |Sx| > 1,

in contradiction to equation (7.4). We conclude that for any x ∈ C(G−j), |x| ≥ r ·d−2,

so A(G) is ε-separating for ε satisfying:

ε ≤ r · d−2.

Part (iii) is completed, and with it the theorem.

7.4 Reducing dLIN to 3LIN

This section proves Theorem 7.5 which directly follows from the final theorem of this section.

The randomized construction from section 7.3 produces d-linear formulas which are hard to

test for some constant d. We would like to make d as small as possible. This section obtains

3-linear hard to test formulas. First we give a reduction from d-linear to dd
2e + 1-linear

formulas, and then apply it log d times to get 3-linear formulas.

Let ϕ be a d-linear formula on variables in X = {x1, . . . , xn}. The reduction maps ϕ

to a (dd
2e + 1)-linear formula on variables X ∪ Z where Z is a collection of new variables

{z1, . . . , zm}. For each constraint ci, say x1 ⊕ . . . ⊕ xd = 0, in ϕ, two constraints, c1
i and

c2
i are formed: x1 ⊕ . . . ⊕ xd d

2
e ⊕ zi = 0 and xd d

2
e+1 ⊕ . . . ⊕ xd ⊕ zi = 0. Let V ⊆ {0, 1}n

be the vector space of vectors satisfying ϕ, and let A be an m-dimensional basis for the

vector space V⊥ of constraints. Define R(A) to be the collection of 2m vectors in {0, 1}n+m

formed by splitting every constraint in A in two, as described above.

The following three lemmas show that the reduction preserves the properties which make

the formula hard to test. A parameter name prime denotes the value of the parameter after

one application of the reduction: for example, m′ = 2m, n′ = m + n, and d′ = dd
2e+ 1.

Lemma 7.14 R(A) is independent.
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Proof. It is enough to prove that no set of constraints in R(A) sums up to 0. Let C ∈ R(A).

If only one of the two constraints involving a new variable z appears in C, then the sum

of vectors in C has 1 in z’s position. If, on the other hand, all constraints appear in pairs,

then the sum of vectors in C is equal to the sum of the constraints in A from which C’s

constraints were formed. By independence of old constraints, this sum is not 0. 2

Lemma 7.15 If A is ε-separating, then R(A) is ε′-separating where ε′ = ε
1+m/n .

Proof. Let x′ be a vector in {0, 1}n+m that falsifies exactly one constraint, say c1
i , in R(A).

Namely, 〈x′, c1
i 〉 = 1 and 〈x′, c′〉 = 0 for all c′ ∈ R(A), c′ 6= c1

i . Let x = x′1 . . . x′n. Then

〈x, ci〉 = 〈x′, c1
i + c2

i 〉 = 〈x′, c1
i 〉 + 〈x′, c2

i 〉 = 1, and similarly, 〈x, c〉 = 0 for all c ∈ A, c 6= ci.

Thus, x falsifies exactly one constraint in A. Since A is ε-separating, |x| ≥ εn. It follows

that |x′| ≥ εn, implying that R(A) is εn
n+m -separating. 2

Lemma 7.16 If A is (q, µ)-local, then R(A) is (q′, µ′)-local where q′ = q
d′ and µ′ = µ+ q′

2m .

Proof. Let α′ ∈ {0, 1}m+n be the sum of a subset T of µ′ · 2m constraints in R(A). Let T2

be the subset of constraints in T that appear in pairs. Namely, for every new variable z,

both constrains with z are either in T2 or not in T2. Let T1 = T \ T2.

Case 1: |T1| ≥ q′. For every constraint in T1, the new variable z from that constraint

does not appear in any other constraint in T . Therefore, α′ is 1 on z’s coordinate. Hence,

|α′| ≥ |T1| ≥ q′.

Case 2: |T1| < q′. Then |T2| = |T | − |T1| ≥ µ′ · 2m − q′ = 2µm. Let S be the set of

constraints in A that gave rise to constraints in T2. Then |S| = |T2|/2 ≥ µm. Old variables

appear in the same number of constraints in S and in T2. Thus,∣∣∣∣∣∣
∑
c∈T2

c

∣∣∣∣∣∣ ≥
∣∣∣∣∣∑
c∈S

c

∣∣∣∣∣ ≥ q.

The last inequality follows from the fact that A is (q, µ)-local. When constraints from T1

are added to
∑

c∈T2
c, each T1 constraint zeroes out at most dd

2e = d′ − 1 coordinates.

|α′| ≥

∣∣∣∣∣∣
∑
c∈T2

c

∣∣∣∣∣∣− d

2

∣∣∣∣∣∣
∑
c∈T1

c

∣∣∣∣∣∣ ≥ q − (d′ − 1)q′ = q′.
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If the reduction is applied log d times, the number of terms in a constraint drops to 3.

To see this, think of applying the reduction i times to a formula with d ≤ 2i + 2 terms

per constraint. The final theorem of the section summarizes what happens to all relevant

parameters. To denote the value of a parameter after i applications of the reduction, we add
(i) to its name. Parameter ? signifies the final value of the parameter after log d applications

of the reduction.

Theorem 7.17 Let V ⊆ {0, 1}n be a vector space and let A be an m-dimensional basis

for V⊥ containing vectors of weight at most d. Let A? be a set of m? vectors in {0, 1}n?
,

obtained by applying the reduction R until the weight of every vector is 3. If A is ε-separating

(q, µ)-local, then A? is ε?-separating and (q?, µ?)-local, where

m? = dm ; n? = n + (d− 1)m ;

ε? =
ε

1 + (d− 1)m/n
; q? ≥ q

dlog d
;

µ? ≤ µ +
q

m
· log d

d
.

Proof. Since each application of the reduction doubles the dimension, m? = 2log dm = dm.

To calculate n?, observe that the reduction does not change m− n. Therefore,

n? = n + m? −m = n + (d− 1)m.

Lemma 7.14 guarantees that A? is independent. By lemma 7.15, ε′ = ε
1+m/n = ε n

n′ . Thus,

ε? = ε
n

n′
n′

n(2)
· · · n

(log d−1)

n?
= ε

n

n?
=

ε

1 + (d− 1)m/n
.

Applying lemma 7.16 log d times, we obtain

q? =
q

d′ · d(2) · · · · · d?
≥ q

dlog d
;

µ? = µ +
q′

2m
+

q(2)

4m
+ · · ·+ q?

dm
= µ +

q

m

(
1

2d′
+

1
4d(2)

+ · · ·+ 1
d · d?

)
≤ µ +

q

m

log d

d
.

2
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Chapter 8

Testing Visual Properties

8.1 Overview

Image analysis is one area potentially well suited to the property testing paradigm. Images

contain a large amount of data which must be analyzed quickly in a typical application.

Some salient features of an image may be tested by examining only a small part thereof.

Indeed, one motivation for this study is the observation that the eye focuses on relatively

few places within an image during its analysis. The analogy is not perfect due to the eye’s

peripheral vision, but it suggests that property testing may give some insight into the visual

system.

In this chapter, we present algorithms for a few properties of images. All our algorithms

have complexity independent of the image size, and therefore work well even for huge images.

We use an image representation popular in learning theory (see, e.g., [MT89]). Each

image is represented by an n × n matrix M of pixel values. We focus on black and white

images given by binary matrices with black denoted by 1 and white denoted by 0. To keep

the correspondence with the plane, we index the matrix by {0, 1, . . . , n−1}2, with the lower

left corner being (0, 0) and the upper left corner being (0, n− 1). The object is a subset of

{0, 1, . . . , n− 1}2 corresponding to black pixels; namely, {(i, j)|Mi,j = 1}.

8.1.1 Property testing in the pixel model

The distance between two images of the same size is defined as the number of pixels (matrix

entries) on which they differ. (Two matrices of different size are considered to have infinite
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distance.) The relative distance is the ratio of the distance and the number of pixels in the

image. A property is defined as a collection of pixel matrices. The distance of an image

(matrix) M to a property P is minM ′∈P dist(M,M ′). Its relative distance to P is its

distance to P divided by the size of the image matrix. An image is ε-far from P if its

relative distance to P is at least ε. If the image is not ε-far from P, it is ε-close to it.

A property is (ε, q)-testable if there is a randomized algorithm that for every input

matrix M queries at most q entries of M and with probability at least 2
3 distinguishes

between matrices with the property and matrices which are ε-far from having it. The

algorithm is referred to as an (ε, q)-test. This definition allows tests to have 2-sided error.

An algorithm has 1-sided error if it always accepts an input that has the property.

8.1.2 Our results

We present tests for three visual properties: being a half-plane, convexity and connectedness.

The number of queries in all tests is independent of the size of the input. The algorithm

for testing if the input is a half-plane is a 1-sided error test with 2 ln 3
ε + o(1

ε ) queries. The

convexity test has 2-sided error and asks O(1/ε2) queries. And finally, the connectedness

test has 1-sided error and makes O
(

1
ε2 log2 1

ε

)
queries.

8.1.3 Related results in property testing

Previous papers on property testing in computational geometry [CSZ00, CS01] consider

a model different from ours. In their model, the input is the set of object points and

each query i to the oracle outputs coordinates of the ith point. Their results, in general,

are incomparable to ours. In their model, the problems we consider would have query

complexity dependent on the number of points in the object. On the other hand, they are

able to study properties which are trivially testable in our model because all instances are

either close to having the property or close to not having it. An example is the property that

a given graph is a Euclidean minimum spanning tree of a given point set in the plane [CSZ00].

Another related work is [FN01] which studies properties of d-dimensional matrices. It

gives a class of properties which are testable with the number of queries polynomial in

1/ε. Each d-dimensional grid is viewed as a partially ordered set in the natural way. The

main result is that for a fixed d and 0, 1-matrices, every property expressible by a finite

collection of forbidden induced posets of the grid has an (ε, poly (1/ε))-test. It does not
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seem applicable to our geometric properties.

Goldreich and Ron [GR02] study property testing in bounded degree graphs represented

by adjacency lists. Note that an image in the pixel model can be viewed as a graph of

degree 4 where vertices correspond to black pixels and they are connected by an edge if the

corresponding entries in the image matrix are adjacent. (See the definition of the image

graph in the beginning of section 8.4.) Goldreich and Ron measure distance between graphs

as the ratio of the number of edges that need to be changed to transform one graph into

the other over the maximum possible number of edges in the graphs with the given number

of vertices and degree. In our case, the distance between two image graphs corresponds to

the fraction of points (vertices) on which they differ, i.e. the edge structure of the graphs is

fixed, and only vertices can be added or removed to transform one graph into another. Our

connectedness test is exactly the same as the connectivity test in [GR02], with one minor

variations due to different input representation and the fact that the pixel model allows

graphs with a small number of vertices. (In the bounded degree graph model, the number

of vertices is a part of the input.) However, since our distance measures are different, their

proof of correctness of the algorithm does not apply to the pixel model.

One more paper that studies fast algorithms for connectedness in graphs is [CRT01]. It

shows how to approximate the number of connected components in an arbitrary graph in a

sublinear time.

8.1.4 Related results in learning

In property testing terminology, a PAC (probably approximately correct) learning algorithm

[Val84] is given oracle access (or access via random samples) to an unknown target object

with the property P and has to output a hypothesis which is within relative distance ε to

the target with high probability. If the hypothesis is required to have the property P, the

learning algorithm is proper. As proved in [GGR98], a proper PAC learning algorithm for

P with sampling complexity q(ε) implies a (2-sided error) (ε, q(ε/2) + O(1/ε))-tester for P.

Learning half-planes exactly is considered in [MT89]. This work gives matching upper

and lower bound of Θ(log n) for the problem. In the PAC model, a proper learning algo-

rithm with O(1/ε log(1/ε)) sampling complexity follows from [BEHW89]. Together with

the [GGR98] result above, it implies a (2-sided error) (ε, O(1/ε log(1/ε)))-test for the half-

plane property. Our result for testing half-planes is a modest improvement of shaving off
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the log factor and making the error 1-sided.

The generic approach of [GGR98] for transforming PAC proper learners into property

testers does not seem to work well for convexity and connectedness. The complexity of

PAC learning algorithms is at least proportional to Vapnik Chervonenkis (VC) dimen-

sion1[EHKV89]. Since VC dimension of convexity is Θ(n) and VC dimension of connect-

edness is Θ(n2), the corresponding property testers obtained by the generic approach have

query complexity guarantee O(n) and O(n2), respectively. Our testers for these properties

have query complexity independent of n.

8.2 Testing if an image is a half-plane

First we present an algorithm for testing if the image is a half-plane. An image is a half-

plane if there is a vector w ∈ R2 such that a pixel x is black if and only if wT x ≥ 0. The

algorithm first finds a small region within which the dividing line falls. Then it checks if

pixels on one side of the region are white and on the other side are black.

Call pixels (0, 0), (0, n− 1), (n− 1, 0), (n− 1, n− 1) corners. Call the first and the last

row and the first and the last column of the matrix sides. For a pair of pixels p1, p2, let

`(p1, p2) denote the line2 through p1, p2. Let R1(p1, p2) and R2(p1, p2) denote the regions

into which `(p1, p2) partitions the image pixels not on the line.

1The VC dimension is the cardinality of the largest set X ⊆ {0, . . . , n − 1}2 shattered by P. A set
X ⊆ {0, . . . , n − 1}2 is shattered by P if for every partition (X0, X1) of X, P contains a matrix M with
Mx = 1 for all x ∈ X1 and Mx = 0 for all x ∈ X0.

2Throughout the paper, whenever a geometric notion is used without a definition, it refers to the standard
continuous notion. Examples of such notions are line, angle, convex hull. All discretized notions will be
defined.
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Half-plane test T1(ε)

Given access to an n× n pixel matrix,

1. Query the four corners. Let s be the number of sides with differently colored

corners.

(a) If s = 0 (all corners are of the same color c), query ln 3
ε pixels indepen-

dently at random. Accept if all of them have color c. Reject otherwise.

(b) If s = 2,

i. For both sides with differently colored corners, do binary search

of pixels on the side to find two differently colored pixels within

distance less than εn/2. For one side, call the white pixel w1 and

the black pixel b1. Similarly, define w2 and b2 for the second side.

ii. Let Wi = Ri(w1, w2) and Bi = Ri(b1, b2) for i = 1, 2. W.l.o.g.,

suppose W2 and B1 intersect while W1 and B2 do not. Query 2 ln 3
ε

pixels from W1 ∪B2 independently at random. Accept if all pixels

from W1 are white, all pixels from B2 are black. Otherwise, reject.

(c) If s is not 0 or 2, reject.

Theorem 8.1 Algorithm T1 is a 1-sided error (ε, 2 ln 3
ε + o(1

ε ))-test for the half-plane prop-

erty.

Proof. The algorithm queries at most 2 ln 3
ε + O(log(1/ε)) pixels. To prove correctness, we

need to show that all half-planes are always accepted, and all images that are ε-far from

being half-planes are rejected with probability at least 2/3.

Case (a) [0 differently colored sides]: The image is a half-plane if and only if it is unicol-

ored. If it is unicolored, the test always accepts since it never finds pixels of different colors.

If it is ε-far from being a half-plane, it has at least εn2 pixels of a wrong color. Otherwise,

it can be made unicolored, and hence a half-plane, by changing less than an ε-fraction of

pixels. The test fails to find an incorrectly colored pixel and accepts with probability at

most (1− ε)ln 3/ε < e− ln 3 = 1/3.

Case (b) [2 differently colored sides]: The test always accepts all half-planes because it

rejects only if it finds two white pixels and two black pixels such that the line through the

white pixels intersects the line through the black pixels.
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Figure 8-1: Half-plane test

It remains to show that if an image is ε-

far from being a half-plane, it is rejected with

probability ≥ 2/3. We prove the contrapositive,

namely, that if an image is rejected with prob-

ability < 2/3, modifying an ε fraction of pixels

can change it into a half-plane.

Suppose that an image is accepted with

probability ≥ 1/3 = e− ln 3 > (1 − ε/2)2 ln 3/ε.

That means that < ε/2 fraction of pixels from

which we sample in step 1(b)ii differ from the

color of their region (white for W1 and black for

B2). Note also that there are at most εn/2 pix-

els outside of W1 ∪B2. Changing the color of all black pixels in W1 and all white pixels in

B2 and making all pixels outside of those regions white, creates a half-plane by changing

< ε fraction of the pixels, as required.

Case (c) [everything else]: Note that the number of image sides with differently colored

corners is even (0, 2, or 4). That holds because the cycle ((0, 0), (n − 1, 0), (n − 1, n −

1), (0, n− 1), (0, 0)) visits a vertex of a different color every time it moves along such a side.

So, the only remaining case is 4 differently colored sides. In this case, the image cannot be

a half-plane. The test always rejects. 2

8.3 Convexity testing
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Figure 8-2: Convexity test

The image is convex if the convex hull of black

pixels contains only black pixels. The test for

convexity first roughly determines the object by

querying pixels on the n/u×n/u grid with a side

of size u = Θ(εn). Then it checks if the object

corresponds to the rough picture it obtained.

For all indices i, j divisible by u, call the set

{(i′, j′)| i′ ∈ [i, i + u], j′ ∈ [j, j + u]} a u-square.

We refer to pixels (i, j), (i + u, j)(i + u, j + u),
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and (i, j + u) as its corners.

Convexity test T2(ε)

Given access to an n× n pixel matrix,

1. Query all pixels with both coordinates divisible by u = bεn/120c.

2. Let B be the convex hull of discovered black pixels. Query 5
ε pixels from B

independently at random. Reject if a white pixel in B is found in steps 1 or

2.

3. Let W be the union of all u-squares which do not contain any pixels from

B. Query 5
ε pixels from W independently at random. Reject if a black pixel

is found. Otherwise accept.
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Figure 8-3: Walk over fence u-squares

Lemma 8.2, used in the analysis of the con-

vexity test, asserts that the number of pixels

outside B ∪W is small.

Lemma 8.2 In an n × n image, let B be the

convex hull of black pixels with coordinates di-

visible by u. Let W be the union of u-squares

which do not contain any pixels from B. Let the

“fence” F be the set of pixels not contained in

B or W . Then F contains at most 4un pixels.

Proof. Intuitively, F is the largest when it con-

tains all u-squares along the sides of the image.

We call u-squares that are not fully contained in B or W fence u-squares. Note that

F is covered by fence u-squares. Therefore, to prove the lemma it is enough to show that

there are at most 4n/u fence u-squares.

To count the fence u-squares, we will define a cyclic ordering on them. To do that, we

describe a walk that connects centers of all fence u-squares. The walk goes from one center

to the next by traveling left, right, up or down. It visits the centers of fence u-squares by

traveling clockwise and keeping the boundary between F and W on the left-hand side. All

fence u-squares are visited because each of them intersects with some u-square in W in at

least one pixel.
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There are n/u rows of u-squares. We claim that from each of these rows the walk can

travel up at most once. Suppose for contradiction that it goes up twice, from `1 to `2 and

from r1 to r2, where `1 and r1 are fence u-squares with centers in row (k + 0.5)u, and `2

and r2 are fence u-squares with centers in row (k + 1.5)u for some integer k.
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W.l.o.g. suppose that the centers of l1, l2 are in a column

with a lower index than the centers of r1, r2. Since the walk

keeps the boundary between W and F on the left-hand side,

the left corners of `1, `2, r1, r2 are in W . By definition of

fence u-squares, `1, `2, r1, r2 each contain a pixel from B. Then the common left corner of

r1 and r2 is also in B, since B is convex. But this is a contradiction because W and B are

disjoint.

Thus, the walk can travel up only once per row. Similarly, it can travel down only once

per row, and travel left (right) only once per column. Since there are n/u rows (columns)

of u-squares, the walk can have at most 4n/u steps. As it visits all fence u-squares, there

are at most 4n/u of them. Since each u-square contributes u2 pixels, the number of pixels

in F is at most 4nu. 2

The analysis of the convexity test uses the fact that if an image is convex, W contains

only a small number of black pixels. Claim 8.3 proves this fact for a special case of an image

which is “invisible” on the big grid. Later, we use the claim to handle the general case in

lemma 8.4.

Claim 8.3 In an n× n convex image, if all pixels with both coordinates divisible by u are

white, then the image contains less than 2un black pixels.

Proof. Let black(r) denote the number of black pixels in a row r. If each row contains fewer

than u − 1 pixels, the total number of black pixels is at most un. Otherwise, consider a

row r with black(r) ≥ u. Let integers k and t be such that r = ku + t and 0 ≤ t < u.

Since the image is convex, black pixels of every fixed row must have consecutive column

indices. Since every pixel with both coordinates divisible by u is white, black(ku) < u and

black((k + 1)u) < u.

Because of the convexity of the object, if black(r1) < black(r) for a row r1 > r then

black(r2) ≤ black(r1) for all rows r2 > r1. Similarly, if black(r1) < black(r) for a row

r1 < r then black(r2) ≤ black(r1) for all rows r2 < r1. Thus, all rows r2 excluding
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ku+1, ku+2, . . . , (k +1)u−1 have black(r2) < u. Together, they contain < (n−u)u black

pixels. Cumulatively, remaining u− 1 rows contain < (u− 1)n pixels. Therefore, the image

contains less than 2un black pixels. 2

Lemma 8.4 In an n × n convex image, let W be the union of all u-squares which do not

contain any pixels from B. Then W contains less than 8un black pixels.

Proof. As before, let F be the set of all pixels not contained in B or W . We call pixels on

the boundary between F and W with both coordinates divisible by u fence posts. Since all

fence posts are white, any portion of the object protruding into W has to squeeze between

the fence posts. We show that there are at most three large protruding pieces, each of

which, by claim 8.3, contains less than 2un pixels. All other sticking out portions fall close

to the fence and are covered by the area containing less than 2un pixels.
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Let O be the boundary of our convex object. O can be viewed as

a piecewise linear trajectory on the plane that turns 360◦. Whenever

O leaves region F to go into W , it has to travel between two fence

posts. Whenever O comes back into F , it has to return between the

same fence posts because the object is convex and fence posts do

not belong to it. The figuredepicts an excursion of O into W with

accumulated turn α.

Notice that since O turns 360◦ total, at most 3 excursion into W have accumulated turn

> 90◦. Each of them can be viewed as delineating a part of our convex object, cut off by the

line between the fence posts. This part of the object is convex, and therefore, by claim 8.3,

has less than 2un pixels. This gives us a total of less than 6un pixels for the protruding

parts where O turns more than 90◦.

Consider any excursion into W where O leaves F between fence posts p1 and p2 and

turns ≤ 90◦ before coming back. Any such trajectory part lies inside the circle of diameter

u containing p1 and p2. The half of the circle protruding into W is covered by a half of a

u-square. By an argument identical to counting fence squares in lemma 8.2, there are at

most 4n/u segments of the F/W boundary between adjacent fence posts. Therefore, the

total number of pixels that might be touched by the parts of the object, described by O’s

excursions into W that turn ≤ 90◦ is at most 4n/u · u2/2 = 2un.

Thus the total number of black pixels in W is at less than 8un. 2
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Theorem 8.5 Algorithm T2 is a (ε, O(1/ε2))-test for convexity.

Proof. The algorithm asks (n/u)2+O(1/ε) = O(1/ε2) queries. We prove that the algorithm

fails with probability < 1/3, considering convex and far from convex images separately.

If the input image is convex, B contains only black pixels. The test never rejects in step

2. By lemma 8.4, the fraction of black pixels in W is < 8u/n = ε/15. By the union bound,

the probability that the test rejects in step 3 is < ε
15

5
ε = 1

3 .

If the input image is ε-far from convex, it has ≥ 2εn2/5 white pixels in B or ≥ 2εn2/5

black pixels in W . Otherwise, we could make the image convex by making all pixels in W

white and all remaining pixels black. It would require < 2εn2/5 changes in B, < 2εn2/5

changes in W , and by lemma 8.2, ≤ 4un < εn2/5 changes in F . Thus, the distance of the

image to convex would be less than εn2.

Suppose w.l.o.g. that there are ≥ 2ε/5 black pixels in W . Step 3 will fail to find a black

pixel with probability ≤ (1− 2ε
5 )5/ε ≤ e−2 < 1

3 . 2

8.4 Connectedness testing

Define the image graph GM = (V,E) of image matrix M by V = {(i, j)|Mi,j = 1} and

E = {((i1, j), (i2, j))| |i1 − i2| = 1} ∪ {((i, j1), (i, j2))| |j1 − j2| = 1}. In other words, the

image graph consists of black pixels connected by the grid lines. The image is connected if

its image graph is connected. When we say that the image has k connected components,

we are also referring to its image graph.

The test for connectedness looks for isolated components of size less than d = 4/ε2. Be-

fore presenting the test, we prove that a significant fraction of pixels are in such components

if the image is far from connected. When a small isolated component is discovered, the test

rejects if it finds a black pixel outside of the component. Lemma 8.6 implies that for an

image to be far from connected, it has to have a large number of connected components.

Then an averaging argument in lemma 8.7 demonstrates that many of them have to be

small. This gives rise to a simple algorithm T3, which is later improved to algorithm T4

with more careful accounting in claim 8.9.

Both algorithms for connectedness and claim 8.9 are adopted from [GR02]. The only

change in the algorithms, besides parameters, is that after finding a small component, we

have to make sure there is some point outside of it before claiming that the image is far
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from connected.

Lemma 8.6 If an n×n image contains at most p connected components, they can be linked

into one connected component by changing at most n(
√

2p + O(1)) pixel values from white

to black.

Proof. Let s = n
√

2/p. To turn the image into one connected component, we first add the

comb-like set S = {(i, j)| j = n − 1 or i = n − 1 or s divides i}. Now every connected

component is linked to S by adding at most s/2 pixels leading to the nearest “tooth of the

comb”. That is, if a component contains a pixel (ks+ `, j) for an integer k and 0 ≤ ` ≤ s/2,

add pixels (ks+1, j), (ks+2, j), . . . , (ks+`−1, j). Otherwise (a component contains a pixel

(ks + `, j) for integer k and s/2 < ` < s), add pixels (ks + ` + 1, j), (ks + ` + 2, j), . . . , (ks +

s− 1, j).

The first stage adds |S| = n(n/s + O(1)) pixels and the second, less than s/2 per

connected component, adding the total of n(n/s+O(1))+ps/2 = n
√

2p+O(1) pixels. 2

Lemma 8.7 If an image is ε-far from connected, at least an ε2

4 − o(1) fraction of its pixels

are in connected components of size less than d = 4/ε2 + o(1).

Proof. Consider an n × n ε-far from connected image with p connected components. By

lemma 8.6, changing at most n(
√

2p + O(1)) pixels makes it connected. Therefore,

n(
√

2p + O(1)) ≥ εn2,

p ≥ ε2n2/2−O(n).

Let b be the number of black pixels. The average component size is

b

p
≤ n2

ε2n2/2−O(n)
=

2
ε2

+ o(1).

Thus, the fraction of components of size up to d = 4
ε2 +o(1) is at least 1/2. That is, there are

at least p/2 = ε2n2/4− O(n) such components. Since each connected component contains

a pixel, at least ε2/4− o(1) fraction of pixels are in connected components of size d. 2
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Connectedness test T3(ε)

Let δ = ε2

4 − o(1) and d = 4/ε2. Given access to an n× n pixel matrix,

1. Query 2/δ pixels independently at random.

2. For every pixel (i, j) queried in step 1, perform a breadth first search (BFS)

of the image graph starting from (i, j) until d black pixels are discovered or

no more new black pixels can be reached; i.e., for each discovered black pixel

query all its neighbors if they haven’t been queried yet. If no more new black

pixels can be reached, a small connected component has been found.

3. If a small connected component is discovered for some (i, j) in step 2, query

2/ε pixels outside of the square [i − d, i + d] × [j − d, j + d] independently

at random. If a black pixel is discovered, reject. Otherwise (if no small

connected component is found or if no black pixel is discovered outside of

the small component), accept.

Theorem 8.8 Algorithm T3 is a 1-sided (ε, O(ε−4))-test for connectedness.

Proof. The algorithm accepts all connected images because it rejects only if an isolated

component and some pixel outside of it are found.

It remains to show that an ε-far from connected image is rejected with probability at

least 2/3. By lemma 8.7, such an image has at least a δ fraction of its pixels in connected

components of size less than d. The probability that step 1 fails to find a pixel from a small

connected component is (1− δ)2/δ ≤ e−2. In step 2, 3d− 1 queries are sufficient to discover

that a component of size d−1 is isolated because it has at most 2d neighboring white pixels.

There are at least εn2 − 4d2 black pixels outside of the 2d× 2d square containing the small

isolated component. Step 3 will fail to find a black pixel with probability (1 − ε)2ε ≤ e−2.

By the union bound, the failure probability is at most 2/e2 < 1/3.

The number of queries is at most 2/δ × (3d− 1) + 2/ε = O(ε−4). 2

The algorithm can be improved by employing Goldreich–Ron trick [GR02] of considering

small components of different sizes separately. The following claim is adopted from [GR02].

Claim 8.9 If an image has at least C connected components of size less than d, there is

` ≤ log d such that at least C·2`−1

log d points are in connected components of size between 2`−1

and 2` − 1.
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Proof. For some ` ≤ log d, the image has at least C/ log d connected components of size

between 2`−1 and 2` − 1. Each of them contains at least 2`−1 points. 2

(Improved) Connectedness test T4(ε)

Let δ = ε2

4 − o(1) and d = 4/ε2. Given access to an n× n pixel matrix,

1. For ` = 1 to log d

(a) Query 4 log d
δ2` pixels independently at random.

(b) For every pixel (i, j) queried in step 1a, perform a BFS of the image

graph starting from (i, j) until 2` black pixels are discovered or no more

new black pixels can be reached (a small connected component has been

found).

2. If a small connected component is discovered for some (i, j) in step 1, query

2/ε pixels outside of the square [i − d, i + d] × [j − d, j + d] independently

at random. If a black pixel is discovered, reject. Otherwise (if no small

connected component is found or if no black pixel is discovered outside of

the small component), accept.

Theorem 8.10 Algorithm T4 is a 1-sided
(
ε, O

(
1
ε2 log2 1

ε

))
-test for connectedness.

Proof. The algorithm accepts all connected images because it rejects only if an isolated

component and some pixel outside of it are found.

If an n × n image is ε-far from connected, by the proof of lemma 8.7, it has at least a

δn2 connected components of size less than d. Claim 8.9 implies that for some ` < log d, at

least an δ·2`−1

log d fraction of its points are in connected components of size between 2`−1 and

2` − 1. For this `, the probability that step 1 fails to find a pixel from a component of size

between 2`−1 and 2` − 1 is at most e−2. The rest of the correctness analysis is the same as

in theorem 8.8.

The number of queries is at most log d ·O
(

log d
δ

)
+ 2/ε = O

(
1
ε2 log2 1

ε

)
. 2
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8.5 Conclusion and open problems

Employing the paradigm from the half-space test

The strategy employed in the half-plane test of section 8.2 is very simple. First we approx-

imately learn the position of the dividing line. Then, using the fact that all half-planes

consistent with our knowledge of the dividing line can differ only on a fixed ε/2 fraction

of the pixels, we randomly check if the matrix corresponds to these half-planes on the

remaining pixels.

This suggests a general paradigm for transforming PAC learning algorithms into prop-

erty testers with 1-sided error. Namely, consider a property P where all objects with P

which are ε/2-close to a given object are the same on all but ε/2 fraction of the points. In

addition, assume there is a proper PAC learning algorithm with sampling complexity q(n, ε).

Then the following test for P has 1-sided error and query complexity q(n, ε/2) + O(1/ε):

learn the property within relative error of ε/2 and then randomly test the object on points

where all objects ε/2-close the hypothesis coincide. The proof of this fact is very similar to

the case 2 of the analysis of the half-plane test.

Extension to d dimensions and lower bounds

A straightforward extension of our tests to d dimensions seems to give tests with dependence

on d, and thus dependent on the size of the image. It would be interesting to investigate if

this dependence is necessary.

It is known that testing some properties requires the number of queries linear in the

size of the input [BOT02, BHR03]. However, known hard properties do not seem to have

a natural geometric interpretation. It would be nice to find natural 2-dimensional visual

properties which are hard to test. One result follows directly from [BEK+03] which shows

that testing whether a string of length n is a shift of another string requires Ω(n1/2) queries.

This implies that testing whether the lower half of an n × n image is a shift of the upper

half requires Ω(n1/2) queries. It would be interesting to find even harder visual properties.

Extension to non-binary matrices

We restricted our attention to images representable by binary matrices. However, in real life

images have many colors (or intensity values). Property testers for images represented by
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integer-valued matrices would be a natural generalization. For example, one can generalize

convexity in the following way. Call an image represented by an n × n matrix with values

in R convex if the corresponding function {0, 1, . . . , n− 1}2 → R is convex.
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Chapter 9

Conclusion and Open Problems

This thesis studies algorithms and lower bounds for various problems in the property testing

model that allows us to investigate approximate sublinear computation. In addition, it

examines the issue of identifying classes of problems that are amenable to similar algorithmic

techniques.

Characterizing testable properties. The first topic we touched is characterizing gen-

eral properties according to their query complexity. A series of previous works identified

classes of properties testable with constant query complexity. This thesis makes an attempt

to characterize properties over the binary alphabet with sublinear but not necessarily con-

stant query complexity.

A few open questions emerge from this work. We prove there exists a class of non-

testable 3CNF properties by a random construction. As a result, the class of non-testable

3CNF properties we present is non-uniform. The question of finding a uniform class of 3CNF

properties is still open. One possibility for answering it is “derandomizing” our construction.

This requires replacing random graphs in our construction with explicit expanders, and

checking if they satisfy our conditions. The only known construction of expanders that

might be good enough for our application is given by [CRVW02]. It is quite complicated,

and so far it is not clear if it satisfies our conditions.

More generally, it would be interesting to find other classes of properties testable with

sublinear complexity and to extend our results to properties over arbitrary alphabets.
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Locally checkable codes. Another question concerns an intermediate result from Chap-

ter 7. We prove that codes obtained from random (c, d)-regular graphs (for sufficiently large

constants c and d) are not testable with sublinear query complexity. This gives families of

codes with a linear distance and constant rate which are not testable or, in the coding

theory terminology, not checkable with sublinear query complexity. Are there any codes

with a linear distance and constant rate which are checkable with sublinear complexity? So

far, it is not clear what the answer is. But hopefully, the techniques used for proving 3CNF

lower bound will yield some lower bound on testing general codes with linear distance and

constant rate. Finding a family of codes with linear distance and constant rate that are

checkable with a small number of queries would be a big breakthrough.

Adaptivity. A property tester that asks all its queries before getting any answers is

called non-adaptive. Obtaining lower bounds for general property testers proved much

more difficult than for non-adaptive case. There are many examples of properties where

the gap between the known non-adaptive and adaptive lower bounds is exponential, even

though the best-known test for the problem is non-adaptive. Examples of such properties

include monotonicity on the Boolean hypercube and monotonicity on general graphs.

Only two techniques are known for obtaining adaptive lower bounds. The first is to

take a logarithm of the non-adaptive lower bound. This works for all properties because

every adaptive test can be simulated by a non-adaptive test that asks queries for all possible

answers that the adaptive test might get. The obvious disadvantage of this technique is

that it gives very weak adaptive bounds when adaptivity does not help significantly. The

second method described in Chapter 6 avoids this shortcoming, but applies only to linear

properties. One broad research project is to continue to investigate when adaptivity helps

and try to develop methods for proving adaptive lower bounds for other classes of properties

that perform better than the generic method.

Extending the property testing model. Stepping a little bit outside of the traditional

property testing model, one can ask for algorithms which would accept inputs with a small

number of mistakes. We might require that the input is accepted with high probability if at

most an ε1 fraction of the input characters has to be modified to make it satisfy the property

and rejected with high probability if at least an ε2 fraction of the input needs modifications.
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This “double threshold” model could be more useful for some applications. In a recent paper

[BEK+03], we applied this model to testing edit distance between two strings. It can be

applied to many problems previously considered in the traditional property testing model;

e.g., testing various graph and function properties would be very interesting. Unfortunately,

in most cases, property testing algorithms do not work in the double threshold model.

Typically they reject as soon as they find an error, and there are some inputs with a single

error which the tests are certain or likely to notice.

A more general question is which pairs of disjoint sets can be distinguished by sublinear

algorithms. Say that two sets are distinguishable if there is a sublinear-query test that given

an input from one of them, determines with high probability which set the input came from.

Notice that two distinguishable sets do not necessarily have a large Hamming distance. For

example, the set of strings that start with 0 and the set of strings that start with 1 are

distinguishable with one query. Are 3-colorable graphs distinguishable from graphs which

are not 4-colorable? Which other interesting sets are distinguishable?

Pixel model for geometric problems Another broad research project to continue to

investigate testing of visual properties of images, initiated in Chapter 8. It would be nice

to find sublinear algorithms for more visual properties, and learn for which properties it

is impossible to do. Another interesting direction is extending the model to more than 2

dimensions.
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Canada, 21–24 May 2002.

109



[FN01] Eldar Fischer and Ilan Newman. Testing of matrix properties. In Proceedings

of the 33rd ACM STOC, 286–295, 2001.

[Gal63] Robert G. Gallager. Low Density Parity Check Codes. MIT Press, Cambridge,

MA, 1963.

[GGR98] Oded Goldreich, Shafi Goldwasser, and Dana Ron. Property testing and its

connection to learning and approximation. Journal of the ACM, 45(4):653–750,

July 1998. (A preliminary version appeared in Proceedings of the 37th FOCS,

1996.)

[GGL+00] Oded Goldreich, Shafi Goldwasser, Eric Lehman, Dana Ron, and Alex Samorod-

nitsky. Testing monotonicity. Combinatorica 20, 301–337, 2000. (A preliminary

version written by the first four authors appeared in Proceedings of the 39th

IEEE FOCS, 426–435, 1998.)

[GR02] Oded Goldreich and Dana Ron. Property testing in bounded degree graphs.

Algorithmica, 32(2):302–343, 2002. (A preliminary version appeared in Proceed-

ings of the 29th ACM STOC, 406–415, 1997.)

[GS02] Oded Goldreich and Madhu Sudan. Locally testable codes and PCPs of almost

linear length. In Proceedings of the 43rd IEEE Symp. on Foundations of Comp.

Science, pages 13–22, Vancouver, Canada, 16–19 Nov. 2002.

[HW01] Johan H̊astad and Avi Wigderson. Simple Analysis of Graph Tests for Linear-

ity and PCP. In Proceedings of the 16th IEEE Conference on Computational

Complexity, 2001.
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[RS78] I. Z. Ruzsá and E. Szemerédi. Triple systems with no six points carrying three

triangles. Colloquia Mathematica Societatis János Bolyai 18, 939-945, 1978.

[Spi95] Dan Spielman. Computationally Efficient Error-Correcting Codes and Holo-

graphic Proofs. PhD thesis, Massachusetts Institute of Technology, June 1995.

[Val84] Leslie G. Valiant. A theory of the learnable. Communications of the ACM 27,

1134–1142, 1984.

111


