
Steiner Transitive-Closure Spanners
of Low-Dimensional Posets∗

Piotr Berman† Arnab Bhattacharyya‡ Elena Grigorescu§ Sofya Raskhodnikova†

David P. Woodruff¶ Grigory Yaroslavtsev†

April 10, 2013

Abstract

Given a directed graph G = (V,E) and an integer k ≥ 1, a k-transitive-closure-spanner (k-TC-
spanner) of G is a directed graph H = (V,EH) that has (1) the same transitive closure as G and
(2) diameter at most k. In some applications, the shortcut paths added to the graph in order to obtain
small diameter can use Steiner vertices, that is, vertices not in the original graphG. The resulting spanner
is called a Steiner transitive-closure spanner (Steiner TC-spanner).

Motivated by applications to property reconstruction and access control hierarchies, we concen-
trate on Steiner TC-spanners of directed acyclic graphs or, equivalently, partially ordered sets. In these
applications, the goal is to find a sparsest Steiner k-TC-spanner of a poset G for a given k and G. The
focus of this paper is the relationship between the dimension of a poset and the size of its sparsest
Steiner TC-spanner. The dimension of a poset G is the smallest d such that G can be embedded into a
d-dimensional directed hypergrid via an order-preserving embedding.

We present a nearly tight lower bound on the size of Steiner 2-TC-spanners of d-dimensional di-
rected hypergrids. It implies better lower bounds on the complexity of local reconstructors of monotone
functions and functions with small Lipschitz constant. The lower bound is derived from an explicit dual
solution to a linear programming relaxation of the Steiner 2-TC-spanner problem. We also give an effi-
cient construction of Steiner 2-TC-spanners, of size matching the lower bound, for all low-dimensional
posets. Finally, we present a lower bound on the size of Steiner k-TC-spanners of d-dimensional posets.
It shows that the best-known construction, due to De Santis et al., cannot be improved significantly.

1 Introduction

Graph spanners were introduced in the context of distributed computing by Awerbuch [6] and Peleg and
Schäffer [23], and since then have found numerous applications. Our focus is on transitive-closure spanners,
introduced explicitly in [9], but studied prior to that in many different contexts [12, 11, 31, 3, 13, 26, 10, 27,
28, 15, 19, 4].

Given a directed graph G = (V,E) and an integer k ≥ 1, a k-transitive-closure-spanner (k-TC-
spanner) of G is a directed graph H = (V,EH) such that: (1) EH is a subset of the edges in the transitive
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closure of G; (2) for all vertices u, v ∈ V , if dG(u, v) < ∞ then dH(u, v) ≤ k and if dG(u, v) = ∞
then dH(u, v) = ∞, where dG(u, v) denotes the distance from u to v in G. That is, a k-TC-spanner is a
graph with a small diameter that preserves the connectivity of the original graph. The edges of the transitive
closure of G, added to G to obtain a TC-spanner, are called shortcuts and the parameter k is called the
stretch.

TC-spanners have numerous applications, and there has been a lot of work on finding sparse TC-spanners
for specific graph families. See [24] for a survey. In some applications of TC-spanners, in particular, to
access control hierarchies [4, 14], the shortcuts can use Steiner vertices, that is, vertices not in the original
graph G. The resulting spanner is called a Steiner TC-spanner.

Definition 1.1 (Steiner TC-spanner). Given a directed graph G = (V,E) and an integer k ≥ 1, a Steiner
k-transitive-closure-spanner (Steiner k-TC-spanner) of G is a directed graph H = (VH , EH) such that:
(1) V ⊆ VH ; (2) for all vertices u, v ∈ V , if dG(u, v) < ∞ then dH(u, v) ≤ k and if dG(u, v) = ∞ then
dH(u, v) =∞. Vertices in VH\V are called Steiner vertices.

For some graphs, Steiner TC-spanners can be significantly sparser than ordinary TC-spanners. For
example, consider a complete bipartite graph Kn

2
,n
2

with n/2 vertices in each part and all edges directed
from the first part to the second. Every ordinary 2-TC-spanner of this graph has Ω(n2) edges. However,
Kn

2
,n
2

has a Steiner 2-TC-spanner with n edges: it is enough to add one Steiner vertex v, edges to v from
all nodes in the left part, and edges from v to all nodes in the right part. Thus, for Kn

2
,n
2

there is a factor of
Θ(n) gap between the size of the sparsest Steiner 2-TC-spanner and the size of an ordinary 2-TC-spanner.

v

We focus on Steiner TC-spanners of directed acyclic graphs (DAGs) or, equivalently, partially ordered
sets (posets). They represent the most interesting case in applications of TC-spanners. In addition, there is a
reduction from constructing TC-spanners of graphs with cycles to constructing TC-spanners of DAGs, with
a small loss in stretch ([24], Lemma 3.2), which also applies to Steiner TC-spanners.

The goal of this work is to understand the minimum number of edges needed to form a Steiner k-TC-
spanner of a given graphG as a function of n, the number of nodes inG. More specifically, motivated by ap-
plications to access control hierarchies [4, 14] and property reconstruction [8, 21], described in Section 1.2,
we study the relationship between the dimension of a poset and the size of its sparsest Steiner TC-spanner.
The dimension of a poset G is the smallest d such that G can be embedded into a d-dimensional directed
hypergrid via an order-preserving embedding. (See Definition 2.1). Atallah et al. [4], followed by De San-
tis et al. [14], use Steiner TC-spanners in key management schemes for access control hierarchies. They
argue that many access control hierarchies are low-dimensional posets that come equipped with an embed-
ding demonstrating low dimensionality. For this reason, we focus on the setting where the dimension d is
small relative to the number of nodes n.

We also study the size of sparsest (Steiner) 2-TC-spanners of specific posets of dimension d, namely,
d-dimensional directed hypergrids. Our lower bound on this quantity improves the lower bound of [8]
and nearly matches their upper bound. It implies that our construction of Steiner 2-TC-spanners of d-
dimensional posets is optimal up to a constant factor for any constant number of dimensions. It also has
direct implications for property reconstruction. The focus on stretch k = 2 is motivated by this application.
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Several classes of posets, in addition to low-dimensional hypergrids, are known to have small dimension.
For example, if a planar poset, that is, a poset with a planar Hasse diagram, has both a minimum and
a maximum element, it has dimension at most 2. A planar poset with either a minimum or a maximum
element has dimension at most 3 [29]. (In general, however, a planar poset can have an arbitrary dimension
[22]). One can also bound the dimension in terms of cardinality of the poset: every poset of cardinality
n ≥ 4 has dimension at most n/2 [20]. Also, if every element in an n-element poset has at most u points
above it, then its dimension is at most 2(u+ 1) log n+ 1 [18]. Thus, posets with low dimension occur quite
naturally in a variety of settings.

1.1 Our Results

1.1.1 Steiner 2-TC-spanners of Directed d-dimensional Grids.

The directed hypergrid, denotedHm,d, has vertex set1 [m]d and edge set {(x, y) : ∃ unique i ∈ [d] such that
yi − xi = 1 and if j 6= i, yj = xj}. We observe (in Corollary 2.4) that for the grid Hm,d, Steiner vertices
do not help to create sparser k-TC-spanners. In [8], it was shown that for m ≥ 3, sparsest (ordinary) 2-
TC-spanners of Hm,d have size at most md logdm and at least Ω

( md logdm
(2d log logm)d−1

)
. They also give tight

upper and lower bounds for the case of constant m and large d. Our first result is an improvement on the
lower bound for the hypergrid for the case when m is significantly larger than d, i.e., the setting in the above
applications.

Theorem 1.1. Every (Steiner) 2-TC-spanner ofHm,d has Ω
(md(lnm− 1)d

(4π)d

)
edges.

The proof of Theorem 1.1 constructs a dual solution to a linear programming relaxation of the 2-TC-
spanner problem. We consider a linear program (LP) for the sparsest 2-TC-spanner of Hm,d. Our program
is a special case of a more general LP for the sparsest directed k-spanner of an arbitrary graph G, used in
[9] to obtain an approximation algorithm for that problem. We show that for our special case the integrality
gap of this LP is small and, in particular, does not depend on n.

Specifically, we find a solution to the dual LP by selecting initial values that have a combinatorial
interpretation: they are expressed in terms of the volume of d-dimensional boxes contained in Hm,d. For
example, the dual variable corresponding to the constraint that enforces the existence of a length-2 path from
u to v in the 2-TC-spanner is initially assigned a value inversely proportional to the number of nodes on the
paths from u to v. The final sum of the constraints is bounded by an integral which, in turn, is bounded by
an expression depending only on the dimension d.

We note that the best lower bound known previously [8] was proved by a long and sophisticated combi-
natorial argument that carefully balanced the number of edges that stay within different parts of the hypergrid
and the number of edges that cross from one part to another. The recursion in the combinatorial argument
is an inherent limitation of [8], resulting in suboptimal bounds even for constant d. In contrast, our linear
programming argument can be thought of as assigning types to edges based on the volume of the boxes
they define, and automatically balancing the number of edges of different types by selecting the correct
coefficients for the constraints corresponding to those edges. It achieves an optimal bound for any constant
number of dimensions.

Steiner TC-spanners of General d-dimensional Posets.

We continue the study of the number of edges in a sparsest Steiner k-TC-spanner of a poset as a function
of its dimension, following [4, 14]. We note that the only poset of dimension 1 is the directed line Hn,1.

1For a positive integer m, we denote {1, . . . ,m} by [m].
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Stretch k Prior bounds on Sk(G)

2d− 1 O(n2) [4]
2d− 2 + t for t ≥ 2 O(n(logd−1 n)λt(n)) [4]
2d+O(log∗ n) O(n logd−1 n) [4]

3
O(n logd−1 n log log n)

for fixed d [14]

Stretch k Our bounds on Sk(G)

Ω

(
n
(

logn
cd

)d)
2 O(n logd n)

for a fixed c > 0

≥ 3
Ω(n logd(d−1)/ke n)

for fixed d

Table 1: The size of the sparsest Steiner k-TC-spanner for d-dimensional posets on n vertices for d ≥ 2

TC-spanners of directed lines were discovered under many different guises. They were studied implicitly in
[31, 12, 11, 3, 13, 15, 5] and explicitly in [10, 28]. Chandra, Fortune and Lipton [12, 11] implicitly showed
that, for constant k, the size of the sparsest k-TC-spanner of the directed line is Θ(n · λk(n)), where λk(n)
is the kth-row inverse Ackermann function2 .

Table 1 compares old and new results for d ≥ 2. Sk(G) denotes the number of edges in the sparsest
Steiner k-TC-spanner of G. The upper bounds hold for all posets of dimension d. The lower bounds mean
that there is an infinite family of d-dimensional posets for which all Steiner k-TC-spanners have the specified
number of edges.

Atallah et al. constructed Steiner k-TC-spanners with k proportional to d.
De Santis et al. improved their construction for constant d. They achieved
O(3d−tnt logd−1 n log logn) edges for odd stretch k = 2t + 1, where t ∈ [d]. In particular, setting t = 1
gives k = 3 and O(n logd−1 n log log n) edges.

We present the first construction of Steiner 2-TC-spanners for d-dimensional posets. In our construction,
the spanners have O(n logd n) edges, and the length-2 paths can be found in O(d) time. This result is stated
in Theorem 2.2 (in Section 2). Our construction, like all previous constructions, takes as part of the input
an explicit embedding of the poset into a d-dimensional grid. (Finding such an embedding is NP-hard [30].
Also, as mentioned previously, in the application to access control hierarchies, such an embedding is usually
given.) The Steiner vertices used in our construction for d-dimensional posets are necessary to obtain sparse
TC-spanners, as manifested by the example presented after the proof of Theorem 2.2.

Theorem 1.1 implies that there is an absolute constant c > 0 for which our upper bound for k = 2 is
tight within an O((cd)d) factor, showing that no drastic improvement in the upper bound is possible. To
obtain a bound in terms of the number n of vertices and dimension d, substitute n for md and (lnn)/d for
lnm in the theorem statement. This works for all n larger than some constant to the power d and gives the
following corollary.

Corollary 1.2. There is an absolute constant c > 0 for which for all d ≥ 2 and n larger than some constant
to the power d, there exists a d-dimensional poset G on n vertices such that every Steiner 2-TC-spanner of
G has Ω

(
n
( logn
cd

)d) edges.

The restriction on n in the corollary is not an artifact of the proof, since for d = ω(log n), the expression
in the lower bound is ω(n2). Thus, the corollary is false this range of parameters because the transitive
closure of any graph has O(n2) edges.

In addition, we prove a lower bound for all constant k > 2 and constant dimension d, which qualitatively
matches known upper bounds. It shows that, in particular, every Steiner 3-TC-spanner has size Ω(n log n),
and even with significantly larger constant stretch, every Steiner TC-spanner has size n logΩ(d) n.

2The Ackermann function [1] is defined by: A(1, j) = 2j , A(i + 1, 0) = A(i, 1), A(i + 1, j + 1) = A(i, 22A(i+1,j)

). The
inverse Ackermann function is α(n) = min{i : A(i, 1) ≥ n} and the ith-row inverse is λi(n) = min{j : A(i, j) ≥ n}.
Specifically, λ2(n) = Θ(logn), λ3(n) = Θ(log log n) and λ4(n) = Θ(log∗ n).
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Theorem 1.3. For all constant d ≥ 2 and sufficiently large n, there exists a d-dimensional poset G on n
vertices such that for all k ≥ 3, every Steiner k-TC-spanner of G has Ω(n logd(d−1)/ke n) edges.

This theorem (see Section 4) captures the dependence on d and greatly improves upon the previous Ω(n log log n)
bound, which follows trivially from known lower bounds for 3-TC-spanners of a directed line.

The lower bound on the size of a Steiner k-TC-spanner for k ≥ 3 is proved by the probabilistic method.
We note that using the hypergrid as an example of a poset with large Steiner k-TC-spanners for k > 2
would yield a much weaker lower bound becauseHm,d has a 3-TC-spanner of size O((m log logm)d) and,
more generally, a k-TC-spanner of size O((m · λk(m))d), where λk(m) is the kth-row inverse Ackermann
function [8]. Instead, we construct an n-element poset embedded in Hn,d using the following randomized
procedure: all poset elements differ on coordinates in dimension 1, and for each element, the remaining
d−1 coordinates are chosen uniformly at random from [n]. We consider a set of partitions of the underlying
hypergrid into d-dimensional boxes, and carefully count the expected number of edges in a Steiner k-TC-
spanner that cross box boundaries for each partition. We show that each edge is counted only a small number
of times, proving that the expected number of edges in a Steiner k-TC-spanner is large. We conclude that
some poset attains the expected number of edges.

Organization.

We explain applications of Steiner TC-spanners in Section 1.2. Section 2 gives basic definitions and obser-
vations. In particular, our construction of sparse Steiner 2-TC-spanners for d-dimensional posets (the proof
of Theorem 2.2) is presented there. Our lower bounds constitute the main technical contribution of this
paper. The lower bound for the hypergrid for k = 2 (Theorem 1.1) is proved in Section 3. The lower bound
for k > 2 (Theorem 1.3) is presented in Section 4.

1.2 Applications

Numerous applications of TC-spanners are surveyed in [24]. We focus on two of them: property reconstruc-
tion, described in [8, 21], and key management for access control hierarchies, described in [4, 9, 14].

Property Reconstruction.

Property-preserving data reconstruction was introduced by Ailon, Chazelle, Comandur and Liu [2]. In this
model, a reconstruction algorithm, called a filter, sits between a client and a dataset. A dataset is viewed
as a function f : D → R. A client accesses the dataset using queries of the form x ∈ D to the filter.
The filter looks up a small number of values in the dataset and outputs g(x), where g must satisfy a pre-
specified structural property (e.g., be monotone or have a low Lipschitz constant) and differ from f as little
as possible. Extending this notion, Saks and Seshadhri [25] defined local reconstruction. A filter is local if
the output function g does not depend on the order of the queries. Local filters can be used for distributed
computations [25] and in private data analysis [21]. A filter is nonadaptive if its lookups do not depend on
the answers to previous lookups.

Our results on TC-spanners are relevant to reconstruction of two properties of functions: monotonicity
and having a low Lipschitz constant. Reconstruction of monotone functions was considered in [2, 8, 25].
A function f : [m]d → R is called monotone if f(x) ≤ f(y) for all (x, y) ∈ E(Hm,d). Reconstruction
of functions with low Lipschitz constant was studied in [21]. A function f : [m]d → R has Lipschitz
constant c if |f(x) − f(y)| ≤ c · |x − y|1. In [8], the authors proved that the existence of a local filter
for monotonicity of functions with low lookup complexity implies the existence of a sparse 2-TC-spanner
of Hm,d. In [21], an analogous connection was drawn between local reconstruction of functions with low
Lipschitz constant and 2-TC-spanners. Our improvement in the lower bound on the size of 2-TC-spanners of
Hm,d directly translates into an improvement by the same factor in the lower bounds on lookup complexity
of local nonadaptive filters for these two properties, showing they are optimal for any constant d.
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Key Management for Access Control Hierarchies.

Atallah et al. [4] used sparse Steiner TC-spanners to construct efficient key management schemes for access
control hierarchies. An access hierarchy is a partially ordered set G of access classes. Each user is entitled
to access a certain class and all classes reachable from the corresponding node in G.

One approach to enforcing the access hierarchy is to use a key management scheme of the following
form [4, 14]. Each edge (i, j) has an associated public key P (i, j), and each node i, an associated secret key
ki. Only users with the secret key for a node have the required permissions for the associated access class.
The public and secret keys are designed so that there is an efficient algorithm A which takes ki and P (i, j)
and generates kj , but for each (i, j) in G, it is computationally hard to generate kj without knowledge of
ki. Thus, a user can efficiently generate the required keys to access a descendant class, but not other classes.
The number of runs of algorithm A needed to generate a secret key kv from a secret key ku is equal to
dG(u, v). To speed this up, Atallah et al. suggest adding edges and nodes to G to increase connectivity. To
preserve the access hierarchy represented by G, the new graph H must be a Steiner TC-spanner of G. The
number of edges in H corresponds to the space complexity of the scheme, while the stretch k of the spanner
corresponds to the time complexity.

We note that the time to find the path from u to v is also important in this application. In our upper
bound, this time is O(d), which for small d (e.g., constant) is likely to be much less than 2g(n), where g(n)
is the time to run algorithm A. This is because algorithm A involves the evaluation of a cryptographic hash
function, which is expensive in practice and in theory.3

2 Definitions and Observations

For integers j ≥ i, interval [i, j] refers to the set {i, i+ 1, . . . , j}. Logarithms are always base 2, except for
ln which is the natural logarithm.

Each DAG G = (V,E) is equivalent to a poset with elements V and partial order�, where x � y if y is
reachable from x in G. Elements x and y are comparable if x � y or y � x, and incomparable otherwise.
We write x ≺ y if x � y and x 6= y. The hypergrid Hm,d with dimension d and side length m was defined
in the beginning of Section 1.1. Equivalently, it is the poset on elements [m]d with the dominance order,
defined as follows: x � y for two elements x, y ∈ [m]d iff xi ≤ yi for all i ∈ [d].

A mapping from a poset G to a poset G′ is called an embedding if it respects the partial order, that is, all
x, y ∈ G are mapped to x′, y′ ∈ G′ such that x �G y iff x′ �G′ y′.

Definition 2.1 (Poset dimension, [17]). LetG be a poset with n elements. The dimension ofG is the smallest
integer d such that G can be embedded into the hypergridHn,d.

Dushnik and Miller [16] proved that for any m > 1, the hypergridHm,d has dimension exactly d.

Fact 2.1. Each d-dimensional poset G with n elements can be embedded into a hypergrid Hn,d, so that for
all i ∈ [d], the ith coordinates of images of all elements are distinct. Moreover, such an embedding can be
obtained from an arbitrary embedding of G intoHn,d in time O(dn log n).

Proof. Let G be a d-dimensional poset G with n elements. By Definition 2.1, it can be embedded into a
hypergrid Hm,d. If m > n, we can sort the elements by coordinates in each dimension and reassign the
coordinate values to be in [n], without changing their relative order, in O(dn log n) time. Then we can
compute a linear extension L of G by merging d lists of points, each sorted by a different coordinate, in
O(dn) time. Finally, for each dimension i ∈ [d], in O(n) time, we can go through the list of elements sorted

3Any hash function which is secure against poly(n)-time adversaries requires g(n) ≥ polylogn evaluation time under existing
number-theoretic assumptions.
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by the ith coordinate, and reassign the ith coordinates, so that all of them are distinct, resolving conflicts
according to the order of L.

It remains to show that this transformation, call it f , does not change the partial order of G. Consider
a pair of elements x ≺ y in G. If xi < yi for some i ∈ [d] then f(x)i < f(y)i because we did not
change the order of distinct coordinates. If xi = yi for some i ∈ [d] then f(x)i < f(y)i since x precedes
y in L. Therefore, f(x) ≺ f(y). Finally, consider incomparable elements x and y of G. Since they are
incomparable, xi < yi while xj > yj for some i, j ∈ [d]. Then f(x)i < f(y)i while f(x)j > f(y)j , and
consequently, f(x) and f(y) are incomparable, as required.

Sparse Steiner 2-TC-spanners for d-dimensional Posets.

We give a simple construction of sparse Steiner 2-TC-spanners for d-dimensional posets. For constant d, it
matches the lower bound from Section 3 up to a constant factor. Note that the construction itself works for
arbitrary, not necessarily constant, d.

Theorem 2.2. Each d-dimensional posetG on n elements has a Steiner 2-TC-spannerH of sizeO(n logd n).
Given an embedding ofG into the hypergridHn,d, graphH can be constructed in timeO(dn logd n). More-
over, for all x, y ∈ G, where x ≺ y, one can find a path in H from x to y of length at most 2 in time O(d).

Proof. Consider an n-element poset G embedded into the hypergrid Hn,d. Transform it, so that for all
i ∈ [d], the ith coordinates of images of all elements are distinct. (See Fact 2.1.) In this proof, assume that
the hypergrid coordinates start with 0, i.e., its vertex set is [0, n− 1]d. Let ` = dlog ne and b(t) be the `-bit
binary representation of t, possibly with leading zeros. Let pi(t) denote the i-bit prefix of b(t) followed by
a single 1 and then ` − i − 1 zeros. Let lcp(t1, t2) = pi(t1), where i is the length of the longest common
prefix of b(t1) and b(t2).

To construct a Steiner 2-TC-spanner (VH , EH) of G, we insert at most `d edges into EH per each
poset element. Consider a poset element with coordinates x = (x1, . . . , xd) in the embedding. For each
d-tuple (i1, . . . , id) ∈ [0, `− 1]d, let p be a hypergrid vertex whose coordinates have binary representations
(pi1(x1), . . . , pid(xd)). If x ≺ p, we add an edge (x, p) to EH ; otherwise, if p ≺ x we add an edge (p, x) to
EH . Note that only edges between comparable points are added to EH .

Observe that for d > (2 log n)/(log log n), the theorem is trivial since then n logd n > n3, and the
transitive-closure of G has O(n2) edges and can be computed in O(n3) time. For smaller d, dlog ned =
O(logd n) and, consequently, EH contains O(n logd n) edges and can be constructed in O(dn logd n) time,
as described, if bit operations on coordinates can be performed in O(1) time.

For all pairs of poset elements x = (x1, . . . , xd) and y = (y1, . . . , yd), such that x ≺ y, there is an
intermediate point z with coordinates whose binary representations are (lcp(x1, y1), . . . , lcp(xd, yd)). By
construction, both edges (x, z) and (z, y) are in EH . Point z can be found in O(d) time, since lcp(xi, yi)
can be computed in O(1) time, assuming O(1) time bit operations on coordinates.

Note that the Steiner vertices used in our construction for d-dimensional posets are necessary to obtain
sparse TC-spanners. Recall our example of a bipartite graph Kn

2
,n
2

for which every 2-TC-spanner required
Ω(n2) edges. Kn

2
,n
2

is a poset of dimension 2, and thus, by the upper bound in Theorem 2.2, has a Steiner
2-TC-spanner of size O(n log2 n). (As we mentioned before, for this graph there is an even better Steiner 2-
TC-spanner withO(n) edges.) To see thatKn

2
,n
2

is embeddable into a [n]×[n] grid, map each of the n/2 left
vertices of Kn

2
,n
2

to a distinct grid vertex in the set of incomparable vertices {(i, n/2 + 1− i) : i ∈ [n/2]},
and similarly map each right vertex to a distinct vertex in the set {(n + 1 − i, i + n/2) : i ∈ [n/2]}. It is
easy to see that this is a proper embedding.
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Equivalence of Steiner and non-Steiner TC-spanners for Hypergrids.

Our lower bound on the size of 2-TC-spanners for d-dimensional posets of size n is obtained by proving a
lower bound on the size of the Steiner 2-TC-spanner ofHm,d where m = n1/d. The following lemma, used
in Section 4, implies Corollary 2.4 that shows that sparsest Steiner and non-Steiner 2-TC-spanners ofHm,d
have the same size.

Lemma 2.3. Let G be a poset on elements V ⊆ [m]d with the dominance order and H = (VH , EH) be a
Steiner k-TC-spanner of G with minimal VH . Then H can be embedded intoHm,d.

Proof. For each s ∈ VH − V , we define Prev(s) = {x ∈ V : x ≺ s}. If Prev(s) = ∅ then VH is not
minimal because H remains a Steiner k-TC-spanner of G when s is removed. We map each Steiner vertex
s to r(s), the replacement of s in [m]d, whose ith coordinates for all i ∈ [d] are maxx∈Prev(s) xi.

Consider an edge (x, y) inG. If x, y ∈ V our embedding does not alter that edge. If x ∈ V , y ∈ VH−V
then x ∈ Prev(y) and x ≺ r(y) by the definition of r. If x, y ∈ VH − V then Prev(x) ⊆ Prev(y) and
the monotonicity of max(S) for sets implies r(x) � r(y). Finally, if x ∈ VH − V and y ∈ V then for each
z ∈ Prev(x) and each i ∈ [d], we have zi ≤ yi because z ≺ x ≺ y, and this implies r(x) � y.

Corollary 2.4. If Hm,d has a Steiner k-TC-spanner H , it also has a k-TC-spanner with the same number
of nodes and at most the same number of edges.

3 Lower Bound for 2-TC-spanners of the Hypergrid

In this section, we prove Theorem 1.1 that gives a nearly tight lower bound on the size of (Steiner) 2-TC-
spanners of the hypergridsHm,d. By Corollary 2.4, we only have to consider non-Steiner TC-spanners.

Proof of Theorem 1.1. We start by introducing an LP for the sparsest 2-TC-spanner of an arbitrary graph.
Our lower bound on the size of a 2-TC-spanner ofHm,d is obtained by finding a feasible solution to the dual
program, which, by definition, gives a lower bound on the objective function of the primal.

An Integer LP for Sparsest 2-TC-spanner.

For each graph G = (V,E), we can find the size of a sparsest 2-TC-spanner by solving the following {0,1}-
LP, a special case of an LP from [9] for directed k-spanners. For all vertices u, v ∈ V satisfying u � v, we
introduce variables xuv ∈ {0, 1}. For u 6= v, they correspond to potential edges in a 2-TC-spanner H of G.
(We need ariables xvv for notational convenience in the last part of the proof.) For all vertices u, v, w ∈ V
satisfying u � w � v, we introduce auxiliary variables x′uwv ∈ {0, 1}, corresponding to potential paths of
length at most 2 in H . The {0,1}-LP is as follows:

minimize
∑

u,v : u�v
xuv

subject to xuw − x′uwv ≥ 0, xwv − x′uwv ≥ 0 ∀u, v, w : u � w � v;∑
w : u�w�v

x′uwv ≥ 1 ∀u, v : u � v.

Given a solution to the LP, we can construct a 2-TC-spanner H = (V,EH) of G of size not exceeding
the value of the objective function by including (u, v) in EH iff the corresponding variable xuv = 1 and
u 6= v. In the other direction, given a 2-TC-spanner H = (V,EH) of G, we can find a feasible solution of
the LP with the value of the objective function not exceeding |EH |+ |V |. Let E′H = EH ∪L, where L is the
set of loops (v, v) for all v ∈ V . Then we set xuv = 1 iff (u, v) ∈ E′H and x′uwv = 1 iff both (u,w) ∈ E′H
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and (w, v) ∈ E′H . Therefore, the size of a sparsest 2-TC-spanner ofG and the optimal value of the objective
function of the LP differ by at most |V |. They are asymptotically equivalent because |V | = O(|EH |) for
every weakly connected graph G.

A Fractional Relaxation of the Dual LP.

Every feasible solution of the following fractional relaxation of the dual LP gives a lower bound on the
optimal value of the objective function of the primal:

maximize
∑

u,v : u�v
yuv

subject to
∑

w : v�w
y′uvw +

∑
w : w�u

y′′wuv ≤ 1 ∀u, v : u � v; (1)

yuv − y′uwv − y′′uwv ≤ 0 ∀u, v, w : u � w � v; (2)

yuv ≥ 0, y′uwv ≥ 0, y′′uwv ≥ 0 ∀u, v, w : u � w � v.

Finding a Feasible Solution for the Dual.

When the graphG is a hypergridHn,d, we can find a feasible solution of the dual, which gives a lower bound
on the objective function of the primal. To do that, we perform the following three steps. First, we choose
initial values ŷuv for the variables yuv of the dual program and, in Lemma 3.1, give a lower bound on the
resulting value of the objective function of the primal program. Second, we choose initial values ŷ′uvw and
ŷ′′uvw for variables y′uvw and y′′uvw so that (2) holds. Finally, in Lemma 3.2, we give an upper bound on the
left-hand side of (1) for all u � v. Our bound is a constant larger than 1 and independent of n. We obtain
a feasible solution to the dual by dividing the initial values of the variables (and, consequently, the value of
the objective function) by this constant.

Step 1. For a vector x = (x1, . . . , xd) ∈ [0,m − 1]d, let the volume V (x) denote
∏
i∈[d](xi + 1).

This corresponds to the number of hypergrid points inside a d-dimensional box with corners u and v, where
v − u = x. We start building a solution to the dual by setting ŷuv = 1

V (v−u) for all u � v. This gives the
value of the objective function of the dual program, according to the following lemma.

Lemma 3.1.
∑

u,v : u�v
ŷuv > md(lnm− 1)d.

Proof. Substituting 1/(V (v − u)) for ŷuv, we get:

∑
u,v : u�v

ŷuv =
∑

u,v : u�v

1

V (v − u)
=
∑
l∈[m]d

∏
i∈[d]

m− li + 1

li
=

∑
l∈[m]

m− l + 1

l

d

> ((m+ 1) ln(m+ 1)−m)d > md(lnm− 1)d.

Step 2. The values of ŷ′uvw and ŷ′′uvw are set as follows to satisfy (2) tightly (without any slack):

ŷ′uvw = ŷuw
V (v−u)

V (v−u) + V (w−v)
, ŷ′′uvw = ŷuw−ŷ′uvw = ŷuw

V (w−v)

V (v−u) + V (w−v)
.

Step 3. The initial values ŷ′uvw and ŷ′′uvw do not necessarily satisfy (1). The following lemma, whose
proof is deferred to the full version, gives an upper bound on the left-hand side of all constraints in (1).
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Lemma 3.2. For all u � v,
∑

w : v�w
ŷ′uvw +

∑
w : w�u

ŷ′′wuv ≤ (4π)d.

Proof. Below we denote v − u by x0 = (x0
1, . . . , x

0
d), a d-dimensional vector of ones (1, . . . , 1) by ~1 and∏

i∈[d] dxi by dx. ∑
w : v�w

ŷ′uvw +
∑

w : w�u
ŷ′′wuv

=
∑

w : v�w
ŷuw

V (v − u)

V (v − u) + V (w − v)

+
∑

w : w�u
ŷwv

V (v − u)

V (u− w) + V (v − u)

=
∑

w : v�w

V (v − u)

V (w − u)(V (v − u) + V (w − v))

+
∑

w : w�u

V (v − u)

V (v − w)(V (u− w) + V (v − u))

< 2
∑

x∈[0,m]d

V (x0)

V (x0 + x)(V (x0) + V (x))

≤ 22d+1
∑

x∈[1,m+1]d

V (x0)

V (x0 + x)(V (x0) + V (x))
(3)

< 22d+1

∫
Rd
+

V (x0)dx

V (x0 + x)(V (x0) + V (x))
(4)

= 22d+1

∫
Rd
+

V 2(x0)dt

V (t)V (x0)(V (x0) +
∏
i

(ti(x0
i + 1) + 1))

(5)

< 22d+1

∫
Rd
+

V (x0)dt

V (t)(V (x0) +
∏
i
ti(x0

i + 1))

= 22d+1

∫
Rd
+

dt

V (t)(~1 + V (t− 1))
.

The first two equalities above are obtained by plugging in values of ŷ′ and ŷ′′ from Steps 1 and 2 with
appropriate indices. The first inequality is obtained by extending each sum to the whole subgrid. Here (3)
holds because 1

V (u) ≤
2d

V (u+1) for all u, such that ui ≥ 0. In (4), the sum can be bounded from above by
the integral because the summand is monotone in all variables. To get (5), we substitute x with t such that
xi = ti(x

0
i + 1). Then V (x0 + x) = V (t)V (x0), and dx = V (x0)dt. To obtain the last inequality, we

substitute V (x0) for
∏
i

(x0
i + 1).

Proposition 3.3. Let Id =
∫
Rd
+

dt
V (t)(~1+V (t−1))

. Then Id ≤ πd

2 for all d.

Proof. To bound the integral Id, we first make a substitution xi = 1−ti
1+ti

:

Id =

∫
[−1...1]d

dx∏
1≤i≤d

(1 + xi) +
∏

1≤i≤d
(1− xi)

.
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Then we bound the denominator using the inequality a+ b ≥ 2
√
ab and get

Id ≤
∫

[−1...1]d

dx

2
√ ∏

1≤i≤d
(1 + xi)×

∏
1≤i≤d

(1− xi)
=
Jd

2
,

where J denotes the following integral:

J =

1∫
−1

dx√
1− x2

= π.

Therefore, Id ≤ πd

2 , as claimed.

Lemma 3.2 follows from Proposition 3.3.

Finally, we obtain a feasible solution by dividing initial values ŷuv, ŷ′uvw and ŷ′′uvw by the upper bound
(4π)d from Lemma 3.2. Then Lemma 3.1 gives the desired bound on the value of the objective function:

∑
u,v : u�v

ŷuv
(4π)d

> md

(
lnm− 1

4π

)d
.

This concludes the proof of Theorem 1.1.

4 Our Lower Bound for k-TC-spanners of d-dimensional Posets for k > 2

In this section, we prove Theorem 1.3 that gives a lower bound on the size of Steiner k-TC-spanners of
d-dimensional posets for k > 2 and d ≥ 2.

Proof of Theorem 1.3. Unlike in the previous section, the poset which attains the lower bound is constructed
probabilistically, not explicitly.

We consider n-element posets G embedded in the hypergrid Hn,d, where the partial order is given by
the dominance order x � y on Hn,d. The elements of G are points p1, p2, . . . , pn ∈ [n]d, where the first
coordinate of each pa is a. (By Fact 2.1, each d-dimensional poset with n elements can be embedded into
Hn,d, so that the first coordinates of all points are distinct.) Let Gd be a distribution on such posets G, where
the last d− 1 coordinates of each point pa are chosen uniformly and independently from [n].

Recall that Sk(G) denotes the size of the sparsest Steiner k-TC-spanner of poset G. The following
lemma gives a lower bound on the expected size of a Steiner k-TC-spanner of a poset drawn from Gd.

Lemma 4.1. E
G←Gd

[Sk(G)] = Ω(n logd
d−1
k
e n) for all k ≥ 3 and constant d ≥ 2.

To simplify the presentation, we first prove the special case of Lemma 4.1 for 2-dimensional posets in
Section 4.1. The general case is proved in Section 4.2. Since Lemma 4.1 implies the existence of a poset G,
for which every Steiner k-TC-spanner has Ω(n logd(d−1)/ke n) edges, Theorem 1.3 follows.
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4.1 The Case of d = 2

This section proves a special case of Lemma 4.1 for 2-dimensional posets, which illustrates many of the
ideas used in the proof of the general lemma. In both proofs, we assume that ` = log n is an integer.

Lemma 4.2 (Special case of Lemma 4.1). E
G←G2

[Sk(G)] = Ω(n log n) for all k ≥ 3 and d = 2.

Proof. To analyze the expected number of edges in a Steiner TC-spanner H of G, we consider ` partitions
of [n]2 into horizontal strips. We call strips boxes for compatibility with the case of general d.

Definition 4.1 (Box partition). For each i ∈ [`], define sets of equal size that partition [n] into 2i intervals:
the jth such set, for j ∈ [2i], is Iij = [(j − 1)2`−i + 1, j2`−i]. Given i ∈ [`], and j ∈ [2i], the box B(i, j) is
[n]× Iij and the box partition BP(i) is a partition of [n]2 that contains boxes B(i, j) for all j ∈ [2i].

For each odd j, we group boxes B(i, j) and B(i, j + 1) into a box-pair. We call j the index of the
box-pair and refer to B(i, j) and B(i, j + 1) as the bottom and the top box in the box-pair. Recall that a
poset G consists of elements p1, p2, . . . , pn ∈ [n]2, where the first coordinate of each pa is a. We analyze
the expected number of edges in a Steiner TC-spanner H of G that cross from bottom to top boxes in all
box-pairs. To do that, we identify pairs of poset elements (pa, pb), called jumps, that force such edges to
appear. By Lemma 2.3, we can assume that all Steiner vertices of H are embedded into Hn,2. Therefore,
if pa is in the bottom box and pb is in the top box of the same box-pair then H must contain an edge from
the bottom to the top box. To ensure that we count such an edge just once, we consider only pa and pb for
which no other point pc with c ∈ (a, b) is contained in this box pair. Next we define jumps formally. This
concept is also illustrated in Figure 1.

Definition 4.2 (Jumps). Given a poset G, embedded into Hn,2, and an index i ∈ [`], a jump generated by
the box partition BP(i) is a pair (pa, pb) of elements of G, such that for some odd j ∈ [2i], the following
holds: pa ∈ B(i, j), pb ∈ B(i, j + 1), but pc /∈ B(i, j) ∪ B(i, j + 1) for all c ∈ (a, b). The set of jumps
generated by all partitions BP(i) for i ∈ [`] is denoted by J .

B(2,1)

B(2,2)

B(2,3)

B(2,4)

dimension 1

d
im

en
si

o
n

 2

Figure 1: Box partition BP(2)
and jumps it generates.

Next we establish that the number of jumps in a poset G is a lower
bound on the number of edges in a Steiner TC-spanner of G (Proposi-
tion 4.3) and bound the expected number of jumps from below (Propo-
sition 4.4).

Proposition 4.3. Let G be a poset, embedded into Hn,2, and H =
(VH , EH) be a Steiner k-TC-spanner of G. Then |EH | ≥ |J |.

Proof. To prove the statement, we establish an injective mapping from
J to EH . By Lemma 2.3, we can assume that all Steiner vertices of H
are embedded into Hn,2. Given a jump (pa, pb), let j be the index of
the box-pair containing pa in the bottom box and pb in the top box. We
define e(a, b) ∈ EH by following an arbitrary path from pa to pb in H .
This path is contained in the box-pair B(i, j) ∪ B(i, j + 1). We define
e(a, b) as the edge on that path that starts in B(i, j) and ends in B(i, j + 1).

It remains to show that the mapping e(a, b) is injective. Consider an edge (u, v) of H with u = (u1, u2)
and v = (v1, v2). Observe that there is a unique box-pair B(i, j) ∪ B(i, j + 1) such that v ∈ B(i, j) and
u ∈ B(i, j + 1). (Indices i and j can be determined by finding the number of the form j2`−i in the interval
[u2, v2 − 1], such that `− i is maximized.) At most one jump (a, b) satisfies pa ∈ B(i, j), pb ∈ B(i, j + 1)
and a ≤ u1 ≤ v1 ≤ b, since the intervals [a, b] are disjoint for all jumps in a box pair.
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Proposition 4.4. When a poset G is drawn from the distribution G2, the expected size of J is at least
n(`− 1)/4.

Proof. We first find the expected number of jumps generated by the partition BP(i) for a specific i. Let
λi(pa) be the index j of the box-pair B(i, j) ∪ B(i, j + 1) that contains pa. This is well defined since box-
pairs with respect to BP(i) partition [n]2. Let ρi(pa) be 0 if pa is in the bottom box of that box pair, and 1
otherwise. One can think of λi(pa) as the location of pa, and of ρi(pa) as its relative position within a box-
pair. Importantly, when G is drawn from G2, that is, the second coordinates of points pa for all a ∈ [n] are
chosen uniformly and independently from [n], then random variables ρi(pa) are independent and uniform
over {0, 1} for all a ∈ [n].

We group together points pa that have equal values of λi(pa), and sort points within groups in increasing
order of their first coordinate a. Since there are 2i−1 box-pairs, the number of groups is at most 2i−1.
Observe that random variables ρi(pa) within each group are uniform and independent because random
variables λi(pa) and ρi(pa) are independent for all a ∈ [n]. Now, if we list ρi(pa) in the sorted order for
all points in a particular group, we get a sequence of 0s and 1s. Two consecutive entries correspond to a
jump iff they are 01. The last position in a group cannot correspond to the beginning of a jump. The number
of positions that can correspond to the beginning of a jump in all groups is n minus the number of groups,
which gives at least n−2i−1. For each such position, the probability that it starts a jump (i.e., the probability
of 01) is 1/4. Thus, the expected number of jumps generated by the partition BP(i) is at least (n− 2i−1)/4.

Summing over all i ∈ [`], we get the expected number of jumps in all partitions: (n`−
∑`

i=1 2i−1)/4 >
n(`− 1)/4 = Ω(n log n).

Propositions 4.3 and 4.4 imply that, for a poset G drawn from G2, the expected number of edges in a
Steiner TC-spanner of G is Ω(n log n), concluding the proof of Lemma 4.2.

4.2 The Case of Constant d

This section proves Lemma 4.1, a generalization of Lemma 4.2 and the main building block in the proof of
Theorem 1.3.

Proof of Lemma 4.1. Generalizing the proof for d = 2 to arbitrary constant d, we consider `d−1 partitions
of [n]d into boxes, where ` = log n. As before, we assume ` is an integer. In this proof, let `′ = b`/(d− 1)c
and d′ = d(d− 1)/ke.

Definition 4.3 (Box partition). Given vectors ~ı = (i1, . . . , id−1) ∈ [`′]d−1 and ~ = (j1, . . . , jd−1) ∈
[2i1 ]× · · · × [2id−1 ], the box B(~ı,~) is [n]× Ii1j1 × . . .× I

id−1

jd−1
, and the box partition BP(~ı) is a partition of

[n]d that contains boxes B(~ı,~) for all eligible ~.

Next we generalize the definition of the set of jumps J . We denote (d − 1)-dimensional vectors
(0, . . . , 0) and (1, . . . , 1) by ~0 and ~1, respectively. We say that a vector ~ is odd if all of its coordinates
are odd. Now we form box-pairs from boxes B(~ı,~) and B(~ı,~ + ~1) for add vectors ~. Analogously to the
2-dimensional case, we call B(~ı,~) the bottom box and B(~ı,~+~1) the top box in a box-pair.

Definition 4.4 (Jumps). Given a poset G, embedded into Hn,d, and an index vector ~ı ∈ [`′]d−1, a jump
generated by the box partition BP(~ı) is a pair (pa, pb) of elements of G, such that for some odd vector ~, the
following holds: pa ∈ B(~ı,~), pb ∈ B(~ı,~ + ~1), but pc /∈ B(~ı,~) ∪ B(~ı,~ + ~1) for all c ∈ (a, b). The set of
jumps generated by all partitions BP(~ı) for~ı ∈ [`′]d−1 is denoted by J .

Next we generalize the definitions of location λi(pa) and relative position ρi(pa). Unlike in the 2-
dimensional case, now some boxes (and, consequently, some points) do not belong to box-pairs. For each
odd ~, we group boxes B(~ı,~ + ~α) for all ~α ∈ {0, 1}d−1 into a megabox. We call ~ the index vector of the

13



megabox, and refer to α as the relative position of a box in the megabox. Observe that megaboxes with
respect to BP(~ı) partition [n]d. Given~ı, let λ~ı(pa) be the index vector ~ of the megabox of pa with respect
to BP(~ı), and let ρ~ı(pa) be the relative position vector ~α of the box of pa in the megabox. In other words,
to obtain λ~ı(pa), we take the index ~ of the box B(~ı,~) containing pa, and round its coordinates down to the
nearest odd numbers. Then ρ~ı(pa) = ~− λ~ı(pa), where ~ is the index of the box B(~ı,~) containing pa.

Proposition 4.5. Let G be a poset, embedded into Hn,d, and H = (VH , EH) be a Steiner k-TC-spanner of
G. Then |EH | = Ω(|J |/`d−1−d′).

Proof. To prove the statement, we establish a mapping from J to EH that takes O(`d−1−d′) jumps to one
edge. By Lemma 2.3, we can assume that all Steiner vertices of H are embedded intoHn,d.

First, we describe how to map a jump (pa, pb) to an edge e(a, b) ∈ EH . Each such jump is generated by
a box partition BP(~ı) for some~ı. We follow an arbitrary path of length at most k in H from pa to pb, say,
(pa = u0, . . . , uk = pb), and let e(a, b) be an edge (uc−1, uc) with the maximum (over all c ∈ [k]) Hamming
distance between ρ~ı(uc−1) and ρ~ı(uc). Note that the maximum distance is at least d′ because ρ~ı(u0) = ~0
and ρ~ı(uk) = ~1. That is, for (u, v) = e(a, b), the difference ρ~ı(v) − ρ~ı(u) is a vector in {0, 1}d−1 with at
least d′ ones. In addition, the edge e(a, b) belongs to the megabox of pa and pb.

Now we count the jumps (pa, pb) mapped to a specific edge (u, v). First, we find all such jumps gener-
ated by a single box partition BP(~ı). Observe that, for such a jump, pa and pb belong to the same megabox
as u and v, i.e., λ~ı(u). Moreover, interval [a, b] contains [u1, v1]. Since intervals [a, b] are disjoint for all
jumps in a megabox, this uniquely determines [a, b]. Hence, there is at most one such jump.

It remains to count box partitions BP(~ı) which can generate a jump mapped to a specific edge (u, v).
Recall that ρ~ı(v)− ρ~ı(u) must be a vector in {0, 1}d−1 with at least d′ ones. There are less than 2d−1 such
vectors. Consider one of these vectors, say, ~γ. If for some t ∈ [d− 1], γt = 1 then it is uniquely determined
by the largest power of 2 that divides a number in [ut, vt − 1]. When γt = 0, there are at most `′ possible
values of it because ~ı ∈ [`′]d−1. Since d is a constant, there are at most 2d−1(`′)d−1−d′ = O(`d−1−d′)
possible vectors~ı, such that BP(~ı) could have generated a jump (pa, pb).

Therefore, O(`d−1−d′) jumps map to the same edge of EH and, consequently, |EH | = Ω(|J |/`d−1−d′).

Proposition 4.6. When a poset G is drawn from the distribution Gd, the expected size of J is Ω(`d−1n).

Proof. We first analyze the expected number of jumps generated by the partition BP(i) for a specific i.
Under the distribution Gd, the values ρ~ı(pa) are independent and uniform over {0, 1}d−1 for all a ∈ [n]. Let
P be the set of elements pa in all the box-pairs, i.e., elements with ρ~ı(pa) equal to ~0 and ~1. The expected
size of P is n/2d−2. We group together elements pa of P that have equal values of λ~ı(pa), and sort elements
within groups in increasing order of their first coordinate a.

Observe that random variables ρ~ı(pa) within each group are uniform and independent because random
variables λ~ı(pa) and ρ~ı(pa) are independent for all a ∈ [n]. Now, if we list ρ~ı(pa) in the sorted order for
all elements in a particular group, we get a sequence of ~0s and ~1s. Two consecutive entries correspond to
a jump iff they are ~0~1. The last position in a group cannot correspond to the beginning of a jump. The
expected number of positions that can correspond to the beginning of a jump in all groups is n/2d−2 minus
the expected number of groups. Let m(~ı) denote the number of megaboxes with respect to a box partition
BP(~ı). The number of groups is at most m(~ı). On every position in the reordered sequence that is not the
final position in its group, the expected number of jumps started is 1/4, so the expected number of jumps is
at least (n/2d−2 −m(~ı))/4 = n/2d −m(~ı)/4.
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The number of megaboxes in all box partitions is

∑
~ı∈[`′]d−1

m(~ı) =
∑

~ı∈[`′]d−1

d−1∏
t=1

2it−1 =

(
`′∑

i1=1

2i1−1

)d−1

< 2`
′(d−1) ≤ 2` = n.

Therefore, the expected number of jumps generated by all box partitions is at least

(`′)d−1n/2d − 1

4

∑
~ı∈[`′]d−1

m(~ı) ≥ (`′)d−1n/2d − n/4 = Ω(`d−1n).

The last equality holds because d is constant.

By linearity of expectation, Propositions 4.5 and 4.6 imply that the expected number of edges in a Steiner
TC-spanner H of G under the distribution Gd is

Ω
(
( E
G←Gd

|J |)/`d−1−d′) = Ω(`d−1n/`d−1−d′) = Ω(n`d
′
) = Ω(n logd(d−1)/ke n).

This concludes the proof of Lemma 4.1.
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