Sublinear Algorithms Lecture 26

Sofya Raskhodnikova Penn State University

Thanks to Madhav Jha (Penn State) for help with creating these slides.

Testing Linearity

A Boolean function $f: \{0,1\}^n \to \{0,1\}$ is *linear* if $f(x_1, \dots, x_n) = a_1 x_1 + \dots + a_n x_n$ for some $a_1, \dots, a_n \in \{0,1\}$ no free term

- Work in finite field \mathbb{F}_2
 - Other accepted notation for \mathbb{F}_2 : GF_2 and \mathbb{Z}_2
 - Addition and multiplication is mod 2
 - $x = (x_1, ..., x_n), y = (y_1, ..., y_n)$, that is, $x, y \in \{0, 1\}^n$ $x + y = (x_1 + y_1, ..., x_n + y_n)$

example

Testing if a Boolean function is Linear

Input: Boolean function $f: \{0,1\}^n \rightarrow \{0,1\}$

Question:

Is the function linear or ε -far from linear

($\geq \varepsilon 2^n$ values need to be changed to make it linear)?

Today: can answer in $O\left(\frac{1}{\varepsilon}\right)$ time

Motivation

- Linearity test is one of the most celebrated testing algorithms
 - A special case of many important property tests
 - Computations over finite fields are used in
 - Cryptography
 - Coding Theory
 - Originally designed for program checkers and self-correctors
 - Low-degree testing is needed in constructions of Probabilistically Checkable Proofs (PCPs)
 - Used for proving inapproximability
- Main tool in the correctness proof: Fourier analysis of Boolean functions
 - Powerful and widely used technique in understanding the structure of Boolean functions

Equivalent Definitions of Linear Functions

Definition. *f* is *linear* if $f(x_1, ..., x_n) = a_1 x_1 + \dots + a_n x_n$ for some $a_1, ..., a_n \in \mathbb{F}_2$ (n] is a shorthand for $\{1, ..., n\}$ $f(x_1, ..., x_n) = \sum_{i \in S} x_i$ for some $S \subseteq [n]$.

Definition'. f is linear if f(x + y) = f(x) + f(y) for all $x, y \in \{0,1\}^n$.

- Definition \Rightarrow Definition' $f(\mathbf{x} + \mathbf{y}) = \sum_{i \in S} (\mathbf{x} + \mathbf{y})_i = \sum_{i \in S} x_i + \sum_{i \in S} y_i = f(\mathbf{x}) + f(\mathbf{y}).$
- Definition' \Rightarrow Definition

Let
$$\alpha_i = f((0, ..., 0, 1, 0, ..., 0))$$

Repeatedly apply Definition':

$$f((x_1, \dots, x_n)) = f(\sum x_i e_i) = \sum x_i f(e_i) = \sum \alpha_i x_i.$$

BLR Test (f, ε)

- 1. Pick x and y independently and uniformly at random from $\{0,1\}^n$.
- 2. Set z = x + y and query f on x, y, and z. Accept iff f(z) = f(x) + f(y).

Analysis

If f is linear, **BLR** always accepts.

Correctness Theorem [Bellare Coppersmith Hastad Kiwi Sudan 95]

If f is ε -far from linear then $> \varepsilon$ fraction of pairs x and y fail BLR test.

• Then, by Witness Lemma (Lecture 1), $2/\varepsilon$ iterations suffice.

Analysis Technique: Fourier Expansion

Representing Functions as Vectors

Stack the 2^n values of f(x) and treat it as a vector in $\{0,1\}^{2^n}$.

Linear functions

Great Notational Switch

Idea: Change notation, so that we work over reals instead of a finite field.

- Vectors in $\{0,1\}^{2^n} \longrightarrow$ Vectors in \mathbb{R}^{2^n} .
- $0/False \rightarrow 1$ $1/True \rightarrow -1$.
- Addition (mod 2) \rightarrow Multiplication in \mathbb{R} .
- Boolean function: $f : \{-1, 1\}^n \to \{-1, 1\}$.
- Linear function $\chi_S: \{-1, 1\}^n \to \{-1, 1\}$ is given by $\chi_S(\mathbf{x}) = \prod_{i \in S} x_i$.

Benefit 1 of New Notation

• The dot product of f and g as vectors in $\{-1,1\}^{2^n}$:

(# x's such that f(x) = g(x)) – (# x's such that $f(x) \neq g(x)$)

$$= 2^n - 2 \cdot (\# x' \text{ s such that } f(x) \neq g(x))$$

disagreements between f and g

Inner product of functions $f, g : \{-1, 1\} \rightarrow \{-1, 1\}$ $\langle f, g \rangle = \frac{1}{2^n} (\text{dot product of } f \text{ and } g \text{ as vectors})$ $= \underset{x \in \{-1, 1\}^n}{\operatorname{avg}} [f(x)g(x)] = \underset{x \in \{-1, 1\}^n}{\operatorname{E}} [f(x)g(x)].$

 $\langle f, g \rangle = 1 - 2 \cdot (\text{fraction of } disagreements between } f \text{ and } g)$

Benefit 2 of New Notation

Claim. The functions $(\chi_S)_{S \subseteq [n]}$ form an orthonormal basis for \mathbb{R}^{2^n} .

- If $S \neq T$ then χ_S and χ_T are orthogonal: $\langle \chi_S, \chi_T \rangle = 0$.
 - Let *i* be an element on which *S* and *T* differ (w.l.o.g. $i \in S \setminus T$)
 - Pair up all *n*-bit strings: $(x, x^{(i)})$ where $x^{(i)}$ is x with the *i*th bit flipped.
 - Each such pair contributes ab ab = 0 to $\langle \chi_S, \chi_T \rangle$.
 - Since all x's are paired up, $\langle \chi_S, \chi_T \rangle = 0$.
- Recall that there are 2^n linear functions χ_S .
- $\langle \chi_S, \chi_S \rangle = 1$
 - In fact, $\langle f, f \rangle = 1$ for all $f : \{-1, 1\}^n \rightarrow \{-1, 1\}$.
 - (The norm of f, denoted |f|, is $\sqrt{\langle f, f \rangle}$)

Fourier Expansion Theorem

Idea: Work in the basis $(\chi_S)_{S \subseteq [n]}$, so it is easy to see how close a specific function f is to each of the linear functions.

Fourier Expansion Theorem

Every function $f : \{-1, 1\}^n \to \mathbb{R}$ is uniquely expressible as a linear combination (over \mathbb{R}) of the 2^n linear functions: $f = \sum \hat{f}(S)\chi_{S,}$

where $\hat{f}(S) = \langle f, \chi_S \rangle$ is the Fourier Coefficient of f on set S.

Proof: *f* can be written uniquely as a linear combination of basis vectors:

$$f = \sum_{S \subseteq [n]} c_S \cdot \chi_S$$

It remains to prove that $c_S = \hat{f}(S)$ for all S.

$$\hat{f}(S) = \langle f, \chi_S \rangle = \left(\sum_{T \subseteq [n]} c_T \cdot \chi_T, \chi_S \right) = \sum_{T \subseteq [n]} c_T \cdot \langle \chi_T, \chi_S \rangle = c_S$$
Definition of Fourier coefficients
$$\text{Linearity of } \langle \cdot, \cdot \rangle \qquad \langle \chi_T, \chi_S \rangle = \begin{cases} 1 & \text{if } T = S \\ 0 & \text{otherwise} \end{cases}$$

Examples: Fourier Expansion

f	Fourier transform
$f(\boldsymbol{x}) = 1$	1
$f(\mathbf{x}) = x_i$	x_i
$AND(x_1, x_2)$	$\frac{1}{2} + \frac{1}{2}x_1 + \frac{1}{2}x_2 - \frac{1}{2}x_1x_2$
MAJORITY(x_1, x_2, x_3)	$\frac{1}{2}x_1 + \frac{1}{2}x_2 + \frac{1}{2}x_3 - \frac{1}{2}x_1x_2x_3$

Parseval Equality

Parseval Equality Let $f: \{-1, 1\}^n \to \mathbb{R}$. Then $\langle f, f \rangle = \sum_{\alpha \in [1]} \hat{f}(S)^2$ **Proof:** By Fourier Expansion Theorem $\langle f, f \rangle = \left\langle \sum_{S \subseteq [n]} \hat{f}(S) \chi_S, \sum_{T \subseteq [n]} \hat{f}(T) \chi_T \right\rangle$ By linearity of inner product $=\sum \sum \hat{f}(S) \,\hat{f}(T) \langle \chi_S, \chi_T \rangle$ By orthonormality of χ_s 's $=\sum_{i}\hat{f}(S)^{2}$

Parseval Equality

Parseval Equality for Boolean Functions

Let $f: \{-1, 1\}^n \to \{-1, 1\}$. Then

$$\langle f, f \rangle = \sum_{S \subseteq [n]} \hat{f}(S)^2 = 1$$

Proof:

By definition of inner product

$$\langle f, f \rangle = \mathop{\mathrm{E}}_{x \in \{-1,1\}^n} [f(x)^2]$$

= 1

BLR Test in {-1,1} notation

BLR Test (f, ε)

- 1. Pick x and y independently and uniformly at random from $\{-1,1\}^n$.
- 2. Set $z = x \circ y$ and query f on x, y, and z. Accept iff f(x)f(y)f(z) = 1.

Vector product notation: $\mathbf{x} \circ \mathbf{y} = (x_1y_1, x_2y_2, \dots, x_ny_n)$

Sum-Of-Cubes Lemma. $\Pr_{\mathbf{x},\mathbf{y}\in\{-1,1\}^n}[BLR(f)accepts] = \frac{1}{2} + \frac{1}{2}\sum_{S\subseteq[n]}\hat{f}(S)^3$

Proof: Indicator variable $\mathbb{1}_{BLR} = \begin{cases} 1 & \text{if BLR accepts} \\ 0 & \text{otherwise} \end{cases} \Rightarrow \mathbb{1}_{BLR} = \frac{1}{2} + \frac{1}{2}f(\mathbf{x})f(\mathbf{y})f(\mathbf{z}).$ $\Pr_{\mathbf{x},\mathbf{y}\in\{-1,1\}^n}[\text{BLR}(f)\text{accepts}] = \mathop{\mathbb{E}}_{\mathbf{x},\mathbf{y}\in\{-1,1\}^n}[\mathbb{1}_{BLR}] = \frac{1}{2} + \frac{1}{2}\mathop{\mathbb{E}}_{\mathbf{x},\mathbf{y}\in\{-1,1\}^n}[f(\mathbf{x})f(\mathbf{y})f(\mathbf{z})]$ By linearity of expectation

Proof of Sum-Of-Cubes Lemma

So far:
$$\Pr_{\mathbf{x}, \mathbf{y} \in \{-1, 1\}^n} [BLR(f) \text{ accepts}] = \frac{1}{2} + \frac{1}{2} \sum_{\mathbf{x}, \mathbf{y} \in \{-1, 1\}^n} [f(\mathbf{x})f(\mathbf{y})f(\mathbf{z})]$$

Next:

$$E_{\mathbf{x},\mathbf{y}\in\{-1,1\}^n}[f(\mathbf{x})f(\mathbf{y})f(\mathbf{z})]$$
By Fourier Expansion Theorem
$$= \sum_{\mathbf{x},\mathbf{y}\in\{-1,1\}^n} \left[\left(\sum_{S\subseteq[n]} \hat{f}(S)\chi_S(\mathbf{x}) \right) \left(\sum_{T\subseteq[n]} \hat{f}(T)\chi_T(\mathbf{y}) \right) \left(\sum_{U\subseteq[n]} \hat{f}(U)\chi_U(\mathbf{z}) \right) \right]$$
Distributing out the product of sums
$$= \sum_{\mathbf{x},\mathbf{y}\in\{-1,1\}^n} \left[\left(\sum_{S,T,U\subseteq[n]} \hat{f}(S)\hat{f}(T)\hat{f}(U)\chi_S(\mathbf{x})\chi_T(\mathbf{y})\chi_U(\mathbf{z}) \right) \right]$$
By Fourier Expansion Theorem

$$= \sum_{\boldsymbol{S},\boldsymbol{T},\boldsymbol{U}\subseteq[n]} \hat{f}(\boldsymbol{S})\hat{f}(\boldsymbol{T})\hat{f}(\boldsymbol{U}) \underset{\boldsymbol{x},\boldsymbol{y}\in\{-1,1\}^n}{\mathbb{E}} [\chi_{\boldsymbol{S}}(\boldsymbol{x})\chi_{\boldsymbol{T}}(\boldsymbol{y})\chi_{\boldsymbol{U}}(\boldsymbol{z})]$$

Proof of Sum-Of-Cubes Lemma (Continued)

$$\Pr_{\mathbf{x},\mathbf{y}\in\{-1,1\}^{n}}[\operatorname{BLR}(f)\operatorname{accepts}] = \frac{1}{2} + \frac{1}{2} \sum_{S,T,U\subseteq[n]} \widehat{f}(S)\widehat{f}(T)\widehat{f}(U)_{\mathbf{x},\mathbf{y}\in\{-1,1\}^{n}}[\chi_{S}(\mathbf{x})\chi_{T}(\mathbf{y})\chi_{U}(\mathbf{z})]$$

$$Claim. \underset{\mathbf{x},\mathbf{y}\in\{-1,1\}^{n}}{\operatorname{E}}[\chi_{S}(\mathbf{x})\chi_{T}(\mathbf{y})\chi_{U}(\mathbf{z})] \text{ is 1 if } S = T = U \text{ and 0 otherwise.}$$
• Let $S\Delta T$ denote symmetric difference of sets S and T

$$\underset{\mathbf{x},\mathbf{y}\in\{-1,1\}^{n}}{\operatorname{E}}[\chi_{S}(\mathbf{x})\chi_{T}(\mathbf{y})\chi_{U}(\mathbf{z})] = \underset{\mathbf{x},\mathbf{y}\in\{-1,1\}^{n}}{\operatorname{E}}[\prod_{i\in S} x_{i}\prod_{i\in T} y_{i}\prod_{i\in S} x_{i}\prod_{i\in T} y_{i}\prod_{i\in U} z_{i}]$$

$$= \underset{\mathbf{x},\mathbf{y}\in\{-1,1\}^{n}}{\operatorname{E}}[\prod_{i\in S\Delta U} x_{i}\prod_{i\in T} y_{i}\prod_{i\in U} x_{i}y_{i}]$$

$$= \underset{\mathbf{x},\mathbf{y}\in\{-1,1\}^{n}}{\operatorname{E}}[\prod_{i\in S\Delta U} x_{i}\prod_{i\in T\Delta U} y_{i}]$$

$$= \underset{\mathbf{x}\in\{-1,1\}^{n}}{\operatorname{E}}[\prod_{i\in S\Delta U} x_{i}] \cdot \underset{\mathbf{y}\in\{-1,1\}^{n}}{\operatorname{E}}[y_{i}]$$

$$= \underset{i\in S\Delta U}{\operatorname{E}}\underset{\mathbf{x}\in\{-1,1\}}{\operatorname{E}}[x_{i}] \cdot \prod_{i\in T\Delta U} \underset{\mathbf{y}\in\{-1,1\}}{\operatorname{E}}[y_{i}]$$

$$= \begin{cases} 1 \text{ when } S\Delta U = \emptyset \text{ and } T\Delta U = \emptyset \\ 0 \text{ otherwise} \end{cases}$$

Proof of Sum-Of-Cubes Lemma (Done)

$$\Pr_{\mathbf{x},\mathbf{y}\in\{-1,1\}^n}[\operatorname{BLR}(f)\operatorname{accepts}] = \frac{1}{2} + \frac{1}{2}\sum_{\boldsymbol{S},\boldsymbol{T},\boldsymbol{U}\subseteq[n]}\widehat{f}(\boldsymbol{S})\widehat{f}(\boldsymbol{T})\widehat{f}(\boldsymbol{U}) \underset{\mathbf{x},\mathbf{y}\in\{-1,1\}^n}{\operatorname{E}}[\chi_{\boldsymbol{S}}(\boldsymbol{x})\chi_{\boldsymbol{T}}(\boldsymbol{y})\chi_{\boldsymbol{U}}(\boldsymbol{z})]$$

$$= \frac{1}{2} + \frac{1}{2} \sum_{S \subseteq [n]} \hat{f}(S)^3$$

Sum-Of-Cubes Lemma.
$$\Pr_{\mathbf{x},\mathbf{y}\in\{-1,1\}^n}[BLR(f)accepts] = \frac{1}{2} + \frac{1}{2}\sum_{S\subseteq[n]}\hat{f}(S)^3$$

Proof of Correctness Theorem

Correctness Theorem (restated)

If f is ε -far from linear then $\Pr[BLR(f) \text{ accepts}] \le 1 - \varepsilon$.

Proof: Suppose to the contrary that

$$1 - \varepsilon < \Pr_{\mathbf{x}, \mathbf{y} \in \{-1, 1\}^n} [\text{BLR}(f) \text{accepts}]$$

$$= \frac{1}{2} + \frac{1}{2} \sum_{S \subseteq [n]} \hat{f}(S)^3 \qquad \text{By Sum-Of-Cubes Lemma}$$

$$\leq \frac{1}{2} + \frac{1}{2} \cdot \left(\max_{S \subseteq [n]} \hat{f}(S)\right) \cdot \sum_{S \subseteq [n]} \hat{f}(S)^2$$

$$= \frac{1}{2} + \frac{1}{2} \cdot \left(\max_{S \subseteq [n]} \hat{f}(S)\right) \qquad \text{Parseval Equality}$$

- Then $\max_{S\subseteq[n]} \hat{f}(S) > 1 2\varepsilon$. That is, $\hat{f}(T) > 1 2\varepsilon$ for some $T \subseteq [n]$.
- But $\hat{f}(T) = \langle f, \chi_T \rangle = 1 2 \cdot (\text{fraction of } \text{disagreements} \text{ between } f \text{ and } \chi_T)$
- f disagrees with a linear function χ_T on $< \varepsilon$ fraction of values. \aleph

BLR tests whether a function $f: \{0,1\}^n \to \{0,1\}$ is linear or ε -far from linear $(\geq \varepsilon 2^n$ values need to be changed to make it linear) in $O\left(\frac{1}{\varepsilon}\right)$ time.