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Testing Linearity 



Linear Functions Over Finite Field 𝔽2  
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A Boolean function 𝑓: 0,1 𝑛 → {0,1} is linear if  

𝑓 𝑥1, … , 𝑥𝑛 = 𝑎1𝑥1 + ⋯+ 𝑎𝑛𝑥𝑛 for some 𝑎1, … , 𝑎𝑛 ∈ {0,1} 

 

 

• Work in finite field 𝔽2 

– Other accepted notation for 𝔽2: 𝐺𝐹2 and  ℤ2 

– Addition and multiplication is mod 2 

– 𝒙= 𝑥1, … , 𝑥𝑛 , 𝒚= 𝑦1, … , 𝑦𝑛 , that is, 𝒙, 𝒚 ∈ 0,1 𝑛 

     𝒙 + 𝒚= 𝑥1 + 𝑦1, … , 𝑥𝑛 + 𝑦𝑛  

 

no free term 

Based on Ryan O’Donell’s lecture notes: http://www.cs.cmu.edu/~odonnell/boolean-analysis/ 

001001 

011001  

010000        

+ 

example 



Testing if a Boolean function is Linear 
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Input: Boolean function 𝑓: 0,1 𝑛 → {0,1} 

Question:  

Is the function linear or 𝜀-far from linear  

(≥ 𝜀2𝑛 values need to be changed to make it linear)? 

Today: can answer in 𝑂
1

𝜀
 time 

 

 



Motivation 

• Linearity test is one of the most celebrated testing algorithms 
– A special case of many important property tests 

– Computations over finite fields are used in  

• Cryptography 

• Coding Theory 

– Originally designed for program checkers and self-correctors 

– Low-degree testing is needed in constructions of Probabilistically 
Checkable Proofs (PCPs) 

• Used for proving inapproximability 

• Main tool in the correctness proof: Fourier analysis of Boolean 
functions 
– Powerful and widely used technique in understanding the structure of 

Boolean functions 
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Equivalent Definitions of Linear Functions 
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Definition. 𝑓 is linear if 𝑓 𝑥1, … , 𝑥𝑛 = 𝑎1𝑥1 + ⋯+ 𝑎𝑛𝑥𝑛 for some 𝑎1, … , 𝑎𝑛 ∈ 𝔽2 

 ⇕  

𝑓 𝑥1, … , 𝑥𝑛 =  𝑥𝑖𝑖∈S  for some 𝑆 ⊆ 𝑛 . 

 

Definition′. 𝑓 is linear if 𝑓 𝒙 + 𝒚 = 𝑓 𝒙 + 𝑓(𝒚) for all 𝒙, 𝒚 ∈ 0,1 𝑛. 

 

• Definition ⇒ Definition′ 
𝑓 𝒙 + 𝒚 =  𝒙 + 𝒚 𝑖 =  𝑥𝑖 +𝑖∈𝑆  𝑦𝑖 = 𝑓 𝒙 + 𝑓 𝒚 .𝑖∈𝑆𝑖∈𝑆  

• Definition′ ⇒ Definition  

Let 𝛼𝑖 = 𝑓((0, … , 0,1,0, … , 0

𝑒𝑖

)) 

 Repeatedly apply Definition′:  
𝑓 𝑥1, … , 𝑥𝑛 = 𝑓  𝑥𝑖𝑒𝑖 =  𝑥𝑖𝑓 𝑒𝑖 =  𝛼𝑖𝑥𝑖 . 

 

Based on Ryan O’Donell’s lecture notes: http://www.cs.cmu.edu/~odonnell/boolean-analysis/ 

[𝑛] is a shorthand  for {1, … 𝑛} 



Linearity Test [Blum Luby Rubinfeld 90] 
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1. Pick 𝒙 and 𝒚 independently and uniformly at random from 0,1 𝑛. 

2. Set 𝒛 = 𝒙 + 𝒚 and query 𝑓on 𝒙, 𝒚, and 𝒛. Accept iff 𝑓 𝒛 = 𝑓 𝒙 + 𝑓 𝒚 .
  

Analysis 

If 𝑓is linear, BLR always accepts.  

 

 

If 𝑓 is 𝜀-far from linear then > 𝜀 fraction of pairs 𝒙 and 𝒚 fail BLR test. 

 

• Then, by Witness Lemma (Lecture 1), 2/𝜀 iterations suffice. 

 

BLR Test (f, ε) 

Correctness Theorem [Bellare Coppersmith Hastad Kiwi Sudan 95] 



Analysis Technique:  
Fourier Expansion 



Representing Functions as Vectors 

Stack the 2𝑛 values of 𝑓(𝒙) and treat it as a vector in {0,1}2
𝑛

.  

  𝑓 =

0
1
1
0
1
⋅
⋅
⋅
1
0
0

    

𝑓(0000)
𝑓(0001)
𝑓(0010)
𝑓(0011)
𝑓(0100)

⋅
⋅
⋅

𝑓(1101)
𝑓(1110)
𝑓(1111)
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Linear functions 

There are 2𝑛 linear functions: one for each subset 𝑆 ⊆ [𝑛].  

 𝜒∅ =

0
0
0
0
0
⋅
⋅
⋅
0
0
0

 ,   𝜒 1 =

0
1
0
1
0
⋅
⋅
⋅
1
0
1

 ,  ⋯ ⋯,  𝜒 𝑛 =

0
1
1
0
1
⋅
⋅
⋅
1
0
0
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Parity on the positions indexed by set 𝑆 is 𝜒𝑆 𝑥1, … , 𝑥𝑛 =  𝑥𝑖

𝑖∈S

 



Great Notational Switch 

Idea: Change notation, so that we work over reals instead of a finite field. 

• Vectors in 0,1 2𝑛
      ⟶       Vectors in ℝ2𝑛

. 

• 0/False ⟶ 1           1/True ⟶ -1. 

• Addition (mod 2)        ⟶       Multiplication in ℝ. 

• Boolean function: 𝑓 ∶ −1, 1 𝑛 → {−1,1}. 

• Linear function  𝜒𝑆∶ −1, 1 𝑛 → {−1,1} is given by 𝜒𝑆 𝒙 =  𝑥𝑖𝑖∈𝑆 . 
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Benefit 1 of New Notation 

• The dot product of 𝑓 and 𝑔 as vectors in −1,1 2𝑛
: 

(# 𝒙’s such that 𝑓 𝒙 = 𝑔(𝒙)) − (# 𝒙’s such that 𝑓 𝒙 ≠ 𝑔(𝒙)) 

= 2𝑛 − 2 ⋅  (# 𝒙’s such that 𝑓 𝒙 ≠ 𝑔(𝒙)) 

 

 

 

 

𝑓, 𝑔 =
1

2𝑛
dot product of 𝑓 and 𝑔 as vectors  

   = avg
𝒙∈ −1,1 𝑛

𝑓 𝒙 𝑔 𝒙 = E
𝒙∈ −1,1 𝑛

[ 𝑓 𝒙 𝑔 𝒙 ]. 

 
𝑓, 𝑔 = 1 − 2 ⋅ (fraction of disagreements between 𝑓 and 𝑔) 
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Inner product of functions 𝑓, 𝑔 ∶ −1, 1 → {−1, 1} 

disagreements between 𝑓 and 𝑔 



Benefit 2 of New Notation 

 

• If 𝑆 ≠ 𝑇 then 𝜒𝑆 and 𝜒𝑇 are orthogonal:  𝜒𝑆, 𝜒𝑇 = 0.  

– Let 𝑖 be an element on which 𝑆 and 𝑇 differ  

      (w.l.o.g. 𝑖 ∈ 𝑆 ∖ 𝑇) 

– Pair up all 𝑛-bit strings: (𝒙, 𝒙 𝑖 )  

      where 𝒙 𝑖  is 𝒙 with the 𝑖th bit flipped. 

– Each such pair contributes 𝑎𝑏 − 𝑎𝑏 = 0 to 𝜒𝑆, 𝜒𝑇 .  

– Since all 𝒙’s are paired up, 𝜒𝑆, 𝜒𝑇 = 0. 

• Recall that there are 2𝑛 linear functions 𝜒𝑆 . 

• 𝜒𝑆, 𝜒𝑆 = 1 
– In fact, 𝑓, 𝑓 = 1 for  all 𝑓 ∶ −1, 1 𝑛 → −1, 1 . 

– (The  norm of 𝑓, denoted 𝑓 ,  is  𝑓, 𝑓  ) 
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𝒙 

𝒙 𝑖  

𝜒𝑆    𝜒𝑇 

+1
−1
+1
+𝑎
+1
⋅
⋅
⋅

−𝑎
+1
−1
−1

−1
+1
+1
𝑏
+1
⋅
⋅
⋅
𝑏
−1
+1
+1

 

The functions 𝜒𝑆 𝑆⊆ 𝑛  form an orthonormal basis for ℝ2𝑛
. 

 

Claim. 



Idea: Work in the basis 𝜒𝑆 𝑆⊆ 𝑛 , so it is easy to see how close a specific 

function 𝑓 is to each of the linear functions. 

 

Every function 𝑓 ∶ −1, 1 𝑛 →  ℝ is uniquely expressible as a linear 
combination (over ℝ) of the 2𝑛 linear functions: 

where 𝑓 𝑆 =  𝑓, 𝜒𝑆  is the Fourier Coefficient of 𝑓  on set 𝑆. 

Proof: 𝑓 can be written uniquely as  a linear combination of basis vectors: 

𝑓 =  𝑐𝑆 ⋅ 𝜒𝑆

𝑆⊆ 𝑛

 

It remains to prove that 𝑐𝑆=𝑓 𝑆  for all 𝑆. 

𝑓 𝑆 =  𝑓, 𝜒𝑆 =  𝑐𝑇 ⋅ 𝜒𝑇

𝑇⊆[𝑛]

, 𝜒𝑆 =  𝑐𝑇 ⋅ 𝜒𝑇 , 𝜒𝑆

𝑇⊆[𝑛]

= 𝑐𝑆 

 

Fourier Expansion Theorem 
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Fourier Expansion Theorem 

𝑓 =  𝑓 𝑆 𝜒𝑆,

𝑆⊆ 𝑛

 

 

Linearity of ⋅,⋅  𝜒𝑇 , 𝜒𝑆 =   1   if  𝑇 = 𝑆
 0   otherwise

 Definition of Fourier 

coefficients 



Examples: Fourier Expansion 

𝒇 Fourier transform 

𝑓 𝒙 = 1 1 

𝑓 𝒙 = 𝑥𝑖 𝑥𝑖 

AND(𝑥1, 𝑥2) 1

2
+

1

2
𝑥1 +

1

2
𝑥2 −

1

2
𝑥1𝑥2 

MAJORITY(𝑥1, 𝑥2, 𝑥3) 1

2
𝑥1 +

1

2
𝑥2 +

1

2
𝑥3 −

1

2
𝑥1𝑥2𝑥3 
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Parseval Equality 

 

 

 

 

Proof:  

𝑓, 𝑓 =   𝑓 𝑆 𝜒𝑆

𝑆⊆ 𝑛

,  𝑓 𝑇 𝜒𝑇

𝑇⊆ 𝑛

 

            

    =   𝑓 𝑆

𝑇𝑆

𝑓 𝑇 𝜒𝑆, 𝜒𝑇  

 

=  𝑓 𝑆 2                         

𝑆
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By linearity of inner product 

By orthonormality of 𝜒𝑆’s 

Parseval Equality 

Let 𝑓: −1, 1 𝑛 → ℝ. Then 

𝑓, 𝑓 =  𝑓 𝑆 2        

𝑆⊆ 𝑛

 

By Fourier Expansion Theorem 



Parseval Equality 

 

 

 

 

Proof:  

 
𝑓, 𝑓 = E

𝒙∈ −1,1 𝑛
[𝑓 𝒙 2] 

 
= 1                 

 

 

 

 

 

17 

Parseval Equality for Boolean Functions 

Let 𝑓: −1, 1 𝑛 → −1, 1 . Then 

𝑓, 𝑓 =  𝑓 𝑆 2

𝑆⊆ 𝑛

= 1 

By definition of inner product 

Since 𝑓 is Boolean 



 

    

 

 
Vector product notation: 𝒙 ∘ 𝒚 = (𝑥1𝑦1, 𝑥2𝑦2, … , 𝑥𝑛𝑦𝑛) 

 

 

 

Proof: Indicator variable 

𝟙𝐵𝐿𝑅 =  
 1   if BLR accepts 
 0   otherwise

 ⇒  𝟙𝐵𝐿𝑅 =
1

2
+

1

2
𝑓 𝒙 𝑓 𝒚 𝑓 𝒛 .  

 

Pr
𝒙,𝒚∈ −1,1 𝑛

BLR 𝑓 accepts = E
𝐱,𝐲∈ −1,1 𝑛

𝟙𝐵𝐿𝑅 =
1

2
+

1

2
 E
𝐱,𝐲∈ −1,1 𝑛

𝑓 𝒙 𝑓 𝒚 𝑓 𝒛  

BLR Test in {-1,1} notation 
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BLR Test (f, ε) 
 1. Pick 𝒙 and 𝒚 independently and uniformly at random from −1,1 𝑛. 

2. Set 𝒛 = 𝒙 ∘ 𝒚 and query 𝑓 on 𝒙, 𝒚, and 𝒛.  Accept iff 𝑓 𝒙 𝑓 𝒚 𝑓 𝒛 = 1. 

Pr
𝐱,𝐲∈ −1,1 𝑛

BLR 𝑓 accepts =
1

2
+

1

2
 𝑓 𝑆 3

𝑆⊆[𝑛]

 

 

Sum-Of-Cubes Lemma. 

By linearity of expectation 



So far: Pr
𝐱,𝐲∈ −1,1 𝑛

BLR 𝑓 accepts =
1

2
+

1

2
E

𝐱,𝐲∈ −1,1 𝑛
𝑓 𝒙 𝑓 𝒚 𝑓 𝒛  

Next: 

Proof of Sum-Of-Cubes Lemma 
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=  𝑓 𝑆 𝑓 𝑇 𝑓 𝑈 E
𝐱,𝐲∈ −1,1 𝑛

[𝜒𝑆(𝒙)𝜒𝑇(𝒚)𝜒𝑈(𝒛)

𝑆,𝑇,𝑈⊆[𝑛]

] 

= E
𝐱,𝐲∈ −1,1 𝑛

 𝑓 𝑆 𝑓 𝑇 𝑓 𝑈 𝜒𝑆(𝒙)𝜒𝑇(𝒚)𝜒𝑈(𝒛)

𝑆,𝑇,𝑈⊆[𝑛]

 

E
𝐱,𝐲∈ −1,1 𝑛

𝑓 𝒙 𝑓 𝒚 𝑓 𝒛

= E
𝐱,𝐲∈ −1,1 𝑛

 𝑓 𝑆 𝜒𝑆(𝒙) 

𝑆⊆[𝑛]

 𝑓 𝑇 𝜒𝑇(𝒚) 

𝑇⊆[𝑛]

 𝑓 𝑈 𝜒𝑈(𝒛) 

𝑈⊆[𝑛]

 

By Fourier Expansion Theorem 

Distributing out the product of sums 

By linearity of expectation 



Pr
𝐱,𝐲∈ −1,1 𝑛

BLR 𝑓 accepts  

 

• Let 𝑆Δ𝑇denote symmetric difference of sets 𝑆 and 𝑇 

Proof of Sum-Of-Cubes Lemma (Continued) 
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a= E
𝐱,𝐲∈ −1,1 𝑛

 𝑥𝑖𝑖∈𝑆  𝑦𝑖  𝑥𝑖𝑦𝑖𝑖∈𝑈𝑖∈𝑇  

a= E
𝐱,𝐲∈ −1,1 𝑛

 𝑥𝑖𝑖∈𝑆Δ𝑈  𝑦𝑖𝑖∈𝑇Δ𝑈  

a= E
𝐱∈ −1,1 𝑛

 𝑥𝑖𝑖∈𝑆Δ𝑈 ⋅ E
𝐲∈ −1,1 𝑛

 𝑦𝑖𝑖∈𝑆Δ𝑈  

a=  E
𝐱∈ −1,1 𝑛

[𝑥𝑖]𝑖∈𝑆Δ𝑈 ⋅  E
𝐲∈ −1,1 𝑛

[𝑦𝑖]𝑖∈𝑇Δ𝑈  

a E
𝐱,𝐲∈ −1,1 𝑛

[𝜒𝑆(𝒙)𝜒𝑇(𝒚)𝜒𝑈(𝒛)] 

=  
 1    when 𝑆Δ𝑈 = ∅  and 𝑇Δ𝑈 = ∅ ⇔ 𝑆 = 𝑇 = 𝑈
 0     otherwise

 

a= E
𝐱,𝐲∈ −1,1 𝑛

 𝑥𝑖𝑖∈𝑆  𝑦𝑖  𝑧𝑖𝑖∈𝑈𝑖∈𝑇  

 =
1

2
+

1

2
 𝑓 𝑆 𝑓 𝑇 𝑓 𝑈 E

𝐱,𝐲∈ −1,1 𝑛
[𝜒𝑆(𝒙)𝜒𝑇(𝒚)𝜒𝑈(𝒛)

𝑆,𝑇,𝑈⊆[𝑛]

] 

Since 𝑥𝑖
2 = 𝑦𝑖

2 = 1 

Since 𝐱 and 𝐲  are independent 

Since 𝐳 = 𝐱 ∘ 𝐲 

Since 𝐱 and 𝐲′s coordinates 
 are independent 

a=  E
𝑥𝑖∈{−1,1}

[𝑥𝑖]𝑖∈𝑆Δ𝑈 ⋅  E
𝑦𝑖∈{−1,1}

[𝑦𝑖]𝑖∈𝑇Δ𝑈  

E
𝐱,𝐲∈ −1,1 𝑛

[𝜒𝑆(𝒙)𝜒𝑇(𝒚)𝜒𝑈(𝒛)] is 1 if 𝑆 = 𝑇 = 𝑈 and 0 otherwise. 

 

Claim. 



Proof of Sum-Of-Cubes Lemma (Done) 
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=
1

2
+

1

2
 𝑓 𝑆 3

𝑆⊆[𝑛]

 

Pr
𝐱,𝐲∈ −1,1 𝑛

BLR 𝑓 accepts =
1

2
+

1

2
 𝑓 𝑆 3

𝑆⊆[𝑛]

 

 

Sum-Of-Cubes Lemma. 

Pr
𝐱,𝐲∈ −1,1 𝑛

BLR 𝑓 accepts  

 

 =
1

2
+

1

2
 𝑓 𝑆 𝑓 𝑇 𝑓 𝑈 E

𝐱,𝐲∈ −1,1 𝑛
[𝜒𝑆(𝒙)𝜒𝑇(𝒚)𝜒𝑈(𝒛)

𝑆,𝑇,𝑈⊆[𝑛]

] 



Proof of Correctness Theorem 

Proof: Suppose to the contrary that 

 

 

 

 

 

 

 

• Then max
𝑆⊆ 𝑛

𝑓 𝑆 > 1 − 2𝜀. That is, 𝑓 𝑇 > 1 − 2𝜀 for some 𝑇 ⊆ 𝑛 . 

• But 𝑓 𝑇 = 𝑓, 𝜒𝑇 = 1 − 2 ⋅ (fraction of disagreements between 𝑓 and 𝜒𝑇) 

• 𝑓 disagrees with a linear function 𝜒𝑇 on < 𝜀 fraction of values.       

 
 
 

 

 

 

 

 

 

 

 

 

22 

By Sum-Of-Cubes Lemma 

Since 𝑓 𝑆 2 ≥ 0 

Parseval Equality 

Correctness Theorem (restated) 

If 𝑓 is ε-far from linear then Pr BLR 𝑓  accepts ≤ 1 − 𝜀.  

=
1

2
+

1

2
 𝑓 𝑆 3

𝑆⊆[𝑛]

 

 
≤

1

2
+

1

2
⋅ max

𝑆⊆ 𝑛
𝑓 𝑆 ⋅  𝑓 𝑆 2

𝑆⊆ 𝑛

 

=
1

2
+

1

2
⋅ max

𝑆⊆ 𝑛
𝑓 𝑆  

1 − 𝜀 < Pr
𝐱,𝐲∈ −1,1 𝑛

BLR 𝑓 accepts  

 

⨳ 



Summary 

 

 

 

 

BLR tests whether a function 𝑓: 0,1 𝑛 → {0,1} is 

 linear or 𝜀-far from linear  

(≥ 𝜀2𝑛 values need to be changed to make it linear) 

in 𝑂
1

𝜀
 time. 
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