
1

Sublinear Algorithms
Lecture 6

Sofya Raskhodnikova
Penn State University

TexPoint fonts used in EMF.

Read the TexPoint manual before you delete this box.: A

Thanks to Madhav Jha (Penn State) for help with creating these slides.

Communication Complexity

A Method for Proving Lower Bounds

[Blais Brody Matulef 11]

Use known lower bounds

for other models of computation

Partially based on slides by Eric Blais

(Randomized) Communication Complexity

3

Compute 𝐶 𝑥, 𝑦

0100

11

001

⋯

0011

Bob Alice

𝐼𝑛𝑝𝑢𝑡: 𝑥 Input: 𝑦

1101000101110101110101010110…

𝑆ℎ𝑎𝑟𝑒𝑑 𝑟𝑎𝑛𝑑𝑜𝑚 𝑠𝑡𝑟𝑖𝑛𝑔

Goal: minimize the number of bits exchanged.

• Communication complexity of a protocol is the maximum number of bits
exchanged by the protocol.

• Communication complexity of a function 𝐶, denoted 𝑅(𝐶), is the
communication complexity of the best protocol for computing C.

Example: Set Disjointness 𝐷𝐼𝑆𝐽𝒌

4

Theorem [Hastad Wigderson 07]

𝑅 DISJ𝑘 ≥ Ω 𝑘 for all 𝑘 ≤
𝑛

2
.

Compute 𝐷𝐼𝑆𝐽𝑘 𝑆, 𝑇

 =
𝒂𝒄𝒄𝒆𝒑𝒕 if 𝑆 ∩ 𝑇 = ∅
𝒓𝒆𝒋𝒆𝒄𝒕 otherwise

Bob Alice

𝐼𝑛𝑝𝑢𝑡: 𝑆 ⊆ [𝑛], 𝑆 = 𝑘. Input: 𝑇 ⊆ [𝑛], 𝑇 = 𝑘

1101000101110101110101010110…

A lower bound using CC method

Testing if a Boolean function is a k-parity

Linear Functions Over Finite Field 𝔽2

6

A Boolean function 𝑓: 0,1 𝑛 → {0,1} is linear (also called parity) if

𝑓 𝑥1, … , 𝑥𝑛 = 𝑎1𝑥1 + ⋯+ 𝑎𝑛𝑥𝑛 for some 𝑎1, … , 𝑎𝑛 ∈ {0,1}

• Work in finite field 𝔽2

– Other accepted notation for 𝔽2: 𝐺𝐹2 and ℤ2

– Addition and multiplication is mod 2

– 𝒙= 𝑥1, … , 𝑥𝑛 , 𝒚= 𝑦1, … , 𝑦𝑛 , that is, 𝒙, 𝒚 ∈ 0,1 𝑛

 𝒙 + 𝒚= 𝑥1 + 𝑦1, … , 𝑥𝑛 + 𝑦𝑛

no free term

001001

011001

010000

+

example

Linear Functions Over Finite Field 𝔽2

7

A Boolean function 𝑓: 0,1 𝑛 → {0,1} is linear (also called parity) if

𝑓 𝑥1, … , 𝑥𝑛 = 𝑎1𝑥1 + ⋯+ 𝑎𝑛𝑥𝑛 for some 𝑎1, … , 𝑎𝑛 ∈ {0,1}

⇕

𝑓 𝑥1, … , 𝑥𝑛 = 𝑥𝑖𝑖∈S for some 𝑆 ⊆ 𝑛 .

Notation: 𝜒𝑆 𝑥 = 𝑥𝑖𝑖∈𝑆 .

[𝑛] is a shorthand for {1, … 𝑛}

Testing if a Boolean function is Linear

8

Input: Boolean function 𝑓: 0,1 𝑛 → {0,1}

Question:

Is the function linear or 𝜀-far from linear

(≥ 𝜀2𝑛 values need to be changed to make it linear)?

Later in the course:

Famous BLR (Blum Lubi Rubinfeld 90) test runs in 𝑂
1

𝜀
 time

k-Parity Functions

9

𝑘-Parity Functions

A function 𝑓 ∶ 0,1 𝑛 → {0,1} is a 𝑘-parity if

 𝑓 𝑥 = 𝜒𝑆 𝑥 = 𝑥𝑖𝑖∈𝑆

for some set 𝑆 ⊆ 𝑛 of size 𝑆 = 𝑘.

Testing if a Boolean Function is a k-Parity

10

Input: Boolean function 𝑓: 0,1 𝑛 → {0,1} and an integer 𝑘

Question: Is the function a 𝑘-parity or 𝜀-far from a 𝑘-parity

(≥ 𝜀2𝑛 values need to be changed to make it a 𝑘-parity)?

Time:

 O 𝑘 log 𝑘 [Chakraborty Garcia−Soriano Matsliah]

 W min (𝑘, 𝑛 − 𝑘) [Blais Brody Matulef 11]

• Today: Ω(𝑘) for 𝑘 ≤ 𝑛/2

• Today’s bound implies W min (𝑘, 𝑛 − 𝑘)

Important Fact About Linear Functions

• Consider functions 𝜒𝑆 and 𝜒𝑇 where 𝑆 ≠ 𝑇.

– Let 𝑖 be an element on which 𝑆 and 𝑇 differ

 (w.l.o.g. 𝑖 ∈ 𝑆 ∖ 𝑇)

– Pair up all 𝑛-bit strings: (𝒙, 𝒙 𝑖)

 where 𝒙 𝑖 is 𝒙 with the 𝑖th bit flipped.

– For each such pair, 𝜒𝑆(𝒙) ≠ 𝜒𝑆(𝒙
𝑖)

 but 𝜒𝑇(𝒙) = 𝜒𝑇(𝒙
𝑖)

 So, 𝜒𝑆 and 𝜒𝑇 differ on exactly one of 𝒙, 𝒙 𝑖 .

– Since all 𝒙’s are paired up,

 𝜒𝑆 and 𝜒𝑇 differ on half of the values.

11

𝒙

𝒙 𝑖

𝜒𝑆(x) 𝜒𝑇(x)

0
1
1
𝑎
0
⋅
⋅
⋅

1 − 𝑎
0
1
0

0
1
0
𝑏
1
⋅
⋅
⋅
𝑏
0
0

 1

Two different linear functions disagree on half of the values.

Fact.

 A 𝑘′-parity function, where 𝑘′ ≠ 𝑘, is ½-far from any k-parity.

Corollary.

Reduction from 𝐷𝐼𝑆𝐽𝒌/𝟐 to Testing k-Parity

• Let 𝑇 be the best tester for the 𝑘-parity property for 𝜀 = 1/2
– query complexity of T is 𝑞 testing 𝑘−parity .

• We will construct a communication protocol for 𝐷𝐼𝑆𝐽𝒌/𝟐 that runs

𝑇 and has communication complexity 2 ⋅ 𝑞(testing 𝑘−parity).

• Then 2 ⋅ 𝑞(testing 𝑘−parity) ≥ 𝑅 DISJ𝑘/2 ≥ Ω 𝑘/2 for 𝑘 ≤ 𝑛/2

⇓

𝑞(testing 𝑘-parity) ≥ Ω 𝑘 for 𝑘 ≤ 𝑛/2

12

holds for CC of every

protocol for 𝐷𝐼𝑆𝐽𝒌 [Hastad Wigderson 07]

Reduction from 𝐷𝐼𝑆𝐽𝒌/𝟐 to Testing k-Parity

13

Bob Alice

𝐼𝑛𝑝𝑢𝑡: 𝑆 ⊆ [𝑛], 𝑆 = 𝑘/2.

 Compute: 𝑓 = 𝜒𝑆

Input: 𝑇 ⊆ [𝑛], 𝑇 = 𝑘/2

Compute: 𝑔 = 𝜒𝑇

1101000101110101110101010110…

Output T’s answer

T

ℎ = 𝑓 + 𝑔 (𝑚𝑜𝑑 2)

𝒂𝒄𝒄𝒆𝒑𝒕/𝒓𝒆𝒋𝒆𝒄𝒕

ℎ 𝑥 ? 𝑓 𝑥 + 𝑔 𝑥 𝑚𝑜𝑑 2

𝑓(𝑥)

𝑔(𝑥)

• 𝑇 receives its random bits from the shared random string.

Analysis of the Reduction

Queries: Alice and Bob exchange 2 bits for every bit queried by 𝑇

Correctness:

• ℎ = 𝑓 + 𝑔 𝑚𝑜𝑑 2 = 𝜒𝑆 + 𝜒𝑇 𝑚𝑜𝑑 2 = 𝜒𝑆Δ𝑇

• 𝑆Δ𝑇 = 𝑆 + 𝑇 − 2 𝑆 ∩ 𝑇

• SΔ𝑇 =
 𝑘 if S∩T = ∅

≤ 𝑘 − 2 if S∩T ≠ ∅

ℎ is
𝑘−parity if S∩T = ∅

𝑘′−parity where 𝑘′ ≠ 𝑘 if S∩T ≠ ∅

Summary: 𝑞(testing 𝑘-parity) ≥ Ω 𝑘 for 𝑘 ≤ 𝑛/2

14

1/2-far from every 𝑘-parity

Testing Lipschitz Property
on Hypercube

Lower Bound

Lipschitz Property of Functions f: 0,1 𝑛→R

16

[Jha Raskhodnikova]

• A function 𝑓 ∶ 0,1 𝑛 → R is Lipschitz

 if changing a bit of 𝑥 changes 𝑓(𝑥) by at most 1.

• Is 𝑓 Lipschitz or 𝜀-far from Lipschitz
 (𝑓 has to change on many points to become Lipschitz)?

– Edge 𝑥 − 𝑦 is violated by 𝑓 if 𝑓 𝑥 − 𝑓(𝑦) > 1.

Time:

– 𝑂(𝑛2/𝜀), logarithmic in the size of the input, 2𝑛

– Ω(𝑛)

0

0 1

1 2

1

2

1

2

2 0

0 0

0

2

2

Lipschitz

1

2
-far from Lipschitz

Testing Lipschitz Property

17

 Prove it.

Theorem

Testing Lipschitz property of functions f: 0,1 𝑛 → {0,1,2}
requires Ω(𝑛) queries.

Summary of Lower Bound Methods

• Yao’s Principle

– testing membership in 1*, sortedness of a list and monotonicity
of Boolean functions

• Reductions from communication complexity problems

– testing if a Boolean function is a 𝑘-parity

20

Other Models of Sublinear
Computation

22

Tolerant Property Tester

𝜹-close to YES

𝜺-far from

 YES

YES

Reject with
probability 2/3

Don’t care

Accept with
probability ≥ 𝟐/𝟑

Tolerant Property Tester [Rubinfeld Parnas Ron]

Randomized Algorithm

YES Accept with
probability ≥ 𝟐/𝟑

Reject with
probability 2/3

NO

Sublinear-Time “Restoration” Models

Local Decoding

Program Checking

Local Reconstruction

23

Input: Function 𝑓 nearly satisfying some property 𝑃
Requirement: Reconstruct function 𝑓 to ensure that
the reconstructed function 𝑔 satisfies 𝑃, changing
𝑓 only when necessary. For each input 𝑥, compute
𝑔(𝑥) with a few queries to 𝑓.

𝑓

𝑃
Input: A program 𝑃 computing 𝑓 correctly on most
inputs.
Requirement: Self-correct program 𝑃: for a given
input 𝑥, compute 𝑓(𝑥) by making a few calls to P.

Input: A slightly corrupted codeword
Requirement: Recover individual bits of the closest
codeword with a constant number of queries per
recovered bit.

𝑓

Generalization: Local Computation

[Rubinfeld Tamir Vardi Xie 2011]

• Compute the 𝑖-th character 𝑦𝑖 of a legal output 𝑦.

• If there are several legal outputs for a given input, be
consistent with one.

• Example: maximal independent set in a graph.

24

Sublinear-Space Algorithms

What if we cannot get a sublinear-time algorithm?

 Can we at least get sublinear space?

Note: sublinear space is broader (for any algorithm,
space complexity ≤ time complexity)

25

Data Stream Model

Motivation: internet traffic analysis

Model the stream as 𝑚 elements from [𝑛], e.g.,
𝑥1, 𝑥2, … , 𝑥𝑚 = 3, 5, 3, 7, 5, 4, …

Goal: Compute a function of the stream, e.g., median, number of distinct
elements, longest increasing sequence.

26

B L A - B L A - B L A - B L A - B L A - B L A - B L A -

(2) Limited working memory
(3) Quickly produce output

(1) Quickly process each element Streaming

Algorithm

Based on Andrew McGregor’s slides: http://www.cs.umass.edu/~mcgregor/slides/10-jhu1.pdf

Streaming Puzzle

 A stream contains 𝑛 − 1 distinct elements from 𝑛 in arbitrary order.

 Problem: Find the missing element, using 𝑂(log 𝑛) space.

27

Sampling from a Stream of Unknown Length

Problem: Find a uniform sample 𝑠 from a stream 𝑥1, 𝑥2, … , 𝑥𝑚
of unknown length 𝑚

Analysis:

What is the probability that 𝑠 = 𝑥𝑖 at some time 𝑡 ≥ 𝑖?

Pr 𝑠 = 𝑥𝑖 =
1

𝑖
⋅ 1 −

1

𝑖 + 1
⋅ … ⋅ 1 −

1

𝑡

 =
1

𝑖
⋅

𝑖

𝑖 + 1
⋅ … ⋅

𝑡 − 1

𝑡
=

1

𝑡

Space: 𝑂(𝑘 log 𝑛) bits to get 𝑘 samples.

28

Algorithm

1. Initially, 𝑠 ← 𝑥1

2. On seeing the 𝑡th element, 𝑠 ← 𝑥𝑡 with probability 1/𝑡

Conclusion

Sublinear algorithms are possible in many settings

• simple algorithms, more involved analysis

• nice combinatorial problems

• unexpected connections to other areas

• many open questions

In the remainder of the course, we will cover research papers in
the area.

29

