# Sublinear Algorithms Lecture 6 

Sofya Raskhodnikova
Penn State University

Thanks to Madhav Jha (Penn State) for help with creating these slides.

## Communication Complexity

## A Method for Proving Lower Bounds

[Blais Brody Matulef 11]


## (Randomized) Communication Complexity



Goal: minimize the number of bits exchanged.

- Communication complexity of a protocol is the maximum number of bits exchanged by the protocol.
- Communication complexity of a function $C$, denoted $R(C)$, is the communication complexity of the best protocol for computing C .


## Example: Set Disjointness DIS $_{k}$



Theorem [Hastad Wigderson 07]
$R\left(\operatorname{DIS}_{k}\right) \geq \Omega(k)$ for all $k \leq \frac{n}{2}$.

## A lower bound using CC method

Testing if a Boolean function is a k-parity

## Linear Functions Over Finite Field $\mathbb{F}_{2}$

A Boolean function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ is linear (also called parity) if

$$
f\left(x_{1}, \ldots, x_{n}\right)=a_{1} x_{1}+\cdots+a_{n} x_{n} \text { for some } a_{1}, \ldots, a_{n} \in\{0,1\}
$$

## no free term

- Work in finite field $\mathbb{F}_{2}$
- Other accepted notation for $\mathbb{F}_{2}: G F_{2}$ and $\mathbb{Z}_{2}$
example
- Addition and multiplication is mod 2
- $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right), \boldsymbol{y}=\left(y_{1}, \ldots, y_{n}\right)$, that is, $\boldsymbol{x}, \boldsymbol{y} \in\{0,1\}^{n}$ $\boldsymbol{x}+\boldsymbol{y}=\left(x_{1}+y_{1}, \ldots, x_{n}+y_{n}\right)$

$$
\begin{array}{r}
001001 \\
+\begin{array}{l}
011001
\end{array} \\
\hline 010000
\end{array}
$$

## Linear Functions Over Finite Field $\mathbb{F}_{2}$

A Boolean function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ is linear (also called parity) if

$$
\begin{gathered}
f\left(x_{1}, \ldots, x_{n}\right)=a_{1} x_{1}+\cdots+a_{n} x_{n} \text { for some } a_{1}, \ldots, a_{n} \in\{0,1\} \\
\|\left(x_{1}, \ldots, x_{n}\right)=\sum_{i \in \mathrm{~S}} x_{i} \text { for some } S \subseteq[n] .
\end{gathered}
$$

Notation: $\chi_{S}(x)=\sum_{i \in S} x_{i}$.

## Testing if a Boolean function is Linear

Input: Boolean function $f:\{0,1\}^{n} \rightarrow\{0,1\}$
Question:
Is the function linear or $\varepsilon$-far from linear
( $\geq \varepsilon 2^{n}$ values need to be changed to make it linear)?

Later in the course:
Famous BLR (Blum Lubi Rubinfeld 90) test runs in $O\left(\frac{1}{\varepsilon}\right)$ time

## k-Parity Functions

## $k$-Parity Functions

A function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ is a $k$-parity if

$$
f(x)=\chi_{S}(x)=\sum_{i \in S} x_{i}
$$

for some set $S \subseteq[n]$ of size $|S|=k$.

## Testing if a Boolean Function is a k-Parity

Input: Boolean function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ and an integer $k$
Question: Is the function a $k$-parity or $\varepsilon$-far from a $k$-parity ( $\geq \varepsilon 2^{n}$ values need to be changed to make it a $k$-parity)?

Time:
$\mathrm{O}(k \log k)$ [Chakraborty Garcia-Soriano Matsliah]
$\Omega(\min (k, n-k))$ [Blais Brody Matulef 11]

- Today: $\Omega(k)$ for $k \leq n / 2$

Today's bound implies $\Omega(\min (k, n-k))$

## Important Fact About Linear Functions

Fact. Two different linear functions disagree on half of the values.

- Consider functions $\chi_{S}$ and $\chi_{T}$ where $S \neq T$.
- Let $i$ be an element on which $S$ and $T$ differ (w.l.o.g. $i \in S \backslash T$ )
- Pair up all $n$-bit strings: $\left(\boldsymbol{x}, \boldsymbol{x}^{(i)}\right)$ where $x^{(i)}$ is $x$ with the $i^{\text {th }}$ bit flipped.
- For each such pair, $\chi_{S}(\boldsymbol{x}) \neq \chi_{S}\left(\boldsymbol{x}^{(i)}\right)$

$$
\text { but } \chi_{T}(\boldsymbol{x})=\chi_{T}\left(\boldsymbol{x}^{(i)}\right)
$$

So, $\chi_{S}$ and $\chi_{T}$ differ on exactly one of $\boldsymbol{x}, \boldsymbol{x}^{(i)}$.

- Since all $\boldsymbol{x}^{\prime}$ s are paired up,

$$
\chi_{S} \text { and } \chi_{T} \text { differ on half of the values. }
$$


$\chi_{S}(x) \quad \chi_{T}(x)$

Corollary. A $k^{\prime}$-parity function, where $k^{\prime} \neq k$, is $1 / 2$-far from any $k$-parity.

## Reduction from $D I S J_{k / 2}$ to Testing k-Parity

- Let $T$ be the best tester for the $k$-parity property for $\varepsilon=1 / 2$
- query complexity of T is $q$ (testing $k-$ parity).
- We will construct a communication protocol for $D I S J_{\boldsymbol{k} / 2}$ that runs $T$ and has communication complexity $2 \cdot q$ (testing $k$-parity).

```
holds for CC of every
    protocol for DISJ
[Hastad Wigderson 07]
```

- Then $2 \cdot q$ (testing $k$-parity) $\geq R\left(\right.$ DISJ $\left._{k / 2}\right) \geq \Omega(k / 2)$ for $k \leq n / 2$
$\Downarrow$
$q$ (testing $k$-parity) $\geq \Omega(k)$ for $k \leq n / 2$


## Reduction from $D I S J_{k / 2}$ to Testing $k$-Parity



- $T$ receives its random bits from the shared random string.


## Analysis of the Reduction

Queries: Alice and Bob exchange 2 bits for every bit queried by $T$ Correctness:

- $h=f+g(\bmod 2)=\chi_{S}+\chi_{T}(\bmod 2)=\chi_{S \Delta T}$
- $|S \Delta T|=|S|+|T|-2|S \cap T|$
- $|\mathrm{S} \Delta T|=\left\{\begin{array}{rr}k & \text { if } \mathrm{S} \cap \mathrm{T}=\varnothing \\ \leq k-2 & \text { if } \mathrm{S} \cap \mathrm{T} \neq \emptyset\end{array}\right.$
$h$ is $\begin{cases}k-\text { parity } & \text { if } \mathrm{S} \cap \mathrm{T}=\emptyset \\ k^{\prime}-\text { parity where } k^{\prime} \neq k & \text { if } \mathrm{S} \cap \mathrm{T} \neq \varnothing\end{cases}$
$1 / 2$-far from every $k$-parity

Summary: $q$ (testing $k$-parity) $\geq \Omega(k)$ for $k \leq n / 2$

# Testing Lipschitz Property on Hypercube 

## Lower Bound

## Lipschitz Property of Functions $f:\{0,1\}^{n} \rightarrow \boldsymbol{R}$

[Jha Raskhodnikova]

- A function $f:\{0,1\}^{n} \rightarrow \mathrm{R}$ is Lipschitz if changing a bit of $x$ changes $f(x)$ by at most 1 .

- Is $f$ Lipschitz or $\varepsilon$-far from Lipschitz
( $f$ has to change on many points to become Lipschitz)?
- Edge $x-y$ is violated by $f$ if $|f(x)-f(y)|>1$.

Time:

- $O\left(n^{2} / \varepsilon\right)$, logarithmic in the size of the input, $2^{n}$
- $\Omega(n)$



## Testing Lipschitz Property

## Theorem

Testing Lipschitz property of functions $\mathrm{f}:\{0,1\}^{n} \rightarrow\{0,1,2\}$ requires $\Omega(n)$ queries.

Prove it.

## Summary of Lower Bound Methods

- Yao's Principle
- testing membership in $1^{*}$, sortedness of a list and monotonicity of Boolean functions
- Reductions from communication complexity problems
- testing if a Boolean function is a $k$-parity


## Other Models of Sublinear Computation

## Tolerant Property Tester [Rubinfeld Parnas Ron]



Tolerant Property Tester


## Sublinear-Time "Restoration" Models

## Local Decoding

Input: A slightly corrupted codeword
Requirement: Recover individual bits of the closest codeword with a constant number of queries per recovered bit.

## Program Checking

Input: A program $P$ computing $f$ correctly on most inputs.
Requirement: Self-correct program $P$ : for a given input $x$, compute $f(x)$ by making a few calls to $P$.

## Local Reconstruction

Input: Function $f$ nearly satisfying some property $P$ Requirement: Reconstruct function $f$ to ensure that the reconstructed function $g$ satisfies $P$, changing $f$ only when necessary. For each input $x$, compute
 $g(x)$ with a few queries to $f$.

## Generalization: Local Computation

[Rubinfeld Tamir Vardi Xie 2011]

- Compute the $i$-th character $y_{i}$ of a legal output $y$.
- If there are several legal outputs for a given input, be consistent with one.
- Example: maximal independent set in a graph.


## Sublinear-Space Algorithms

What if we cannot get a sublinear-time algorithm? Can we at least get sublinear space?

Note: sublinear space is broader (for any algorithm, space complexity $\leq$ time complexity)

## Data Stream Model



Motivation: internet traffic analysis

Model the stream as $m$ elements from [ $n$ ], e.g.,

$$
\left\langle x_{1}, x_{2}, \ldots, x_{m}\right\rangle=3,5,3,7,5,4, \ldots
$$

Goal: Compute a function of the stream, e.g., median, number of distinct elements, longest increasing sequence.

## Streaming Puzzle

A stream contains $n-1$ distinct elements from [ $n$ ] in arbitrary order.
Problem: Find the missing element, using $O(\log n)$ space.

## Sampling from a Stream of Unknown Length

Problem: Find a uniform sample $s$ from a stream $\left\langle x_{1}, x_{2}, \ldots, x_{m}\right\rangle$
of unknown length $m$

## Algorithm

1. Initially, $s \leftarrow x_{1}$
2. On seeing the $t^{\text {th }}$ element, $s \leftarrow x_{t}$ with probability $1 / t$

Analysis:
What is the probability that $s=x_{i}$ at some time $t \geq i$ ?

$$
\begin{aligned}
\operatorname{Pr}\left[s=x_{i}\right] & =\frac{1}{i} \cdot\left(1-\frac{1}{i+1}\right) \cdot \ldots \cdot\left(1-\frac{1}{t}\right) \\
& =\frac{1}{i} \cdot \frac{i}{i+1} \cdot \ldots \cdot \frac{t-1}{t}=\frac{1}{t}
\end{aligned}
$$

Space: $O(k \log n)$ bits to get $k$ samples.

## Conclusion

Sublinear algorithms are possible in many settings

- simple algorithms, more involved analysis
- nice combinatorial problems
- unexpected connections to other areas
- many open questions

In the remainder of the course, we will cover research papers in the area.

