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Communication Complexity 

  
A Method for Proving Lower Bounds 

[Blais Brody Matulef 11] 

Use known lower bounds  

for other models of computation 

Partially based on slides by Eric Blais 



(Randomized) Communication Complexity 
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Compute 𝐶 𝑥, 𝑦  

0100 

11 

001 

⋯ 

0011 

Bob Alice 

𝐼𝑛𝑝𝑢𝑡:  𝑥 Input: 𝑦 

1101000101110101110101010110… 

𝑆ℎ𝑎𝑟𝑒𝑑 𝑟𝑎𝑛𝑑𝑜𝑚 𝑠𝑡𝑟𝑖𝑛𝑔 

Goal:  minimize the number of bits exchanged. 

• Communication complexity of a protocol is the maximum number of bits 
exchanged by the protocol. 

• Communication complexity of a function 𝐶, denoted 𝑅(𝐶), is the 
communication complexity of the best protocol for computing C. 



Example: Set Disjointness 𝐷𝐼𝑆𝐽𝒌 
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Theorem [Hastad Wigderson 07]  

𝑅 DISJ𝑘 ≥ Ω 𝑘  for all 𝑘 ≤
𝑛

2
.  

Compute 𝐷𝐼𝑆𝐽𝑘 𝑆, 𝑇  

                =  
𝒂𝒄𝒄𝒆𝒑𝒕  if 𝑆 ∩ 𝑇 = ∅
𝒓𝒆𝒋𝒆𝒄𝒕     otherwise

 

Bob Alice 

𝐼𝑛𝑝𝑢𝑡: 𝑆 ⊆ [𝑛], 𝑆 = 𝑘. Input: 𝑇 ⊆ [𝑛], 𝑇 = 𝑘 

1101000101110101110101010110… 



A lower bound using CC method 

Testing if a Boolean function is a k-parity 



Linear Functions Over Finite Field 𝔽2  
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A Boolean function 𝑓: 0,1 𝑛 → {0,1} is linear (also called parity) if  

𝑓 𝑥1, … , 𝑥𝑛 = 𝑎1𝑥1 + ⋯+ 𝑎𝑛𝑥𝑛 for some 𝑎1, … , 𝑎𝑛 ∈ {0,1} 

 

 

• Work in finite field 𝔽2 

– Other accepted notation for 𝔽2: 𝐺𝐹2 and  ℤ2 

– Addition and multiplication is mod 2 

– 𝒙= 𝑥1, … , 𝑥𝑛 , 𝒚= 𝑦1, … , 𝑦𝑛 , that is, 𝒙, 𝒚 ∈ 0,1 𝑛 

     𝒙 + 𝒚= 𝑥1 + 𝑦1, … , 𝑥𝑛 + 𝑦𝑛  

 

no free term 

001001 

011001  

010000        

+ 

example 



Linear Functions Over Finite Field 𝔽2  
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A Boolean function 𝑓: 0,1 𝑛 → {0,1} is linear (also called parity) if  

𝑓 𝑥1, … , 𝑥𝑛 = 𝑎1𝑥1 + ⋯+ 𝑎𝑛𝑥𝑛 for some 𝑎1, … , 𝑎𝑛 ∈ {0,1} 

 

 
 

⇕  

𝑓 𝑥1, … , 𝑥𝑛 =  𝑥𝑖𝑖∈S  for some 𝑆 ⊆ 𝑛 . 

 

 

Notation: 𝜒𝑆 𝑥 =  𝑥𝑖𝑖∈𝑆 . 

 

 

[𝑛] is a shorthand  for {1, … 𝑛} 



Testing if a Boolean function is Linear 
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Input: Boolean function 𝑓: 0,1 𝑛 → {0,1} 

Question:  

Is the function linear or 𝜀-far from linear  

(≥ 𝜀2𝑛 values need to be changed to make it linear)? 

 

Later in the course: 

Famous BLR (Blum Lubi Rubinfeld 90) test runs in 𝑂
1

𝜀
 time 

  

 

 



k-Parity Functions 
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𝑘-Parity Functions 

A function 𝑓 ∶ 0,1 𝑛 → {0,1} is a 𝑘-parity if 

   𝑓 𝑥 = 𝜒𝑆 𝑥 =  𝑥𝑖𝑖∈𝑆   

for some set 𝑆 ⊆ 𝑛  of size 𝑆 = 𝑘.  



Testing if a Boolean Function is a k-Parity 
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Input:  Boolean function 𝑓: 0,1 𝑛 → {0,1} and an integer 𝑘 

Question:      Is the function a 𝑘-parity or 𝜀-far from a 𝑘-parity  

(≥ 𝜀2𝑛 values need to be changed to make it a 𝑘-parity)? 

 

Time:   

              O 𝑘 log 𝑘  [Chakraborty Garcia−Soriano Matsliah]    

 W min (𝑘, 𝑛 − 𝑘 ) [Blais Brody Matulef 11] 

• Today:  Ω(𝑘) for 𝑘 ≤ 𝑛/2 

• Today’s bound implies   W min (𝑘, 𝑛 − 𝑘 ) 

 



Important Fact About Linear Functions 

 

• Consider functions 𝜒𝑆 and 𝜒𝑇 where 𝑆 ≠ 𝑇.  

– Let 𝑖 be an element on which 𝑆 and 𝑇 differ  

      (w.l.o.g. 𝑖 ∈ 𝑆 ∖ 𝑇) 

– Pair up all 𝑛-bit strings: (𝒙, 𝒙 𝑖 )  

      where 𝒙 𝑖  is 𝒙 with the 𝑖th bit flipped. 

– For each such pair, 𝜒𝑆(𝒙)  ≠ 𝜒𝑆(𝒙
𝑖 )  

                                 but 𝜒𝑇(𝒙)  = 𝜒𝑇(𝒙
𝑖 ) 

     So, 𝜒𝑆 and 𝜒𝑇  differ on exactly one of 𝒙, 𝒙 𝑖 . 

– Since all 𝒙’s are paired up,  

  𝜒𝑆 and 𝜒𝑇  differ  on half of the values. 
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𝒙 

𝒙 𝑖  

𝜒𝑆(x)  𝜒𝑇(x) 

0
1
1
𝑎
0
⋅
⋅
⋅

1 − 𝑎
0
1
0

0
1
0
𝑏
1
⋅
⋅
⋅
𝑏
0
0

  1     

 

Two different linear functions disagree on half of the values. 
 

Fact. 

 A 𝑘′-parity  function, where 𝑘′ ≠ 𝑘, is ½-far from any k-parity. 
 

Corollary. 



Reduction from 𝐷𝐼𝑆𝐽𝒌/𝟐 to Testing k-Parity 

• Let 𝑇 be the best tester for the 𝑘-parity property for 𝜀 = 1/2 
– query complexity of T is 𝑞 testing 𝑘−parity . 

• We will construct a communication protocol for 𝐷𝐼𝑆𝐽𝒌/𝟐 that runs 

𝑇 and has communication complexity  2 ⋅ 𝑞(testing 𝑘−parity). 

  

 

• Then 2 ⋅ 𝑞(testing 𝑘−parity) ≥ 𝑅 DISJ𝑘/2 ≥ Ω 𝑘/2  for 𝑘 ≤ 𝑛/2 

⇓ 

𝑞(testing 𝑘-parity) ≥ Ω 𝑘   for 𝑘 ≤ 𝑛/2 
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holds for CC of every  

protocol for 𝐷𝐼𝑆𝐽𝒌 [Hastad Wigderson 07] 



Reduction from 𝐷𝐼𝑆𝐽𝒌/𝟐 to Testing k-Parity 
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Bob Alice 

𝐼𝑛𝑝𝑢𝑡: 𝑆 ⊆ [𝑛], 𝑆 = 𝑘/2. 

  Compute: 𝑓 = 𝜒𝑆 

Input: 𝑇 ⊆ [𝑛], 𝑇 = 𝑘/2 

Compute: 𝑔 = 𝜒𝑇 

1101000101110101110101010110… 

Output T’s answer 

T 

ℎ = 𝑓 + 𝑔 (𝑚𝑜𝑑 2) 

𝒂𝒄𝒄𝒆𝒑𝒕/𝒓𝒆𝒋𝒆𝒄𝒕 

ℎ 𝑥 ? 𝑓 𝑥 + 𝑔 𝑥   𝑚𝑜𝑑 2 

𝑓(𝑥) 

𝑔(𝑥) 

• 𝑇 receives its random bits from the shared random string. 



Analysis of the Reduction 

Queries: Alice and Bob exchange 2 bits for every bit queried by 𝑇 

Correctness: 

• ℎ = 𝑓 + 𝑔 𝑚𝑜𝑑 2 = 𝜒𝑆 + 𝜒𝑇  𝑚𝑜𝑑 2 = 𝜒𝑆Δ𝑇  

• 𝑆Δ𝑇 = 𝑆 + 𝑇 − 2 𝑆 ∩ 𝑇  

• SΔ𝑇 =  
 𝑘          if  S∩T = ∅

≤  𝑘 − 2  if  S∩T ≠ ∅
 

ℎ is  
𝑘−parity                                    if  S∩T = ∅

𝑘′−parity where 𝑘′ ≠ 𝑘        if  S∩T ≠ ∅
 

 

 

 

Summary: 𝑞(testing 𝑘-parity) ≥ Ω 𝑘  for 𝑘 ≤ 𝑛/2 
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1/2-far from every 𝑘-parity 



Testing Lipschitz Property 
on Hypercube 

  
Lower Bound 



Lipschitz Property of Functions f: 0,1 𝑛→R 
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[Jha Raskhodnikova]  

  

• A function 𝑓 ∶ 0,1 𝑛 → R is Lipschitz 

     if changing a bit of 𝑥 changes 𝑓(𝑥) by at most 1.  

 

• Is 𝑓 Lipschitz or 𝜀-far from Lipschitz 
      (𝑓 has to change on many points to become Lipschitz)? 

– Edge 𝑥 − 𝑦 is violated by  𝑓  if   𝑓 𝑥 − 𝑓(𝑦) > 1. 

 

Time:  

– 𝑂(𝑛2/𝜀), logarithmic in the size of the input, 2𝑛 

– Ω(𝑛) 

0 

0 1 

1 2 

1 

2 

1 

2 

2 0 

0 0 

0 

2 

2 

Lipschitz 

1

2
-far from Lipschitz 



Testing Lipschitz Property 
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 Prove it. 

Theorem 

Testing Lipschitz property of functions f: 0,1 𝑛 → {0,1,2} 
requires Ω(𝑛) queries. 



Summary of Lower Bound Methods 

• Yao’s Principle 

– testing membership in 1*, sortedness of a list and monotonicity 
of Boolean functions 

 

• Reductions from communication complexity problems 

– testing if a Boolean function is a 𝑘-parity 

20 



Other Models of Sublinear 
Computation 
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Tolerant Property Tester 

𝜹-close to YES 

𝜺-far from 

 YES 

YES 

Reject with 
probability      2/3  

Don’t care  

  

Accept with 
probability ≥ 𝟐/𝟑  



Tolerant Property Tester [Rubinfeld Parnas Ron]  

Randomized Algorithm 

YES Accept with 
probability ≥ 𝟐/𝟑 

Reject with 
probability     2/3  

NO 



     



Sublinear-Time “Restoration” Models 

Local Decoding 
 

 

 

Program Checking 

 

 

 

Local Reconstruction 
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Input: Function 𝑓 nearly satisfying some property 𝑃 
Requirement: Reconstruct function 𝑓 to ensure that 
the reconstructed function 𝑔 satisfies 𝑃, changing 
𝑓 only when necessary. For each input 𝑥, compute 
𝑔(𝑥) with a few queries to 𝑓. 

𝑓 

𝑃 
Input: A program 𝑃 computing 𝑓 correctly on most 
inputs. 
Requirement: Self-correct program 𝑃: for a given 
input 𝑥, compute 𝑓(𝑥) by making a few calls to P. 

Input: A slightly corrupted codeword 
Requirement: Recover individual bits of the closest 
codeword with a constant number of queries per 
recovered bit. 

𝑓 



Generalization: Local Computation 

[Rubinfeld Tamir Vardi Xie 2011] 

• Compute the 𝑖-th character 𝑦𝑖 of a legal output 𝑦. 

• If there are several legal outputs for a given input, be 
consistent with one. 

• Example: maximal independent set in a graph. 
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Sublinear-Space Algorithms 

What if we cannot get a sublinear-time algorithm? 

    Can we at least get sublinear space? 

 

Note: sublinear space is broader (for any algorithm, 
space complexity ≤ time complexity) 
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Data Stream Model 

 

 

 

 

 

 

 

Motivation: internet traffic analysis 

 

Model the stream as 𝑚 elements from [𝑛], e.g., 
𝑥1, 𝑥2, … , 𝑥𝑚 = 3, 5, 3, 7, 5, 4, …  

Goal: Compute a function of the stream, e.g., median, number of distinct 
elements, longest increasing sequence. 
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B L A - B L A - B L A - B L A - B L A - B L A - B L A - 

(2)  Limited working memory 
(3) Quickly produce output 

(1) Quickly process each element Streaming 

Algorithm 

Based on Andrew McGregor’s slides: http://www.cs.umass.edu/~mcgregor/slides/10-jhu1.pdf 



Streaming Puzzle 

     A stream contains 𝑛 − 1 distinct elements from 𝑛  in arbitrary order.  

     Problem: Find the missing element, using 𝑂(log 𝑛) space. 
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Sampling from a Stream of Unknown Length 

Problem: Find a uniform sample 𝑠 from a stream 𝑥1, 𝑥2, … , 𝑥𝑚  
of unknown length 𝑚 

 

 

 

Analysis: 

What is the probability that 𝑠 =  𝑥𝑖 at some time 𝑡 ≥ 𝑖? 

Pr 𝑠 = 𝑥𝑖 =
1

𝑖
⋅ 1 −

1

𝑖 + 1
⋅ … ⋅ 1 −

1

𝑡
 

           =
1

𝑖
⋅

𝑖

𝑖 + 1
⋅ … ⋅

𝑡 − 1

𝑡
=

1

𝑡
 

Space: 𝑂(𝑘 log 𝑛) bits to get 𝑘 samples. 
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Algorithm 

1. Initially,  𝑠 ←  𝑥1 

2. On seeing the 𝑡th element, 𝑠 ← 𝑥𝑡 with probability 1/𝑡 
 



Conclusion 

Sublinear algorithms are possible in many settings 

• simple algorithms, more involved analysis 

• nice combinatorial problems 

• unexpected connections to other areas 

• many open questions 

 

In the remainder of the course, we will cover research papers in 
the area. 
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