Sublinear Algorithms Lecture 6

Sofya Raskhodnikova Penn State University

Thanks to Madhav Jha (Penn State) for help with creating these slides.

Communication Complexity

A Method for Proving Lower Bounds

[Blais Brody Matulef 11]

Use known lower bounds for other models of computation

Partially based on slides by Eric Blais

(Randomized) Communication Complexity

Goal: minimize the number of bits exchanged.

- Communication complexity of a protocol is the maximum number of bits exchanged by the protocol.
- Communication complexity of a function C, denoted R(C), is the communication complexity of the best protocol for computing C.

Example: Set Disjointness DISJ_k

A lower bound using CC method

Testing if a Boolean function is a k-parity

A Boolean function $f: \{0,1\}^n \to \{0,1\}$ is *linear* (also called *parity*) if $f(x_1, ..., x_n) = a_1 x_1 + \dots + a_n x_n$ for some $a_1, ..., a_n \in \{0,1\}$ no free term

- Work in finite field \mathbb{F}_2
 - Other accepted notation for \mathbb{F}_2 : GF_2 and \mathbb{Z}_2
 - Addition and multiplication is mod 2
 - $x = (x_1, ..., x_n), y = (y_1, ..., y_n)$, that is, $x, y \in \{0, 1\}^n$ $x + y = (x_1 + y_1, ..., x_n + y_n)$

example

Notation: $\chi_S(x) = \sum_{i \in S} x_i$.

Testing if a Boolean function is Linear

Input: Boolean function $f: \{0,1\}^n \rightarrow \{0,1\}$

Question:

Is the function linear or ε -far from linear ($\ge \varepsilon 2^n$ values need to be changed to make it linear)?

Later in the course:

Famous BLR (Blum Lubi Rubinfeld 90) test runs in $O\left(\frac{1}{c}\right)$ time

k-Parity Functions

k-Parity Functions

A function $f : \{0,1\}^n \to \{0,1\}$ is a *k*-parity if $f(x) = \chi_S(x) = \sum_{i \in S} x_i$ for some set $S \subseteq [n]$ of size |S| = k.

Testing if a Boolean Function is a k-Parity

Input: Boolean function $f: \{0,1\}^n \rightarrow \{0,1\}$ and an integer k

Question: Is the function a k-parity or ε -far from a k-parity

($\geq \varepsilon 2^n$ values need to be changed to make it a k-parity)?

Time:

 $O(k \log k)$ [Chakraborty Garcia–Soriano Matsliah]

 $\Omega(\min(k, n - k))$ [Blais Brody Matulef 11]

• Today: $\Omega(k)$ for $k \le n/2$

 $\int Today's$ bound implies $\Omega(\min(k, n - k))$

Important Fact About Linear Functions

Fact. Two different linear functions disagree on half of the values.

- Consider functions χ_S and χ_T where $S \neq T$.
 - Let *i* be an element on which *S* and *T* differ (w.l.o.g. $i \in S \setminus T$)
 - Pair up all *n*-bit strings: $(x, x^{(i)})$ where $x^{(i)}$ is x with the *i*th bit flipped.
 - For each such pair, $\chi_S(\mathbf{x}) \neq \chi_S(\mathbf{x}^{(i)})$ but $\chi_T(\mathbf{x}) = \chi_T(\mathbf{x}^{(i)})$

So, χ_S and χ_T differ on exactly one of x, $x^{(i)}$.

- Since all x's are paired up,

 χ_S and χ_T differ on half of the values.

Corollary. A k'-parity function, where $k' \neq k$, is ½-far from any k-parity.

Reduction from $DISJ_{k/2}$ to Testing k-Parity

- Let *T* be the best tester for the *k*-parity property for ε = 1/2

 query complexity of T is *q*(testing *k*-parity).
- We will construct a communication protocol for $DISJ_{k/2}$ that runs T and has communication complexity $2 \cdot q$ (testing k-parity).

Reduction from $DISJ_{k/2}$ to Testing k-Parity

• *T* receives its random bits from the shared random string.

Analysis of the Reduction

Queries: Alice and Bob exchange 2 bits for every bit queried by *T* Correctness:

•
$$h = f + g \pmod{2} = \chi_S + \chi_T \pmod{2} = \chi_{S\Delta T}$$

•
$$|S\Delta T| = |S| + |T| - 2|S \cap T|$$

•
$$|S\Delta T| = \begin{cases} k & \text{if } S\cap T = \emptyset \\ \leq k - 2 & \text{if } S\cap T \neq \emptyset \end{cases}$$

$$h \text{ is } \begin{cases} k-\text{parity} & \text{if } S \cap T = \emptyset \\ k' - \text{parity where } k' \neq k & \text{if } S \cap T \neq \emptyset \end{cases}$$

$$\frac{1}{2-\text{far from every } k-\text{parity}}$$

Summary: $q(\text{testing } k \text{-parity}) \ge \Omega(k)$ for $k \le n/2$

Testing Lipschitz Property on Hypercube

Lower Bound

Lipschitz Property of Functions f: $\{0,1\}^n \rightarrow \mathbf{R}$

[Jha Raskhodnikova]

- A function f : {0,1}ⁿ → R is Lipschitz
 if changing a bit of x changes f(x) by at most 1.
- Is f Lipschitz or ε-far from Lipschitz
 (f has to change on many points to become Lipschitz)?
 Edge x y is violated by f if |f(x) f(y)| > 1.

Time:

- $O(n^2/\varepsilon)$, logarithmic in the size of the input, 2^n
- $\Omega(n)$

Testing Lipschitz Property

Theorem

Testing Lipschitz property of functions f: $\{0,1\}^n \rightarrow \{0,1,2\}$ requires $\Omega(n)$ queries.

Prove it.

Summary of Lower Bound Methods

• Yao's Principle

- testing membership in 1*, sortedness of a list and monotonicity of Boolean functions
- Reductions from communication complexity problems
 - testing if a Boolean function is a k-parity

Other Models of Sublinear Computation

Tolerant Property Tester [Rubinfeld Parnas Ron]

Sublinear-Time "Restoration" Models

Local Decoding

Input: A slightly corrupted codeword Requirement: Recover individual bits of the closest codeword with a constant number of queries per recovered bit.

Program Checking

Input: A program P computing f correctly on most inputs.

Requirement: Self-correct program P: for a given input x, compute f(x) by making a few calls to P.

Local Reconstruction

Input: Function f nearly satisfying some property PRequirement: Reconstruct function f to ensure that the reconstructed function g satisfies P, changing f only when necessary. For each input x, compute g(x) with a few queries to f.

Generalization: Local Computation

[Rubinfeld Tamir Vardi Xie 2011]

- Compute the *i*-th character y_i of a legal output y.
- If there are several legal outputs for a given input, be consistent with one.
- Example: maximal independent set in a graph.

What if we cannot get a sublinear-time algorithm? Can we at least get sublinear space?

Note: sublinear space is broader (for any algorithm, space complexity ≤ time complexity)

Data Stream Model

Motivation: internet traffic analysis

Model the stream as m elements from [n], e.g., $\langle x_1, x_2, ..., x_m \rangle = 3, 5, 3, 7, 5, 4, ...$

Goal: Compute a function of the stream, e.g., median, number of distinct elements, longest increasing sequence.

Streaming Puzzle

A stream contains n - 1 distinct elements from [n] in arbitrary order.

Problem: Find the missing element, using $O(\log n)$ space.

Sampling from a Stream of Unknown Length

Problem: Find a uniform sample *s* from a stream $\langle x_1, x_2, ..., x_m \rangle$ of unknown length *m*

Algorithm

- 1. Initially, $s \leftarrow x_1$
- 2. On seeing the t^{th} element, $s \leftarrow x_t$ with probability 1/t

Analysis:

What is the probability that $s = x_i$ at some time $t \ge i$?

$$\Pr[s = x_i] = \frac{1}{i} \cdot \left(1 - \frac{1}{i+1}\right) \cdot \dots \cdot \left(1 - \frac{1}{t}\right)$$
$$= \frac{1}{i} \cdot \frac{i}{i+1} \cdot \dots \cdot \frac{t-1}{t} = \frac{1}{t}$$

Space: $O(k \log n)$ bits to get k samples.

Conclusion

Sublinear algorithms are possible in many settings

- simple algorithms, more involved analysis
- nice combinatorial problems
- unexpected connections to other areas
- many open questions

In the remainder of the course, we will cover research papers in the area.