Sublinear Algorithms
Lecture 6

Sofya Raskhodnikova
Penn State University

Communication Complexity

A Method for Proving Lower Bounds

[Blais Brody Matulef 11]

Use known lower bounds

(Randomized) Communication Complexity

Shared random string
Alice |1101000101110101110101010110... | Bob

/ 0100 \

O O 1 *‘ “

0011 !‘
Input: x \ Input: y

Compute C(x,y)

4
®

/‘v,
o O VY 4
& ‘/’

Goal: minimize the number of bits exchanged.

e Communication complexity of a protocol is the maximum number of bits
exchanged by the protocol.

e Communication complexity of a function C, denoted R((C), is the
communication complexity of the best protocol for computing C.

Example: Set Disjointness DIS],,

Alice

1101000101110101110101010110... | Bob

e
Input:S € [n], |S]

N

P
&

|

| \ Input: T <

Compute DIS], (S, T)
_ {accept ifSNT =90
~ (reject otherwise

n], |T| =k

(Theorem [Hastad Wigderson 07]

L R(DISJ,) = Q(k) forall k <™

S

2

SRR A

A lower bound using CC method

Testing if a Boolean function is a k-parity

Linear Functions Over Finite Field IF,

A Boolean function f:{0,1}"* — {0,1} is linear (also called parity) if

flxy, o, xy) =ayxy + -+ anx,%for some dq, ...,a, € {0,1}

no free term

e Work in finite field IF,

— Other accepted notation for F,: GF, and Z, example

— Addition and multiplication is mod. 2)) 001001

- x=(xq, o, Xn), ¥=(¥1, -, ¥n), thatiis, x, y € {0,1} 011001
x+y=0x1 +y1, 0, X + Y) 010000

Linear Functions Over Finite Field IF,

A

o

Boolean function f: {0,1}" — {0,1} is linear (also called parity) if

~

f(xq, ..,xy) =ayx; + -+ a,x, forsomeay,...,a, € {0,1}

) [n] is a shorthand for {1, ... n}

f(xq1, e, X)) = Djes X; forsome S C |n].

/

Notation: ys(x) = Xes X;-

Testing If a Boolean function is Linear

Input: Boolean function f:{0,1}"* — {0,1}
Question:
Is the function linear or e-far from linear
(= 2" values need to be changed to make it linear)?

Later in the course:

Famous BLR (Blum Lubi Rubinfeld 90) test runs in O e) time

k-Parity Functions

/kelParity Functions

A function f : {0,1}" — {0,1} is a k-parity if
flx) = xs(x) = Xies i

_for some set S < [n] of size |S| = k.

Testing iIf a Boolean Function is a k-Parity

Input: Boolean function f:{0,1}" — {0,1} and an integer k
Question: Is the function a k-parity or e-far from a k-parity
(= £2™ values need to be changed to make it a k-parity)?

Time:
O(k log k) [Chakraborty Garcia—-Soriano Matsliah]

Q(min(k,n — k)) [Blais Brody Matulef 11]
e Today: Q(k) fork <n/2
Q;// Today’s bound implies Q(min(k,n — k))

10

Important Fact About Linear Functions

[Fact. Two different linear functions disagree on half of the values.

e Consider functions ys and yr where S # T.

Let i be an element on which § and T differ
(w.l.o.g.i € S\T)
Pair up all n-bit strings: (x, x(9)
where x9 is x with the ith bit flipped.
For each such pair, xs(x) # xs(x®)
but y7(x) = xr(x®)
So, x5 and y7 differ on exactly one of x, x@,

Since all x’s are paired up,
Xs and yr differ on half of the values.

0 T 0 7
1 1
1 0

x| a b
0 1

x®Ol1—all b
0 0
1 0
0 1

X5 xr(o)

[Corollary. A k'-parity function, where k' # k, is %-far from any k-parity.

|

11

Reduction from DISJy , to Testing k-Parity

e LetT be the best tester for the k-parity property fore = 1/2
— query complexity of T is q(testing k—parity).
* We will construct a communication protocol for DIS]y s, that runs
T and has communication complexity 2 - g(testing k—parity).

holds for CC of every
protocol for DISJ, [Hastad Wigderson 07]

e Then 2 - g(testing k—parity) % R(DIS]k/z) 2¢Q(k/2)
U
q(testing k-parity) = Q(k)

12

Reduction from DISJy , to Testing k-Parity

1101000101110101110101010110...

\/_\/ e
h=f+g (mod?2)
h(x)? || f(x) + g(x) mod 2
Alice Bob
T O
00 (] Oogm,

ac;cept/rejec

f(x)

v

< g(x)

Input S C [n], |S| = k/\ Input: T € [n], |T| = k/2
Compute: f)(S Compute: g = xr

Output T's answer

e T receives its random bits from the shared random string.

13

Analysis of the Reduction

Queries: Alice and Bob exchange 2 bits for every bit queried by T
Correctness:

e h=f+g(mod2)=ys+ xr (mod2) = ysar
o |SAT|=|S|+I|T|-2|SNT|

k if SNT =0

) lSAle{Sk—Z if SNT = ¢

- {k—parity if SNT=0¢
5 k’Eparity where k' #k if SNT # @

1/2-far from every k-parity

Summary: g(testing k-parity) = Q(k) fork < n/2

14

Testing Lipschitz Property
onh Hypercube

Lower Bound

Lipschitz Property of Functions f: {0,1}"*-R

[Jha Raskhodnikova]

N

e Afunction f : {0,1}" — Riis Lipschitz
if changing a bit of x changes f(x) by at most 1.

(X

0
Lipschitz
e |s f Lipschitz or e-far from Lipschitz
(f has to change on many points to become Lipschitz)?

— Edge x — yisviolated by f if |f(x) — f(y)| > 1. 2

0

)

%—far fror% Lipschitz

0

X

o

, 2
Time:

-~

- 0(n?/¢), logarithmic in the size of the input, 2"
- Q(n)

16

Testing Lipschitz Property

/Theorem

Testing Lipschitz property of functions f: {0,1}" — {0,1,2}
__requires ()(n) queries.

'ﬂé// Prove it.

17

Summary of Lower Bound Methods

e Yao’s Principle

— testing membership in 1%, sortedness of a list and monotonicity
of Boolean functions

e Reductions from communication complexity problems
— testing if a Boolean function is a k-parity

20

Other Models of Sublinear
Computation

Tolerant Property Tester [Rubinfeld Parnas Ron]

Randomized Algorithm

YES

NO

=)

Accept with
probability > 2/3

Reject with
probability >2/3

Tolerant Property Tester

YES

I0-close to YES

&-far from
YES

Accept with
probability > 2 /3

=)

Reject with
probability >2/3

22

Sublinear-Time “Restoration” Models

Local Decoding
Input: A slightly corrupted codeword
Requirement: Recover individual bits of the closest
codeword with a constant number of queries per
recovered bit.

Program Checking

Input: A program P computing f correctly on most
inputs.

Requirement: Self-correct program P: for a given
input x, compute f(x) by making a few calls to P.

Local Reconstruction
Input: Function f nearly satisfying some property P
Requirement: Reconstruct function f to ensure that
the reconstructed function g satisfies P, changing
f only when necessary. For each input x, compute
g(x) with a few queries to f.

23

Generalization: Local Computation

[Rubinfeld Tamir Vardi Xie 2011]

Compute the i-th character y; of a legal output y.

If there are several legal outputs for a given input, be
consistent with one.

Example: maximal independent set in a graph.

24

Sublinear-Space Algorithms

What if we cannot get a sublinear-time algorithm?
Can we at least get sublinear space?

Note: sublinear space is broader (for any algorithm,
space complexity < time complexity)

25

Data Stream Model

=> B|L|A - |BlL/A-|B/LIA-|[B|L/A-|BlLIA

Algorithm

Y

Streaming (1) Quickly process each element

(2) Limited working memory

(3) Quickly produice output

Motivation: internet traffic analysis

Model the stream as m elements from [n], e.g.,

(x1,%5, ..., xm) =3,53,7,5,4, ...
Goal: Compute a function of the stream, e.g., median, number of distinct

elements, longest increasing sequence.

26

Streaming Puzzle

~ // A stream contains n — 1 distinct elements from [n] in arbitrary order.
Problem: Find the missing element, using O (log n) space.

27

Sampling from a Stream of Unknown Length

Problem: Find a uniform sample s from a stream (x{, x5, ..., X,;,)
of unknown length m

/AIgorithm P

1. |Initially, s « x4

6. On seeing the tt" element, s < x; with probability 1/t ,

Analysis:

What is the probability that s = x; at sometimet = i?

1 1 1
s =2 (1- 1) (1)

l
1 t—1 1

i+l Tt ot
Space: O(k logn) bits to get k samples.

28

Conclusion

Sublinear algorithms are possible in many settings
e simple algorithms, more involved analysis

* nice combinatorial problems

e unexpected connections to other areas

* many open guestions

In the remainder of the course, we will cover research papers in
the area.

29

