The Testing of Entropy Sources for Cryptography

Sarah Scheffler

Computer Security Division
Security Testing, Validation, & Management Group
Dr. Allen Roginsky

7 August, 2014
Outline

1. Background, definitions, and standards
2. Random-looking numbers with zero entropy
3. The collision test
Cryptography is essential

- Everyone needs cryptography: personal, business, national, international
- Most cryptography heavily relies on random number generators (RNG)
- These RNGs get non-deterministic bits from an entropy source
- NIST has a draft publication for ensuring sufficient randomness of entropy sources
Definition: Entropy

\[H(X) = \text{the “uncertainty” in a random variable } X \]

Examples:

- A fair coin toss has an entropy of 1 bit
- A set of eight fair coin tosses has an entropy of 8 bits
- What about a weighted coin toss?
 - *Worst-case* uncertainty
Definition: Min-entropy

If an adversary extracted as much information from this variable as possible, how much uncertainty remains?

\[H_\infty(X) = - \log p_{\text{max}} \]

- Min-entropy is the largest real number \(m \) such that all events occur with probability no greater than \(2^{-m} \)
- A fair coin toss: \(H_\infty(X) = - \log \frac{1}{2} = 1 \text{ bit} \)
- A \(\frac{3}{4} \)-weighted coin toss: \(H_\infty(X) = - \log \frac{3}{4} \approx 0.415 \text{ bits} \)
NIST DRAFT Special Publication 800-90B

Recommendation for the Entropy Sources Used for Random Bit Generation

Elaine Barker
John Kelsey

Computer Security Division
Information Technology Laboratory
The 800-90B statistical tests are split into two categories:

- **IID tests**
 - Shuffle the data to ensure IID
 - Calculate the min-entropy directly using $H_{\infty}(X) = -\log p_{max}$

- **Non-IID tests**
 - **Collision test**
 - Partial collection test
 - Markov test (map 6 bits)
 - Compression test
 - Frequency test

Definition: IID

A dataset that is IID (Independent and Identically Distributed) means that each sample is independent from each other sample, and that each sample uses the same distribution.
Background takeaways

- Min-entropy is the “worst-case” measure of the uncertainty of a variable.
- For the purposes of this talk, entropy and min-entropy are interchangeable.
- IID means “independent and identically distributed.”
- NIST has statistical tests (800-90B) to evaluate entropy sources, sorted into IID and non-IID tests.
- My job: Evaluate the tests in 800-90B
Random does not mean secure

Question
If an entropy source passes the statistical tests in 800-90B, is it secure?
Proof by counterexample

Problem
We want a sequence of numbers that looks random, but we know each next outcome with 100% certainty.
Problem
We want a sequence of numbers that looks random, but we know each next outcome with 100% certainty.

Solution
Test digits of irrational numbers like π.
Constants chosen

- π
- $\zeta(3)$
- $\log 2$
The entropy of π

Read in file `./../..//general-bbp/pi/piBin/piBin_8`, 1250000 bytes long.
Dataset: 1250000 8-bit symbols.
Output symbol values: min = 0, max = 255

collision test not run:
- $\mu_bar = 20.7708$, max valid value for this test and model = 20.7261
- Collision test *not valid* for this data set.
- Partial collection test: $p_{\text{max}} = 0.00609112$, min-entropy = 7.35908
- Markov test (map 6 bits): $p_{\text{max}} = 1.05961e-223$, min entropy = 5.78677
- Compression test: $p_{\text{max}} = 0.00686646$, min-entropy = 7.18622
- Frequency test: $p_{\text{max}} = 0.0041008$, min-entropy = 7.58853

** min-entropy = 5.78677 - 7.18622

Read in file `./../..//general-bbp/pi/picopy_8`, 1250000 bytes long.
Dataset: 1250000 8-bit symbols.
Output symbol values: min = 0, max = 255

Compression Test: Result = passed Over/under Test: Result = passed
Excursion Test: Result = passed Directional runs Test: Result = passed
Covariance Test: Result = passed Collision Test: Result = passed
** Passed iid shuffle tests
Chi square independence score = 65169.2, degrees of freedom = 65280, cut-off = 66402.2
** Passed chi-square independence test
Chi square stability score = 2358.01, degrees of freedom = 2313 cut-off = 2528.88
** Passed chi-square stability test

min-entropy for `./../..//general-bbp/pi/picopy_8` = 7.88435
The entropy of \(\zeta(3) \)

Read in file `.././../zeta3-bbp/zeta3Bin/zeta3Bin_8`, 1250000 bytes long.
Dataset: 1250000 8-bit symbols.
Output symbol values: min = 0, max = 255
- Collision test: \(p(\text{max}) = 0.00997925 \), min-entropy = 6.64685
- Partial collection test: \(p(\text{max}) = 0.00644398 \), min-entropy = 7.27783
- Markov test (map 6 bits): \(p(\text{max}) = 2.21652e-223 \), min entropy = 5.7783
- Compression test: \(p(\text{max}) = 0.00830078 \), min-entropy = 6.91254
- Frequency test: \(p(\text{max}) = 0.0040824 \), min-entropy = 7.59365

\[\text{min-entropy} = 5.7783 \leq 6.64685 \]

Read in file `.././../zeta3-bbp/zeta3Bin_8.8`, 1250000 bytes long.
Dataset: 1250000 8-bit symbols.
Output symbol values: min = 0, max = 255

Compression Test: Result = passed Over/under Test: Result = passed
Excursion Test: Result = passed Directional runs Test: Result = passed
Covariance Test: Result = passed Collision Test: Result = passed
** Passed iid shuffle tests
Chi square independence score = 65424.1, degrees of freedom = 65280, cut-off = 66402.2
** Passed chi-square independence test
Chi square stability score = 2263.29, degrees of freedom = 2313 cut-off = 2528.88
** Passed chi-square stability test

\[\text{min-entropy} \text{ for } .././../zeta3-bbp/zeta3Bin_8.8 = 7.89074 \]
The entropy of log 2

Read in file ../../general-bbp/log2/log2Bin, 1250000 bytes long.
Dataset: 1250000 8-bit symbols.
Output symbol values: min = 0, max = 255
- Collision test : \(p(\text{max}) = 0.00619507, \text{min-entropy} = 7.33466 \)
- Partial collection test : \(p(\text{max}) = 0.00695324, \text{min-entropy} = 7.1681 \)
- Markov test (map 6 bits): \(p(\text{max}) = 0.35661e-224, \text{min-entropy} = 5.78017 \)
- Compression test : \(p(\text{max}) = 0.00756836, \text{min-entropy} = 7.0458 \)
- Frequency test : \(p(\text{max}) = 0.0041352, \text{min-entropy} = 7.57901 \)

** min-entropy = 5.78017 7.0458

Read in file ../../general-bbp/log2/log2Bin, 1250000 bytes long.
Dataset: 1250000 8-bit symbols.
Output symbol values: min = 0, max = 255

Compression Test: Result = passed
Excursion Test: Result = passed
Covariance Test: Result = passed
** Passed iid shuffle tests
Chi square independence score = 64754.7, degrees of freedom = 65280, cut-off = 66402.2
** Passed chi-square independence test
Chi square stability score = 2186.42, degrees of freedom = 2313 cut-off = 2528.88
** Passed chi-square stability test

min-entropy for ../../general-bbp/log2/log2Bin = 7.87249
What have we learned?

A constant is an entropy source with zero entropy. But, these constants pass all our tests for entropy. Conceptually, there is no way to tell the difference between random and nonrandom entropy sources using only the output. There must be a qualitative as well as quantitative assessment of entropy sources.
What have we learned?

- A constant is an entropy source with zero entropy.
What have we learned?

- A constant is an entropy source with zero entropy.
- But, these constants pass all our tests for entropy.
What have we learned?

- A constant is an entropy source with zero entropy.
- But, these constants pass all our tests for entropy.
- Conceptually, there is no way to tell the difference between random and nonrandom entropy sources using only the output.
What have we learned?

- A constant is an entropy source with zero entropy.
- But, these constants pass all our tests for entropy.
- Conceptually, there is no way to tell the difference between random and nonrandom entropy sources using only the output.
- There must be a qualitative as well as quantitative assessment of entropy sources.
Read in file ../../../general-bbp/pi/piBin/piBin_8, 1250000 bytes long.
Dataset: 1250000 8-bit symbols.
Output symbol values: min = 0, max = 255

- collision test not run:
 - mu_bar = 20.7708, max valid value for this test and model = 20.7261
- collision test *not valid* for this data set.
- Partial collection test: p(max) = 0.00609112, min-entropy = 7.35908
- Markov test (map 6 bits): p(max) = 1.05961e-223, min-entropy = 5.78677
- Compression test: p(max) = 0.00686646, min-entropy = 7.18622
- Frequency test: p(max) = 0.0041008, min-entropy = 7.58853

** min-entropy = 5.78677

The Collision Test

Measures the min-entropy by observing time between “collisions” (repeated outputs)

- Data set: BACBCBACCAABAABCBC
- Marked collisions: BACB CBAC CAA BAA BCB C
- Collision difference times: 4 4 3 3 3
- Collision statistic: \(\text{avg}(4, 4, 3, 3, 3) \)
Collision Statistic

- From a data set \(\{X_s\} \), define a sequence of collision times \(\{T_i\} \), where \(T_0 = 0 \), and

\[
T_i = \min \{ j > T_{i-1} : \exists m \in (T_i - 1, j) \text{ such that } X_j = X_m \}
\]

Collision Statistic

\[
S_k = \text{average of differences of collision times}
\]

\[
S_k = \frac{1}{k} \sum_{i=1}^{k} (T_i - T_{i-1})
\]

\[
= \frac{1}{k} \left((T_1 - T_0) + (T_2 - T_1) + \cdots + (T_k - T_{k-1}) \right)
\]

\[
= \frac{T_k}{k}
\]
Expected Value of S_k

Collision Statistic

$$S_k = \frac{T_k}{k}$$

- Calculate expected value for a probability distribution p:

$$\mathbb{E}_p[S_k] = \mathbb{E}_p[T_k/k]$$

$$= \frac{1}{k} \mathbb{E}_p[T_k]$$

$$= \mathbb{E}_p[T_1]$$

$$= \sum_{i=1}^{n+1} P_i$$

(P_i = probability that no collisions have occurred after i outputs)
Expected Value of S_k

Collision Statistic

$$S_k = \frac{T_k}{k}$$

- Calculate expected value for a probability distribution p:

$$\mathbb{E}_p[S_k] = \mathbb{E}_p[T_k/k]$$

 $$= \frac{1}{k} \mathbb{E}_p[T_k]$$

 $$= \mathbb{E}_p[T_1] \quad \text{(requires IID)}$$

 $$= \sum_{i=1}^{n+1} P_i$$

($P_i = \text{probability that no collisions have occurred after } i \text{ outputs}$)
Near-uniform distributions

Near-uniform distribution family

\[p_{\theta}[Z = i] = \begin{cases}
\frac{\theta}{\frac{n-1}{\theta}}, & i = i_1, \\
\frac{1}{n-1}, & \text{otherwise.}
\end{cases} \]
Steps of the Collision Test

1. Get a family of near-uniform expected values
Steps of the Collision Test

2. Compare sample mean to near-uniform expected values
Steps of the Collision Test

3. Get the p_{max} that corresponds to this expected value
4. Calculate min-entropy directly

\(H = -\log(0.1) = 3.32 \)
Why is the test invalid?

There is no intersection, so the test cannot calculate the min-entropy.
Why is this happening?

Collision Statistic

\[S_k = \frac{T_k}{k} \]

- Calculate expected value for a probability distribution \(p \):

\[
\mathbb{E}_p[S_k] = \mathbb{E}_p[T_k / k] \\
= \frac{1}{k} \mathbb{E}_p[T_k] \\
= \mathbb{E}_p[T_1] \text{ (requires IID)} \\
= \sum_{i=1}^{n+1} P_i
\]

\((P_i = \text{probability that no collisions have occurred after } i \text{ outputs}) \)
Conclusions

Even when the Collision Test "succeeds," it may be overestimating the expected value, which would cause a false increase in the entropy measurement. The Collision Test is being run on non-IID data, but it requires its data to be IID. The Partial Collection Test and the Compression Test also assume IID, but are not in the IID section of 800-90B. But when the data are IID, why not just measure the min-entropy directly?
Conclusions

- Even when the Collision Test “succeeds,” it may be overestimating the expected value, which would cause a false increase in the entropy measurement.
Conclusions

- Even when the Collision Test “succeeds,” it may be overestimating the expected value, which would cause a false increase in the entropy measurement.
- The Collision Test is being run on non-IID data, but it requires its data to be IID.
Conclusions

- Even when the Collision Test “succeeds,” it may be overestimating the expected value, which would cause a false increase in the entropy measurement.
- **The Collision Test is being run on non-IID data, but it requires its data to be IID.**
- The Partial Collection Test and the Compression Test also assume IID, but are not in the IID section of 800-90B.
Conclusions

- Even when the Collision Test “succeeds,” it may be overestimating the expected value, which would cause a false increase in the entropy measurement.

- The Collision Test is being run on non-IID data, but it requires its data to be IID.

- The Partial Collection Test and the Compression Test also assume IID, but are not in the IID section of 800-90B.

- But when the data are IID, why not just measure the min-entropy directly?
“Non-IID” tests in 800-90B

Entropy (bits) vs. RNG Instance

- Markov 1M
- Markov 10M
- Collision 1M
- Collision 10M
- Compression 1M
- Compression 10M
- Partial Collection 1M
- Partial Collection 10M
- Frequency 1M
- Frequency 10M

Acknowledgements

- My advisor, Dr. Allen Roginsky, for giving me this project, for providing help and guidance, and for having really cool conversations
- Dr. Tim Hall, for being the source of many insights, for showing me the Python code, and for a lot of support
- Fellow SURF intern Bobby Staples, for helping me figure out the 90B’s, and sending me that scatterplot
- The SURF directors, especially Dr. David Griffith, for organizing many events and helping me through some logistics
- Dr. Isabel Beichl, for providing some neat opportunities and conversations
- The Crypto Cave, for being awesome and fun friends
- Anyone not on this list