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Abstract

Locating hands in sign language video is challenging

due to a number of factors. Hand appearance varies widely

across signers due to anthropometric variations and vary-

ing levels of signer proficiency. Video can be captured un-

der varying illumination, camera resolutions, and levels of

scene clutter, e.g., high-res video captured in a studio vs.

low-res video gathered by a web cam in a user’s home.

Moreover, the signers’ clothing varies, e.g., skin-toned

clothing vs. contrasting clothing, short-sleeved vs. long-

sleeved shirts, etc. In this work, the hand detection prob-

lem is addressed in an appearance matching framework.

The Histogram of Oriented Gradient (HOG) based match-

ing score function is reformulated to allow non-rigid align-

ment between pairs of images to account for hand shape

variation. The resulting alignment score is used within a

Support Vector Machine hand/not-hand classifier for hand

detection. The new matching score function yields improved

performance (in ROC area and hand detection rate) over

the Vocabulary Guided Pyramid Match Kernel (VGPMK)

and the traditional, rigid HOG distance on American Sign

Language video gestured by expert signers. The proposed

match score function is computationally less expensive (for

training and testing), has fewer parameters and is less sen-

sitive to parameter settings than VGPMK. The proposed de-

tector works well on test sequences from an inexpert signer

in a non-studio setting with cluttered background.

1. Introduction

In this paper, we focus on hand detection in American

Sign Language (ASL) video sequences captured in both

controlled and uncontrolled settings. We envision future

systems for ASL gesture recognition and gesture based re-

trieval that enable users to search through sign language

video (videos could be from stories, news media, lectures,

performances, reference sources, and instructional material)

via gestures to a web cam. As an interim goal, we are devel-

oping a query-by-sign ASL lexicon system, where queries

are signs gestured by inexpert signers to assist in their learn-

ing of sign language. Accurate hand location detection is an

essential component for these applications to enable subse-

quent steps such as hand tracking, hand pose estimation,

and hand shape classification.

Linguists have identified approximately 84 distinct hand

shapes commonly employed in ASL [21]. Hand shapes ori-

ented in different directions in space can convey distinct

signs. Linguistic production constraints reduce the possible

range of hand shapes within a single sign and often enforce

hand shape symmetry for two handed signs; we have not

leveraged these constraints in our current work. The rich-

ness and large space of possible hand shapes compounded

with factors listed below make hand analysis in sign lan-

guage video challenging.

• Between signer variations: two signers for the same

sign may use slightly (sometimes significantly) differ-

ent hand shapes and hand orientations, anthropomet-

ric and gender differences are typical, the signers may

have different ASL proficiencies and learning back-

ground.

• Occlusions: hands occlude each other, oftentimes the

hand is in front or close to the face causing ambiguity

between hand and background.

• Changing environment: background clutter, clothing,

illumination, scale and perspective changes are com-

mon issues to contend with. Motion blur and image

sensor noise are magnified in indoor environments.

• Annotation inaccuracies: in our ASL video sets an-

notated with hand locations, there is variation in the

tightness and centering of bounding boxes. Position-

ing boxes accurately is difficult to do when hands are

close or interacting with each other. The algorithm for

hand detection should be robust to these inaccuracies.

Our proposed approach for hand detection reformulates

the Histogram of Oriented Gradient (HOG) [6, 16] repre-

sentation with an explicit alignment step to allow for non-

rigid deformations between pairs of image chips1. HOG

feature descriptors are extracted from overlapping patches

1We use the term image chip to denote a sub-image or a region of in-

terest (ROI) within an image.
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with centers on a regular feature point grid within an im-

age chip. Traditional HOG based distance measures as-

sume a one-to-one spatial correspondence between the fea-

ture points in the two image chips. For instance, Dalal and

Triggs [6] employ a linear kernel for pedestrian detection,

which corresponds to a dot product between the two sets of

HOG features. We propose an aligned distance between a

pair of chips computed using the best matching HOG fea-

ture vector in the local neighborhood for each HOG feature

location.

Approaches robust to large viewpoint changes have been

proposed for the object recognition task. The Pyramid

Match Kernel (PMK) [11] and Proximity Distribution Ker-

nel (PDK) [15] are two approaches that use feature space

partitioning (or discretization) techniques to create a his-

togram representation of all feature vectors from an image

chip. A histogram intersection score gives the similarity

measure between a pair of image chips.

We formulate a SVM classifier for hand vs. not-hand

image chip classification using the aligned distance. We

show improved hand detection accuracy (in terms of ROC

area and detection rate) over the rigid match and VGPMK

based classifiers in studio sequences of signs signed by ex-

pert signers. The detector in this experiment is trained on

hand images from a female signer and tested with a male

signer. We show that the approach works well on test web-

cam quality video sequences gestured by an inexpert signer

(the intended group for our ASL lexicon application) wear-

ing low skin tone contrast clothing and with background

clutter. In this case, the detector is trained with hand im-

ages from both expert signers collected in studio.

2. Related work

Several approaches address the problem of hand de-

tection and tracking for general hand gesture recognition:

a 2D graphical model for finger articulation is proposed

in [24] and approaches using a 3D hand model are proposed

in [20, 7]. While there are a wide range of possible hand

shapes and poses in sign language, the hand shapes are also

highly structured and are generated by linguistic rules. This

necessitates approaches specific to the sign language set-

ting.

Farhadi, et al. [9] survey previous work in HMM models

for sign recognition and formulate the sign recognition task

as a transfer learning problem; given a dictionary of sign

videos from one signer and test videos from another signer

for a subset of the dictionary gestures, the authors demon-

strate that sign classifiers can be automatically built for the

remaining set of test gestures. They demonstrate good re-

sults on a test signer wearing a long sleeved shirt against a

plain background (the dictionary sequences were syntheti-

cally generated from a computer graphics avatar). The au-

thors use SIFT descriptors extracted on a regular grid as

appearance descriptors for hand images.

Buehler, et al. [4] are motivated by a similar problem

to ours: handling variations across singers, cluttered back-

ground, two hands often being close or interacting with each

other. They address this problem in a tracking setting using

a pictorial structure model for the upper body. The authors

initialize the model for 5% of frames in the test video. We

model hand appearance for hand detection and do not need

initialization; hence our approach is complementary to their

work.

Ong and Bowden [18] use block difference based fea-

tures chosen via AdaBoost training for hand detection.

These features are suited for high contrast settings (e.g.,

light colored hands that have good contrast against a dark

background and signers wear long sleeved shirts). The

problem of aligning hand shapes between signers of differ-

ent proficiencies is not addressed since weak classifiers cho-

sen during training use difference of image blocks at fixed

locations within the ROI

Derpanis, et al. [8] decompose ASL gestures into 14
phonemic movement elements and derive a mapping be-

tween these elements and hand trajectories in the image

plane. Skin detection and frame-differencing are employed

for hand tracking. Motion signatures derived from time se-

ries of hand trajectories are mapped to phonemes. The au-

thors demonstrate good phonemic recognition rates using

these signatures.

Athitsos and Sclaroff [2] present a method to match lines

extracted from synthetic images of ASL hand shapes to

edges in real hand images with cluttered backgrounds. The

authors demonstrate improved performance over chamfer

distance for static hand shapes. The authors in [1] show

that chamfer distance is not well suited for ASL hand shape

matching. Our application is targeted for hand detection

in ASL sequences; motion blur and large between signer

variations make it infeasible to match with synthetic hand

images.

Hamada, et al. [13] propose a hand contour alignment

approach for hand detection and hand pose estimation.

They show results with the same signer in training and

test sequences wearing long sleeved shirt captured against a

simple background.

Yuan, et al. [25] formulate the hand detection problem

as a function parameterized by hand shape. This allows the

detector for different hand shapes to be trained jointly while

allowing a detector tuned to a specific hand shape to be sam-

pled at test time. The authors use a dot product between

HOG feature vectors.

To cope with occlusions, Fujimura and Xu [10] pro-

pose an algorithm to separate hand blobs when hands are

interacting with each other. The authors use depth im-

ages to segment the hand regions and propose a skeleton

graph partitioning method to separate interacting hands.



Smith, et al. [19] propose a method for resolving hand over

face occlusions by modelling background clutter using an

image force field. They evaluate their approach on non-sign

language gestures.

Hierarchical representations with the bag-of-features

model allow for flexible matching between two sets of im-

age features and have shown good performance on object

and category recognition tasks. The Pyramid Match Ker-

nel (PMK) [11] and its extension, the Vocabulary Guided

PMK (VGPMK) [12] represent a set of HOG features from

an image chip as a multi-resolution histogram in the feature

space. HOG feature vectors are augmented with (x, y) co-

ordinates of the corresponding feature point to encode spa-

tial proximity information. We use VGPMK in hand de-

tection experiments for comparison with the proposed ap-

proach since its performance was shown to be better than

PMK for high dimensional features [12].

Ling and Soatto [15] propose a code book representation

of feature vectors extracted from training image chips. A

histogram is constructed to capture the spatial (x, y) prox-

imity for all pairs (or triples) of code book elements within

an image chip. The authors demonstrate performance im-

provement on object category recognition data sets. The

PDK histogram (unlike the PMK representation) only stores

pair-wise (or three-wise) proximity information for image

features; the global spatial structure of the image features is

lost. For hands, we believe it is essential to retain the overall

spatial structure within the hand image.

3. Aligned distance measure for image chips

Given a pair of image chips I1, I2 normalized to a fixed

size, we define an aligned distance score that allows for non-

rigid deformations between the images. This is essential

for matching hand chips due to the flexibility and variance

inherent in hand shape and pose across signers.

Histogram of Oriented Gradient [16, 6] descriptors for

image chips (examples illustrated in Figure 1) are extracted

as follows. We define a 2-D grid of uniformly spaced fea-

ture point locations G = {(xi, yj) : i = 1 . . . G, j =
1 . . . G} within the image chip. In our implementation, im-

age chips are 90× 90 pixels and an 8× 8 feature point grid

is defined at one scale. Image patches of size 20 × 20 pix-

els with centers Gi,j form image regions for HOG feature

extraction. Adjacent patches overlap by 10 pixels to allow

non-rigid alignment computation between a pair of image

chips. The color gradient at a pixel is computed as the max-

imum magnitude gradient vector in the RGB color planes

and a Sobel operator with a Gaussian smoothing filter is

used for gradient computation. Each HOG image patch is

subdivided into 2×2 cells. Gradient magnitudes within each

cell are accumulated into 12 orientation bins over the range

[0, 2π). Feature vectors from cells in a patch are concate-

nated to form a 48 dimensional HOG feature vector. This

accompany             action                across

Figure 1. HOG feature extraction for hand image chips from three

signers for the same signs. Variation in hand shape across signers

necessitates the distance measure between image chips to allow for

non-rigid deformation. The blue circles are the centers for HOG

patches, each HOG patch corresponds to a 2× 2 block of 10× 10

pixel cells shown here with red boxes. Adjacent HOG patches

overlap by one cell width. A 48 dimensional feature vector nor-

malized to unit length is used for each patch. Even though cells

are shared by two or more HOG patches, their contribution to each

HOG feature vector is different due to the normalization step.

vector is then normalized to unit length for robustness to il-

lumination and contrast changes (as was proposed for the

SIFT descriptor in [16]). Thus, we represent a HOG fea-

ture vector for an image patch at grid location (xi, yj) by

Hi,j ∈ R
48.

Let Ni,j be the set of feature locations in the spatial

neighborhood of (xi, yj) ∈ G within distance TN ,

Ni,j = {(k, l) : ‖(xi, yj)−(xk, yl)‖ ≤ TN , (xk, yl) ∈ G}.

Our proposed distance function incorporating alignment is

given by,

D(I1 → I2) =
∑

i = 1...G
j = 1...G

min
(k,l)∈Ni,j

∥

∥

∥
HI1

i,j −HI2
k,l

∥

∥

∥
. (1)

Here, ‖ · ‖ is the Euclidean distance between HOG fea-

ture vectors. A symmetric distance measure is obtained by

adding the directed distance scores,

D(I1, I2) = D(I1 → I2) +D(I2 → I1). (2)



Query chip : "africa2" Best aligned DB chip : "appointment1"

Query → DB DB → Query

Figure 2. Alignment vectors computed using Equation 1 between

a query hand image and the top match database image retrieved

using the symmetric distance in Equation 2. The red box in top left

image is the ROI for a HOG patch, the circles represent centers of

ROIs for HOG patches.

Rigid matching without alignment corresponds to TN = 0.

In our implementation, we choose TN such that |Ni,j | ≤ 13
(up to 13 neighbors for each feature location, feature points

near the image chip boundary have fewer neighbors). We

tried 5, 9 and 13 local neighborhood sizes. While each im-

proves results over rigid match, the 13 neighborhood gave

the best results on our data sets.

Aligned distance computation is more expensive than

rigid match by a factor of 2× average(|Ni,j |). The cost in

the inner distance computation loop can be reduced by us-

ing an early stopping criterion keeping track of the current

minimum match score. Larger neighborhood values make

the distance computation expensive to run. During hand de-

tection using a scanning window, it is, for instance, possible

to reuse some computation from adjacent windows to make

the computation more efficient.

4. SVM formulation for hand detection

A distance or similarity measure between pairs of sam-

ples is a natural fit for the Support Vector Machine (SVM)

formulation. PMK, PDK and Intermediate Matching Kernel

[11, 15, 3] are a few examples of approaches that employ

this method for object recognition. We use the aligned dis-

tance (Equation 2) within a SVM framework for hand/not-

hand classification. In our formulation, we consider various

hand shapes and hand poses as the foreground class, image

chips that partly overlap or do not overlap with hands are

considered as the background class. We define the function

K(I1, I2) for use as the kernel function in a SVM,

K(I1, I2) = exp(−γ D(I1, I2)). (3)

We note that semi-definiteness of K is not guaranteed. This

has been observed by authors in the past with other align-

ment based distance functions, for instance the chamfer dis-

tance and the Hausdorff distance. Grauman, et al. [11]

provide an in-depth analysis of various alignment based

kernels. In some cases, approximations that satisfy semi-

definiteness are possible; for instance, Odone, et al. [17]

propose an approximation to the Hausdorff distance and

Boughorbel, et al. [3] show an approximation to a version

of the aligned distance. In practice, we found using K for

hand detection gives stable results, i.e., the quadratic SVM

optimization converges to the desired optimum.

A key advantage of our proposed approach in compar-

ison to other kernels like PMK or PDK is that γ is the

only parameter to specify. The role of γ is similar to the

bandwidth parameter in RBF kernels. The neighborhood

size parameter TN is governed by computational consider-

ations, the expected deformation and image scale. We found

larger neighborhood sizes typically work better and in our

experiments a 13 neighborhood was used. SVM training

converged correctly on our hand detection data sets for var-

ious γ values > 0.03 without additional modifications to

the kernel matrix to enforce semi-definiteness. Using a 13
neighborhood for alignment, γ < 0.02 sometimes yields

incorrect results for SVM training (the optimized classifier

inverts polarity of positive and negative samples). We ob-

served similar behavior with VGPMK for some parameter

settings.

5. Hand detection in cluttered ASL video

Our hand detection pipeline follows the standard image

scan approach. The sequence of steps is illustrated in Fig-

ure 3 for a non-studio sequence from the LAB-F data set.

To reduce the computational expense, we use image scan

Regions of Interest (ROIs) at one scale and prune the ROIs

with the detected skin mask. We run the hand/not-hand

SVM classifier for the reduced set of ROIs and choose the

top N boxes subject to an overlap constraint for detected

hand locations. For all sequences in this set, we used the fol-

lowing parameters for image scan: image scale 82% of orig-

inal size, ROI dimensions 90 × 90 pixels, ROI spacing 12
pixels, skin mask overlap area for each ROI > 30%, over-

lapping area between top N detected hand ROIs < 80%.

6. Image pre-processing

We use skin detection to reduce artifacts of clothing

changes and background clutter. To achieve additional ro-
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Figure 3. Processing pipeline for hand detection in cluttered ASL

video. Results of skin detection and background substitution with

average face skin color on an input frame from the LAB-F set are

shown in the top row. Image scan ROIs pruned to overlap with

the skin mask are shown in the lower left image. HOG features

from the pruned ROIs (approximately 200 boxes) are input to the

aligned distance based hand detector. The top five detected hand

locations are shown in the lower right image. Data used for train-

ing the hand detector is described in Section 7.3.

Dataset Signer gender, ASL proficiency, # ASL # hand

ID video capture location signs chips

STUDIO-F female, native, studio 997 64k

STUDIO-M male, native, studio 680 50k

LAB-F female, two years, computer lab 605 –

Table 1. Statistics for ASL video sets used in our experiments.

The signers sign words from the Gallaudet Dictionary [22]. In the

studio setting, we capture 60fps uncompressed videos, with plain

background, dark clothing and controlled illumination. These

videos have minimal motion blur and good dynamic range. The

non-studio video set was captured with a different camera at 30fps

compressed in MPEG4 format. All videos are 640 × 480 pixels.

Hand location annotations are not available for the LAB-F data

set.

bustness to clutter in HOG feature extraction, we substitute

background pixels with the average face skin color for all

video sequences (this helps since we use color gradients

as described in Section 3). We use the Viola Jones detec-

tor [23] to detect faces. Histograms in RGB space trained

with skin color from STUDIO sequences and background

color from a lab background sequence are used to model

foreground and background color distributions. A pixel-

wise likelihood ratio test is used as the skin color classi-

fier. In frames where a face is not detected, we use average

skin segment color to substitute for background pixels. Fig-

ures 3, 4 show the results of pre-processing on images from

STUDIO and LAB sequences.
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Figure 4. Images in first two rows are from STUDIO-F and

STUDIO-M sequences. Results of skin detection based pre-

processing are shown in the second row. Magenta boxes are the

detected face locations, green boxes are annotated hand locations,

red boxes are hand locations resized to ensure uniform scale for

hands across the data set. Hand image chips extracted from STU-

DIO signers are used as foreground samples to train the hand de-

tector. Image chips chosen to overlap > 20% with detected skin

region but overlap < 60% with hand ROIs are background sam-

ples shown here by yellow boxes. Additional background samples

are extracted from a rest pose sequence of our test signer and from

a lab video sequence. These are shown in the third row.

7. Experiments and performance evaluation

In the first experiment, we compare performance of the

aligned distance measure with the rigid match distance and

VGPMK [12] for hand detection on STUDIO datasets. In

the second experiment, we show hand detection results on

video sequences collected with cluttered background from

the LAB-F dataset.

7.1. Training and test sets for hand detection

We captured ASL video from three signers; two sets

(STUDIO-F and STUDIO-M) were collected from native

male and female signers in a photographic studio and one

set (LAB-F) was collected from an inexpert signer in the

computer lab. The statistics are summarized in Table 1. Our

procedure to extract training image chips for hand detection

is illustrated in Figure 4.



7.2. Hand detection performance comparison

We use the studio data sets for detector training and

testing to quantify improvement in hand detection perfor-

mance using the aligned distance based detector (hand lo-

cation annotations are not yet available for the computer

lab sequences). To measure generalization performance

across signers, we use the STUDIO-F set for training and

STUDIO-M set for testing. The training and test sets each

contain 4, 000 foreground (hand) and 8, 000 background

image chips. Foreground class samples for both hands are

sampled from STUDIO-F set in training and STUDIO-M

set in testing. Background class samples are extracted from

the corresponding foreground sequences, from a test signer

sequence and a lab sequence as summarized in Figure 4. All

image chips are normalized to 90× 90 pixels.

For rigid and aligned distance functions, we use an 8× 8
grid of HOG patches as illustrated in Figure 1. In the case

of VGPMK, we use a 14 × 14 grid of HOG patches with

other HOG parameters the same as for the rigid distance. A

larger set of feature vectors is needed to have sufficient sam-

ples to build the VGPMK histogram. Spatial information in

VGPMK is encoded by appending the within-image chip

feature location (x, y) ∈ [0, 1] to the normalized HOG fea-

ture vector. We used the LIBPMK [14] package to build the

VGPMK pyramid and kernel matrices. The bin weights are

set as BIN WEIGHT INPUT SPECIFIC and kernel nor-

malization with the diagonal is enabled. VGPMK perfor-

mance is linked to the parameters used for hierarchical K-

means clustering to construct the space partitioning; we

tried the following set of parameters, {number of levels ∈
[5, 7]} × {branching factor ∈ [8, 50]}. We found that the

optimal VGPMK parameters were specific to a data set.

SVM training and test details for the hand detection task

are as follows. We use the two-class ν-SVM implementa-

tion from the LIBSVM [5] package to train the hand detec-

tor. We fix ν = 0.005 in all the experiments. γ in Equa-

tion 3 is the only parameter for rigid and aligned distance

functions (we use a 13 neighborhood for aligned distance).

We sample γ in the range [0.015, 0.026] for the rigid match

distance and in the range [0.04, 0.046] for the aligned dis-

tance function. The performance of both approaches is not

very sensitive to choice of γ (for aligned distance γ should

be > 0.03). The results shown in Figure 5 demonstrate

that the aligned distance based detector performs better in

both ROC area and hand detection rate than rigid match and

VGPMK. The best detection rate for VGPMK at 2% false

positive rate was obtained with branching factor = 42, #

levels = 5 and yields a detection rate of 94.1% and ROC

area = 0.9937.

The training and test times for the three algorithms are

shown in Table 2. VGPMK needs ≈ 5.6Gb of memory

for training and testing compared to < 2Gb for rigid and

aligned match detectors.
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Figure 5. Hand detection ROC curves comparing performance of

the aligned distance based classifier with rigid match distance ker-

nel and VGPMK. Training image chips for this experiment are

from the STUDIO-F set and test chips are from the STUDIO-M

set. ROC area denotes area under the ROC curve. The plot shows

ROCs with the top two parameter settings in terms of ROC area for

each approach. Detection rates are measured at 2% false positive

rate. #levels and #branch are the number of levels and branching

factor parameters used to construct the pyramid representation in

VGPMK.

Distance measure Training time Testing time # Support

/ kernel (12k samples) (per sample) vectors

Rigid match 555s 0.0454s 4521

Aligned match 7,020s 0.5532s 5900

VGPMK 22,460s 0.6179s 3140

Table 2. The training time for VGPMK includes construction of

the pyramid representation using K-means clustering. LIBSVM

was used to train the SVMs for all algorithms. The HOG feature

extraction time is not included for all three approaches.

7.3. Hand detection results in cluttered ASL video

To demonstrate hand detection performance using the

aligned distance function for the ASL lexicon retrieval ap-

plication, we use the LAB-F video set of an inexpert signer

wearing low skin tone contrast clothing collected in a com-

puter lab. We sample 4, 000 hand chips from STUDIO-F

and STUDIO-M sets as foreground examples. We sample

8, 000 background chips from the STUDIO sequences, from

a rest pose sequence of our test signer and a lab background

sequence as illustrated in Figure 3. We follow the steps

as in the previous experiment to extract HOG features and

train the SVM based hand detector using a 13 neighborhood

aligned distance function. We choose γ = 0.042 in training

the SVM based on results from the previous experiment.

We follow the steps described in Section 5 to detect hand

locations in test video sequences. We detect a fixed number



of hand candidates in each frame; three candidates are cho-

sen for one handed signs and five candidates are chosen for

two handed signs. With ≈ 200 image scan ROIs after skin

mask based pruning (Figure 3), 3 and 5 detected hand candi-

dates correspond to false positive rates of 2/200 and 3/200
for one and two handed signs respectively. Results of hand

detection on example video frames are shown in Figure 6.

The total detection time is ≈ 100s per frame. Approaches

to make the detector more efficient are discussed in the next

section.

8. Conclusions and future work

A distance measure is proposed to compute a non-rigid

alignment between pairs of hand chips to accommodate

hand shape variations for each signer and among different

signers. The distance measure is incorporated into a SVM

based foreground/background classifier for hand detection.

The proposed approach shows better hand detection rates

than rigid matching and VGPMK on ASL video of gestures

signed by experts. The proposed approach has fewer and

easier to tune parameters while being less computationally

expensive than VGPMK. Robustness of the proposed ap-

proach is demonstrated on video of ASL gestures signed by

an inexpert signer in an unconstrained setting with cluttered

background.

Techniques to further improve performance of hand de-

tection and part of our future work include,

• ASL constraints: The range of hand shapes within a

sign are constrained by ASL production rules. For

instance, not every hand shape co-occurs with every

other hand shape, and many two handed signs either

have symmetric hand shapes or a limited set of hand

shapes for the non-dominant hand.

• Clutter model: The signer’s face is the most significant

contribution to background variation in hand chips,

Smith, et al. [19] propose a relevant approach to model

facial clutter.

• Forearm detector: A forearm detector can be used to

further prune the ROI set for input to the hand detector.

• Regularization term in alignment: A simple mesh

model can be used to constrain the non-rigid alignment

and smooth the deformation field.
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Figure 6. We show hand detection results using the 13 neighborhood aligned distance based detector on gestures with interacting hands

from the LAB-F set. The training and test setup for this experiment is described in Section 7.3. The detection scores (i.e., SVM outputs)

for top five hand ROIs are displayed for each frame sorted in decreasing order.


