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ABSTRACT

The ability to recognize handshapes in sign language video is essential in algorithms

for sign recognition and retrieval. Handshape recognition from isolated images is, however,

an insufficiently constrained problem. Many handshapes share similar 3D configurations

and are indistinguishable for some hand orientations in 2D image projections. Additionally,

significant differences in handshape appearance are induced by the articulated structure

of the hand and variants produced by different signers. Linguistic rules involved in the

production of signs impose strong constraints on the articulations of the hands, yet little

attention has been paid to exploiting these constraints in previous works on sign recognition.

The focus of this research is American Sign Language (ASL), although the same ap-

proach could be applied to other signed languages. Among the different classes of signs in

ASL, so-called “lexical signs” constitute the prevalent class. Morphemes (i.e., meaningful

units) for signs in this class involve a combination of particular handshapes, palm orien-

tations, locations for articulation, and movement type. These are analyzed by many sign

linguists as analogues of phonemes in spoken languages. As in spoken language, phonolog-

ical constraints govern the ways in which phonemes combine in signed languages; utilizing

these constraints for handshape recognition in ASL is the focus of this thesis.

Handshapes in monomorphemic lexical signs are specified at the start and end of the

sign. Handshape transitions within a sign are generally constrained to involve either closing
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or opening of the hand (i.e., folding or unfolding of the palm and one or more fingers).

Akin to allophonic variations in spoken languages, both inter- and intra- signer variations

in the production of specific handshapes are observed. We propose a Bayesian network

formulation to exploit handshape co-occurrence constraints, also utilizing information about

allophonic variations to aid in handshape recognition. We propose a fast non-rigid image

alignment method to gain improved robustness to handshape appearance variations during

computation of observation likelihoods in the Bayesian network.

We evaluate our handshape recognition approach on a large dataset of monomorphemic

lexical signs. We demonstrate that leveraging linguistic constraints on handshapes results

in improved handshape recognition accuracy. As part of the overall project, a large corpus

is being prepared for dissemination: video for three thousand signs, each from up to six

native signers of ASL, annotated with linguistic information such as glosses and morpho-

phonological properties and variations, including the start/end handshapes associated with

each ASL sign production.
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Chapter 1

Introduction

Signed languages are visual-gestural languages used as the primary means of communica-

tion by the Deaf (individuals who culturally identify with the Deaf community). Signed

languages are full-fledged natural languages, which are generally quite different from spo-

ken languages that are used in the same region. Applications analogous to those enabled

by speech recognition have been envisioned by computer vision researchers for signed lan-

guages, as well. The broad spectrum of possible applications includes sign language video

retrieval and recognition given video input. Query-by-text is not often suitable for search-

ing sign language video content because annotations in the form of subtitles and/or video

transcriptions are only available in a small fraction of sign language video sequences. Spo-

ken language subtitles, where available, do not exactly match the sign language source

because of the substantial differences between the two languages. The ability to search sign

language content using a query-by-sign interface can significantly improve access to sign

language users for the sign language video collections that are available today. A sign lan-

guage recognition (SLR) system in general needs to be able to detect, identify and recognize

signs that are contained in the input signing video. Despite the importance of research in

SLR and the substantial progress that has been demonstrated in advancing the state of the

art in this area ([Cooper et al., 2011] presents a recent survey of computer vision approaches

for SLR), person-independent recognition and retrieval of signs produced in natural envi-

ronments remains a challenging problem, particularly when a large vocabulary of signs are

involved.

One application of specific interest in our research is a query-by-sign search interface for

a sign language dictionary. In the envisioned system the user can search the dictionary for

3
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Sign language video retrieval Recognizing signs contained in a 

continuous signing video sequence

Query-by-sign sign language 

dictionary

Assist in preparing linguistic 

annotations

Figure 1·1: Computer vision applications for sign language recognition.

a specific sign, as produced in front of a web cam or as defined by start and end points from

a video, to look up its meaning and other related information in a multimedia sign language

dictionary. A closely related application is the development of a sign-bank system to aid

linguists with the task of preparing annotations for sign language video. The user identifies

a segment in the input video sequence and the sign-bank system retrieves items from an

annotated sign language dataset and in doing so allows the relevant linguistic attributes of

the retrieved signs to be imported by the user.

Linguistically motivated probabilistic models (e.g., HMM, DBN, CRF) have shown sub-

stantial promise towards developing data-driven algorithms for spoken language recognition.

However, linguistic properties have so far only been used to a very limited extent in the

development of sign language recognition methods. One unique aspect of sign language is

the way in which several articulatory channels (as detailed in the next section) are used
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• Palette for linguistic annotations [Neidle, 2007]

– Contains 85 handshape distinctions

• Simple baseline for handshape recognition

– 30.4% 1-nearest neighbor accuracy for 1,924 hand images

Examples of handshapes observed in ASL video and their 

ground-truth labels from the handshape palette

… … …

Figure 1·2: Examples illustrating challenges involved in identifying hand-
shapes from hand images in ASL video. Signs in these video sequences were
produced by a native signer.

together to convey meaning. Linguistic constraints govern the relationships among differ-

ent articulatory features in visual-gestural productions that are deemed meaningful and

valid in a signed language. Computer models that exploit linguistic constraints associated

with different articulatory features can therefore enable SLR algorithms to yield a more

linguistically plausible recognition result. This thesis focuses on the recognition of one

specific articulatory component, handshapes. The properties of handshapes are relatively

well-understood in terms of the features of hand configuration that convey essential dis-

tinctions among different signs as well as in terms of the constraints that are intrinsic to

handshapes articulated in large classes of signs. Van der Kooij [Van der Kooij, 2002] and

Whitworth [Whitworth, 2011] present an in-depth analysis of the properties of handshapes

employed in signs.
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We anticipate that handshape inference will be one of several computer vision compo-

nents in a full-fledged SLR system. Figure 1·2 highlights a few of the challenges involved

in developing a robust system for handshape recognition from sign language video. A base-

line nearest neighbor handshape retrieval approach using isolated hand images yields 30.4%

1-nearest neighbor retrieval accuracy. Among the several options towards improving the

handshape recognition rate, previous research in this area has not leveraged the linguistic

properties that pertain to handshape articulation. For the handshape inference task, we for-

mulate data-driven probabilistic models to leverage constraints on the allowable handshape

relationships for the largest class of signs in American Sign Language (ASL). The models

developed in this thesis, however, have more general applicability since the same types of

principles could be applied to the recognition of handshapes in other signed languages, as

well.

The availability of large copora for both written language text and spoken language

utterances has proven to be instrumental in developing state-of-the-art speech recognition

systems. Unlike most spoken languages, signed languages do not have a standard, conven-

tional written representation. Video corpora for signed languages annotated with linguistic

information are therefore indispensable for developing SLR approaches. However, only a

relatively small number of such corpora are currently available for sign language research.

These datasets are also modest in size (especially with respect to the availability of produc-

tions from many different native sign language users) and often do not contain the necessary

linguistic annotations. A corpus for ASL containing a large number of citation form signs

produced by up to six native ASL users was therefore collected and annotated with the

linguistic attributes necessary for training the proposed models for handshape inference.

All aspects of the dataset preparation (recruiting native sign language users, eliciting signs

from the participants, and preparing detailed annotations for the collected signs) involved

very substantial contributions from sign language linguists.
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1.1 Aims of this dissertation

In this thesis, we focus on the recognition of manual signs (i.e., words produced using the

hands and arms). In particular, we limit our attention to one important manual component,

handshape. The other manual components that are outside the scope of this thesis include:

hand orientation (the direction vector perpendicular to the face of the palm), the hand

location (points of contact with other parts of the body, or, its location in signing space

with respect to the face, the other hand or the torso) and the hand movement trajectory.

Handshapes represent the internal configurations of the hand (the degree of bend-

ing/extension of the skeletal joints in the palm and the different fingers). Only a finite

number of handshape configurations convey linguistic distinctions in a given language1. Al-

gorithms to identify handshape configurations observed in signing video are therefore an

important component of SLR approaches.

Several factors have an adverse impact on the reliability of approaches for handshape

recognition from a single image. Many handshapes differ from each other in the positions of

one or more fingers (or the thumb) and hence are difficult to tell apart when observed by a

camera from different viewing positions. Anthropometric differences as well as articulatory

differences are observed in handshapes produced by different signers. The rapid movement

of hands during signing produces motion blur in video. Hands also frequently occlude each

other when signs are viewed from a particular viewpoint.

In this thesis, we aim to improve handshape recognition accuracy by exploiting sev-

eral sources of regularity in handshapes produced within signs. In a large class of signs

(monomorphemic lexical signs, the linguistic properties of these signs are discussed in the

next chapter), the handshapes at the start and end temporal positions of the sign are es-

sential for conveying linguistic distinctions. Signs in this class can be categorized as either

one-handed or two-handed. In both types of signs, the changes in handshape configurations

between the start and end positions of each sign are linguistically constrained. Furthermore,

1There is no general agreement regarding the precise number of handshapes in sign language, however,
it is widely accepted that there are between 80 and 150 handshape forms that convey linguistic distinctions
in ASL [Whitworth, 2011].
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Input: Video of a sign Output: Ranked list of likely 

start/end handshapes

sign 

start

sign 

end

r  = 1 r = 2 r = 3 r = 4

START

END

Figure 1·3: An example illustrating the handshape inference problem in
monomorphemic lexical signs solved by the HSBN model formulated in this
thesis. The signer’s right hand has been chosen here for the handshape
inference problem to simplify this illustration.

in two-handed signs, there are linguistic dependencies between the handshapes of the left

and right hands.

These constraints on handshapes can be represented probabilistically in a data-driven

formulation that exploits the statistical properties of start and end handshape co-occurrences

observed among a large number of signs in a sign language video corpus. In a similar fashion,

the statistical properties of handshape variability in signs obtained from different signers

can also be analyzed.

A formal problem statement for handshape inference in monomorphemic lexical signs can

be summarized as follows. The handshape inference problem is illustrated with an example

in Figure 1·3. The inputs given are a monocular video sequence depicting an isolated sign

along with certain attributes of the query (these include, the start/end time-codes of the

sign and a classification that specifies whether the sign is one-handed or two-handed). The

desired outputs are the start/end handshape labels. In one-handed signs we need start/end

handshape labels for the dominant hand whereas in two-handed signs we need the start/end

handshape labels for both hands. A ranked order of the likely start/end handshape labels

is desired as output of the handshape inference procedure in order to accommodate the
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ambiguity inherent in determining handshape configurations from monocular video. A

ranked ordering of the inferred handshape labels facilitates the integration of handshape

inference results with the results obtained from other computer vision based recognition

components in a SLR system towards the overall goals of producing a ranked list of sign

language productions (i.e., labels for items contained in the vocabulary) for the query sign.

1.2 Overview of the proposed formulation for handshape inference

We propose the HandShapes Bayesian Network (HSBN) as a probabilistic representation

towards addressing the handshape inference problem. The HSBN belongs to the class of

Dynamic Bayesian Network models (DBNs). The HSBN’s model structure (i.e., the variables

contained in the model and the probability distributions that relate the values adopted by

these variables) is designed to incorporate linguistic properties that pertain to start and

end handshapes in monomorphemic lexical signs. The HSBN employs hidden variables to

account for inter- and intra-signer variability observed in handshape articulation. This

allows certain handshapes to be obtained as different realizations of underlying hidden

states.

The HSBN formulation is data-driven in that the parameters for probability distributions

in the model as well as the representation for hidden variables in the model are estimated

given a sign language video dataset annotated with linguistic attributes (these are outlined

in the next section). The training of the HSBN model parameters is accomplished in a

variational Bayes learning framework.

At query time, given parameters for the previously trained HSBN model, the posterior

probabilities necessary for handshape inference can be computed in a closed form. The

HSBN thus enables efficient algorithms for handshape inference towards producing a ranked

list of handshape labels for handshapes contained in the query.
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1.3 The lexicon video dataset for ASL

A corpus for ASL containing a large number of signs in the vocabulary produced by many

sign language users is needed in order to develop our envisioned query-by-sign dictionary

and sign-bank applications. Detailed linguistic annotations for the video sequences are

necessary so that computer vision methods can be trained to make the same distinctions

as those recognized by sign language users.

The ASL lexicon video dataset (ASLLVD) [Neidle et al., 2012b, Athitsos et al., 2008b]

was developed at Boston University through an effort led by sign language linguists (un-

der the direction of Carol Neidle) working in close collaboration with computer scien-

tists. Linguists were chiefly responsible for recruiting native sign language users with

diverse linguistic backgrounds, eliciting a large number of signs from the signers, devel-

oping the SignStream R©3 application for conducting annotations of video sequences and,

for the painstaking efforts required in preparing detailed annotations of linguistic attributes

and articulatory features for the collected signs. The computer science contributions include

the capture of high-speed time-synchronized videos from multiple viewpoints in a calibrated

environment and the development of software to aid linguists in the task of verifying and en-

suring consistency of linguistic annotations across ≈ 10, 000 productions of signs contained

in the dataset. Further details of the lexicon dataset will be presented in Chapter 4.

In the context of the handshape inference problem studied in this thesis, the lexicon

dataset contains ≈ 3000 distinct monomorphemic lexical signs with examples of each sign

produced by between one and six native sign language users providing a total of ≈ 8500

signs. This dataset is unique in that the signs

(a) are grouped to ensure that each group of signs corresponds to a distinct item in the

vocabulary thereby ensuring that the distinctions necessary for training computer

models are delineated, and,

(b) are annotated with several important linguistic attributes that include the start/end

positions of signs in video, the start/end handshape labels and articulatory classifica-
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tions denoting signs as one-handed/two-handed (and their sub-classes).

These annotations play a crucial role in the training and empirical evaluation of the HSBN

formulation.

1.4 Summary of contributions

The contributions of this thesis pertain to the development of the HandShapes Bayesian

Network formulation for handshape inference and to the development of the lexicon video

dataset for ASL.

• The HandShapes Bayesian Network:

The HSBN is formulated as a probabilistic approach to model linguistic properties

and constraints that govern the allowable combinations of start/end handshapes in

monomorphemic lexical signs. The HSBN model parameters are estimated given a

dataset of signs annotated with linguistic attributes. By utilizing linguistic constraints

during handshape recognition, the HSBN approach narrows the set of candidate la-

bels for the observed handshapes in a given sign and thereby enables the recognition

algorithm to produce a more linguistically plausible set of handshape labels.

The HSBN seeks to represent the properties of handshape articulation that hold in

general for monomorphemic lexical signs. Robust models can therefore be trained

even with modest dataset sizes containing a relatively small number of examples for

several items in the vocabulary. Sign-specific models that have traditionally been used

for SLR perform poorly on the signer-independent recognition task due to the small

number of examples that are typically available for each item in the vocabulary.

The HSBN utilizes a hidden (hidden) variable layer to accommodate inter- and itra-

person variations in handshape articulation. The handshapes observed in signs can

therefore be modeled as different realizations of these hidden variables.

To impart additional robustness to anthropometric variations, we develop an efficient

algorithm to perform non-rigid image alignment for handshape image pairs. This aids
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in improving the set of candidate handshape labels that are obtained as potential

matches to the handshapes observed in a query sign.

The HSBN has been evaluated for the person-independent handshape recognition task

using a dataset containing a large number of distinct ASL signs. The HSBN demon-

strates improved recognition accuracy when compared to an approach that recognizes

start and end handshapes independently (more details about the evaluation method

and accuracies obtained are described in the next section).

• Lexicon video dataset (ASLLVD):

The lexicon dataset provides a large collection of ASL signs annotated with linguistic

attributes to enable the development of data-driven probabilistic models for SLR.

Even though the focus in this thesis is handshape recognition, we anticipate that the

lexicon dataset can prove to be an important resource in facilitating research in other

aspects of SLR, as well as linguistic research on ASL. The lexicon dataset is also

essential to enable progress towards our envisioned SLR applications: the query-by-

sign dictionary and sign-bank systems.

The lexicon dataset was developed through a collaborative effort involving a large

team of linguists and computer scientists. The contributions of the research in this

thesis towards this project was the development of the Lexicon Viewer and Verification

Tool (LVVT), a software application to organize, verify and ensure consistency of lin-

guistic annotations across several thousand signs contained in the dataset. The LVVT

provides linguists with the functionality necessary to efficiently detect and annotate

fine-grained distinctions among different productions of signs. These distinctions are

essential in general for training computer vision methods for SLR. These distinctions

are specifically leveraged in this thesis to train probabilistic models for handshape

inference.
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1.5 Summary of results

The HSBN was evaluated using signs contained in the ASLLVD collection. A training set is

used to learn model parameters in the HSBN using the variational Bayes learning approach.

The training set contains 2, 636 monomorphemic lexical signs produced by 5 native signers

for a total of 6, 958 examples. A sequestered subset of signs produced by a signer who is

not part of the training set is used to evaluate the handshape inference accuracy. The test

set contains 577 signs from one signer providing a total of 646 examples.

Using the HSBN to perform joint inference of start/end handshape labels improves

signer-independent rank-1 handshape recognition accuracy from 30.4% (for the baseline

simple nearest neighbor based handshape recognition method) to 44%. This accuracy may

appear low, but it is a significant improvement given the large number of handshape classes

(85 labels) with relatively small differences in handshape configuration.

1.6 Thesis roadmap

The thesis is organized as follows. Background concerning the linguistic concepts that moti-

vate the handshape inference formulation developed in this thesis is presented in Chapter 2.

An overview of the ASL Lexicon Video Dataset is given in Chapter 4. Previous work on

computer vision methods that have addressed the problem of recovering hand configura-

tions from video for both sign language applications as well as in non-signed gestures are

discussed in Chapter 3. The HSBN representation for the handshape inference problem

is formulated in Chapter 5. The equations and algorithm for training the HSBN model

are derived in Chapters 6 and 7. The proposed approach for non-rigid image alignment to

extract nearest neighbors for query handshape images that are used to compute observa-

tion likelihoods in the HSBN is described in Chapter 8. The performance of the proposed

handshape inference approach is evaluated in Chapter 10. A summary of the contributions

and potential future extensions of this work are presented in Chapter 11.
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1.7 Publications reporting research conducted in this thesis

A preliminary version of the HSBN formulation for one-handed signs was reported in [Thangali

et al., 2011]. A previous version of the image alignment algorithm was evaluated for the

hand detection task in [Thangali and Sclaroff, 2009]. The ASLLVD dataset was described

in [Neidle et al., 2012b, Athitsos et al., 2008b]. Additional details of the dataset are provided

on the ASLLVD webpage [Neidle et al., 2012a].



Chapter 2

Background about American Sign Language (ASL)

This chapter summarizes the linguistic background needed to motivate the HSBN formula-

tion for the handshape inference problem.

2.1 Introduction to sign language

In this brief introduction, we provide an overview of linguistic properties of signed languages

that are relevant to this research. For a general introduction to sign language including an

overview of its linguistic properties and the internal mechanisms governing the composition

of signs, see [Valli and Lucas, 2000, Brentari, 1998, Van der Kooij, 2002].

2.1.1 Challenges that arise in developing linguistic models of sign language

Sign languages are comparable in richness, structure, and complexity to spoken languages.

Signs are the analogs of words in the visual-gestural modality. Signs may be morphologi-

cally inflected to incorporate information about, for example, aspect or agreement; and the

realization of a sign can be affected by adjacent signs, giving rise to co-articulation effects.

Unlike most spoken languages, sign languages generally do not have a standard, con-

ventional written form. Signed and spoken languages in a given geographic region bear

relatively little relationship (there are however phenomena resulting from language con-

tact). Written language texts are hence not available for the development of sign language

models. Labor intensive linguistic analysis and annotation of sign language video sequences

is often the only viable means of accruing a sufficient amount of data to enable the devel-

opment of (theoretical or computer-based) models to represent linguistic processes involved

in sign language. Our attention is focused on developing computer models for articulatory

15
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processes that are general to a large class of signs and we can thus circumvent some of the

difficulties posed by the relatively small sizes of sign language datasets that are currently

available.

As with spoken language, dialectal and idiolectal differences as well as naturally occur-

ring variations in articulation are found in sign language productions from different users.

Such variations must be taken into account in computer methods developed for person-

invariant SLR systems. In this research we adopt a data-driven approach to formulate

probabilistic models that account for sign-independent handshape variations attested in a

large class of signs.

2.2 Linguistic organization of signed languages

Signs are produced by articulations of the hands and arms. Non-manual expressions, i.e.,

expressions of the face and upper body occurring in parallel to manual signing, also convey

important linguistic information. In this section we will describe the internal composition

of signs.

2.2.1 Units of meaning and articulatory units conveying linguistic distinctions

in (signed / spoken) language

The basic units of meaning (morphemes) in both spoken and signed languages are made up

of articulatory, discriminatory units called phonemes. (Many linguists use this term even

for signed languages.) In spoken languages, these discriminatory units are articulations

produced through the vocal tract and perceived auditorily. The discriminatory articula-

tory units in sign language are perceived visually. Hand shapes, orientations, and locations

within the signing space, as well as, movement type (and in some cases non-manual expres-

sions of the face or upper body) are among the components for which distinctive values can

differentiate meanings among signs.
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2.2.2 The internal structures of morphemes

The basic principles according to which phonemes combine to form morphemes is essentially

the same within and across spoken languages: phonemes combine linearly (i.e., sequentially)

although non-linear phenomena (e.g., co-articulation effects) also play a very significant role

in speech production.

In signed languages, however, there are different morphological classes that are governed

by somewhat different compositional principles. This poses a problem for computer-based

sign recognition that does not exist for spoken languages: linguistically based models used

for computer-based sign recognition must be appropriate for the specific type of sign in-

volved. The rest of this discussion will focus specifically on ASL. The types of distinctions

found in ASL are relevant in other sign languages, as well.

2.2.3 Morphological subclasses of signs in ASL

A typology of signs in ASL has been described by various linguists. The essential distinctions

in ASL are outlined below (Brentari [Brentari, 1998] presents an in-depth discussion on this

topic). In particular, the focus for the research in this dissertation will be on “lexical signs”,

specifically, monomorphemic lexical signs.

• The subclasses of signs in ASL that will not be studied in this dissertation include,

– Fingerspelled signs: Fingerspelling is often used for proper nouns or borrowings

from spoken language and consists of a sequence of handshapes from the manual

alphabet that are used to spell out letters in an English word.

– Loan signs: Loan signs are a class of signs that result from borrowing from other

linguistic sources. Many loan signs originated as fingerspelled signs but have

undergone a process of lexicalization. Often a characteristic hand movement is

involved in addition to the handshape articulation of the letters.

– Classifier constructions: The types of movements allowed in classifier construc-

tions are far greater than in other types of signs. In some classifier constructions,
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Dominant 

hand (start)
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hand (start)
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UNCLE

Signs contrasted in hand shape
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end

SISTER
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Signs contrasted in (start) hand location

Dominant 

hand (start)

Non-dom 

hand (start)
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hand (end)
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hand (end)
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start

sign 

end

Dominant 

hand (start)
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hand (start)
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hand (end)

Non-dom 

hand (end)

BAD

GOODDominant 

hand (start)

Non-dom 

hand (start)

Dominant 

hand (end)

Non-dom 

hand (end)
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sign 

start

sign 

end

BUSYDominant 

hand (start)

Non-dom 

hand (start)

Dominant 

hand (end)

Non-dom 

hand (end)

BUSINESS

Signs contrasted in hand movement / trajectory

sign 

start

sign 

end

Figure 2·1: Examples for pairs of signs minimally distinguished by hand-
shape, hand location, hand orientation, or, hand movement trajectory.

for example, a handshape representative of a class (e.g., vehicle, human) is com-

bined with a movement expressing verb/action/spatial-relationship/manner.

• Lexical signs are the focus of this research. Morphemes in lexical signs are built

up through linguistically constrained choices of handshape, orientation, location, and

movement, which occur simultaneously. Articulatory elements that compose and dis-

tinguish morphemes in lexical signs are often referred to as phonemic because they

serve a role analogous to phonemes in spoken language.

Examples of articulatory contrast conveyed by different features are illustrated in Fig-

ure 2·1 using pairs of lexical signs minimally distinguished by a change in one of the

parameters. AUNT and UNCLE are distinguished by the handshapes ‘A’ and ‘U’ used

on the dominant hand. SISTER and BROTHER are distinguished by the location of

the dominant hand at the start of the sign (the hand is close to the chin in the former
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:=

:=

+

+

WRITER = WRITE + AGENT WRITE

AGENT

DINNER = EAT + NIGHT EAT

NIGHT

Figure 2·2: Examples of compound (or, polymorphemic) signs.

while it is close to the cheek/forehead in the latter). GOOD and BAD are distin-

guished in the orientation of the palm of the dominant hand at the end point of the

sign (the palm of the dominant hand faces the signer and the floor respectively) and

also potentially in their facial expressions. BUSY and BUSINESS are distinguished

in the movement patterns of the dominant hand: in the sign BUSY, the wrist of the

dominant hand rotates; whereas, in the sign BUSINESS the wrist translates along the

base arm.

• As in spoken languages, it is also possible to have signs composed of more than one

morpheme. The examples, WRITER = WRITE + AGENT, and, DINNER = EAT +

NIGHT, are illustrated in Figure 2·2. The morphemes that combine to form the

compound signs in these examples are lexical signs. However, morphemes from other

classes of signs can also appear in compound forms. Compounds are particularly

interesting, because of the co-articulation effects observed at morpheme boundaries.
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Even though such co-articulatory influences are, to some extent, predictable, they also

introduce recognition challenges. Co-articulation often ‘blurs’ the boundary between

the two segments: The end state of the previous morpheme and the start state of

the following morpheme are modified in relation to the forms that they would take

in isolated productions. Although co-articulatory effects are also observed at word

boundaries in continuous signing sequences, the magnitude of these effects tends to be

greater within compounds than between signs. Compound signs provide a controlled

linguistic environment to facilitate the study of co-articulatory patterns.

The dataset collected for this research contains ≈ 350 instances of compound signs.

Their analysis could yield valuable insights for both linguistic analysis and computer-

based modeling of co-articulatory phenomena. We envision that the handshape infer-

ence approach developed in this dissertation for monomorphemic lexical signs can be

extended in future work to model co-articulatory phenomena in compound signs.

2.3 Handshapes in monomorphemic lexical signs

In this research we focus on handshape, an important phonological element in sign lan-

guage. We start with an overview of the different systems that have been developed by

linguists for representing handshape configurations in signs. An appropriate representation

of handshapes plays an important role in preparing annotations for sign language video.

These annotations in-turn facilitate the development of data-driven probabilistic models for

representing different linguistic properties that pertain to handshape articulation in signs.

Of particular interest to us are the constraints that govern the combinations of handshapes

in monomorphemic lexical signs. Also of interest are the patterns of variation attested in

the production of handshapes. These two topics are discussed in subsequent sections below.

2.3.1 Handshape representation

There is no general consensus regarding the set of basic handshapes in ASL (and also

in other signed languages). Even though the different systems proposed for handshape
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representation differ in the granularity of the features that serve as a basis for labeling

handshapes, the notion of ‘selected fingers’ plays an important role in encapsulating the

salient properties of a given handshape configuration. Selected fingers are a subset of

fingers that are salient in the articulation of a specific handshape [Liddell and Johnson,

1995, Brentari, 1998, Van der Kooij, 2002, Whitworth, 2011]. Examples of selected fingers

within different handshapes and the different configurations of selected fingers in these

handshapes are described further below.

Approaches for handshape representation can be broadly classified as follows:

• Representations that encode the joint positions for each of the different

(selected) fingers

These systems use the following parameters to represent each handshape configuration

– The subset of fingers that are selected (or, has salient properties in the articula-

tion of a specific handshape).

– The different degrees of bending/extension at the base and non-base joint angles

of the fingers. Liddell and Johnson [Liddell and Johnson, 1995] have suggested

four states {closed, hooked, extended, flattened } along with a symbol to denote

a degree of flexibility in the muscle action (i.e., a relaxation in the encoded

amplitude of folding/extension at a finger joint).

– The degree of spreading between different fingers (denoting abduction / adduc-

tion for the selected fingers).

– The different positions of the thumb with respect to the palm. Van der Kooij

[Van der Kooij, 2002] suggests the features {crossed, opposed, adducted, and,

extended } along with an aperture feature (closed or open) that is useful when

the thumb is in an opposed configuration to denote whether the thumb is in

contact with the selected fingers.

An explicit representation for hand configuration allows for the precise encoding of

a wide range of handshape configurations albeit at the expense of significantly ex-
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panding the state-space of representable handshape configurations. This substantially

increases the model complexity for handshape inference and the annotation effort in-

volved in labeling the ground-truth. The linguistic significance of many of these

handshape configurations is also difficult to ascertain (“. . . these models may offer

inventories of very detailed categories with numerous form elements often without

addressing their distinctiveness” [Demey and Van der Kooij, 2008]).

• Representations that are based on wholistic configurations of the hand

In approaches that enumerate wholistic configurations of the hand, an inventory of

handshape forms is determined through an analysis of the different handshape con-

figurations observed in sign language video datasets. Handshapes that are attested as

producing articulatory contrast or those attested as conveying certain salient linguistic

properties in signs are included in the inventory.

Many of the challenges that arise with employing an explicit encoding of hand con-

figurations are circumvented to some extent in the handshape inventory approach.

The latter approach sacrifices some precision in the transcription of specific hand-

shape forms to provide a more compact representation. The smaller number of hand-

shape distinctions facilitates handshape annotation in sign language video sequences

as well as the development of computer models to represent the properties of hand-

shape combinations in signs. We therefore adopt an inventory-based representation

of handshapes in this research.

We utilize an inventory containing 85 handshapes to denote handshape configurations

in this work Figure 2·3. Handshapes in this inventory were selected by linguists through an

analysis of approximately 10, 000 isolated (citation form) signs in the ASLLVD [Neidle et al.,

2012a] and 10, 500 utterances within continuous signing sequences from the ASLLRP [Nei-

dle, 2013] video collection. Handshapes in the inventory are grouped based on similarity

into different subsets. These groups of handshapes were created to aid the organization of

handshape labels in the inventory and do not necessarily reflect linguistic affinity among
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A 10 S cocked-S T X-over-thumb

 

1 D X bent-1 G/Q flat-G alt-G

U/H crvd-U bent-U cocked-U U-L bent-U-L

 

V/2 crvd-V bent-V

 

3 crvd-3

6 W crvd-W

 

7 cocked-7 open-7

 

8 cocked-8 open-8 25

 

F/9 cocked-F open-F

4

 

5 crvd-5 5-C 5-C-L 5-C-tt

B B-xd flat-B B-L crvd-B crvd-flat-B crvd-sprd-B bent-B bent-B-xd bent-B-L

C sml-C/3 tight-C tight-C/2

 

O baby-O flat-O flat-O/2 fanned-flat-O

 

E loose-E

M alt-M bent-M full-M

 

N alt-N bent-N

 

P/K alt-P

 

L L-X crvd-L

R R-L

 

I Y I-L-Y bent-I-L-Y Horns bent-Horns O/2-Horns

(a) Set of all handshape labels for ASL annotations in [Neidle, 2007].

B B-L flat-B 5 A S 1 D C Rlxd

(b) Unmarked handshapes in ASL.

Figure 2·3: The 85 handshapes in ASL labeled according to annotation
conventions in [Neidle, 2007]: (a) The dominant signing hand can take any
handshape from this set; (b) The handshape on the nondominant hand,
when it differs from that of the dominant hand in a two-handed sign, is
constrained to belong to the set of unmarked handshapes. Video sequences
displaying multiple views of each of these handshapes in motion are available
in [Neidle, 2011].
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different handshape configurations. The distinctions drawn in handshape configuration in-

clude: different degrees of folding/extension of the selected fingers (e.g., {U, bent-U, curved-

U, cocked-U}) and different positions of the thumb within the same basic handshape (e.g.,

{B, B-xd, flat-B, B-L}), different degrees of spread between the selected fingers (e.g., {crvd-B,

crvd-sprd-B}) and different degrees of aperture of the hand (e.g., {O, flat-O, fanned-flat-O}).

2.3.2 Linguistic constraints governing handshape articulation in monomor-

phemic lexical signs

In monomorphemic lexical signs, handshapes play an important role in distinguishing signs,

and the most linguistically informative portions with respect to handshapes are observed

at the start and end points of signs (on either the dominant hand in one-handed signs

or on both hands in two-handed signs). With the exception of a small number of signs

that include explicit finger movements (e.g., wiggling, waving or rubbing of fingers), the

intermediate handshapes are often predictable given the start and end handshapes.

Battison’s taxonomy [Battison, 2000] for constraints on handshape articulation in

monomorphemic lexical signs is illustrated in Figure 2·4. The constraints are broadly cat-

egorized into those that relate the start and end handshapes for a given hand, and, those

that relate the start/end shapes used by the two hands in 2-handed signs:

• Relationships between start and end handshapes for a given hand

The handshape used at the start of a sign constrains the set of handshapes that

can appear as end handshapes on the same hand. This is because, in general, only

the selected fingers can exhibit a change in configuration while the unselected fingers

normally do not change their configuration.

The significant types of changes in handshape configuration attested between the

start and end points of signs include: the bending/extension of the base (metacarpal-

phalangeal or MCP) and non-base (proximal/distal inter-phalangeal or DIP/PIP)

joints for the selected fingers, changes in the spread (abduction/adduction) of the

selected fingers, and, closing/opening changes in the aperture of the palm and/or the
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Mono-

morphemic 

lexical sign

One-

handed 

Dominant hand:

start handshape = end handshape

Dominant hand: 

start handshape ≠ end handshape

Two-

handed 

Same

bilateral 

handshapes

Different 

bilateral 

handshapes 

Non-dominant 

handshapes are 

restricted to a small 

subset of ASL 

handshapes (also 

called unmarked 

handshapes)

start handshape = 

end handshape

start handshape ≠

end handshape

Dominant hand:

start handshape = 

end handshape

Dominant hand:

start handshape ≠

end handshape

Pictorial illustrations from “The Gallaudet 

Dictionary of ASL”, Gallaudet University, 2005

(8143)
32.1% (2610)

68.0% (5533)
40.4% (3291)

27.5% (2242) 22.7% (1845)

4.9% (397)

26.2% (2133)

5.9% (477)

33.3% (2715)

7.1% (576)

Percentage, and, (total # of signs)

ONE-HANDED  // SINGLE

ONE-HANDED  // DOUBLE

TWO-HANDED : SAME HANDSHAPES // SINGLE

TWO-HANDED : SAME HANDSHAPES // DOUBLE

TWO-HANDED : DIFF. HANDSHAPES // SINGLE

TWO-HANDED : DIFF. HANDSHAPES // DOUBLE

Figure 2·4: A taxonomy of constraints on handshapes for monomorphemic
lexical signs in ASL [Battison, 2000]. The percentages (and total numbers
of signs) in the ASLLVD collection corresponding to each constraint are also
shown.
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Illegal start → end handshape transition within a monomorphemic lexical 
sign, but, acceptable in a loan sign `I-D’ as an abbreviation for `identification’

I D

Start End

Start HS End HS

I-D

Figure 2·5: Changes in hand configuration within monomorphemic lexical
signs are constrained to involve either closing or opening of the hand (i.e.,
the folding/unfolding of the palm and a selected subset of fingers). A sign
from the class of loan signs that violates this constraint is shown here.

hand.

An example of an illegal change in handshape configuration within monomorphemic

lexical signs is illustrated in Figure 2·5. The change in handshape I ⇒ D involves

the simultaneous closing of the index finger and extension of the little finger. Such a

transformation is disallowed in monomorphemic lexical signs because the selected set

of fingers is modified in order to transition between these two handshapes. However,

such a sequence is produced in a loan sign I-D realized as an abbreviation of the word

’identification’.

• Relationships between start/end handshapes used by the two hands in

2-handed signs

Monomorphemic lexical signs are classified as one-handed or two-handed based on

whether one or both hands normally participate in the production of a sign (although

there is some variability in the number of hands used for a particular sign). For some

two-handed signs, there is asymmetry in the use of the two hands in sign production.

The dominant hand (the hand used for one-handed signs, or, the hand that carries the
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most salient information in a two-handed sign) is usually determined on the basis of

a signer’s bilateral preference for motor tasks. Sometimes in conversation/narrative,

however, the signer may switch dominance in signing.

We use the term two-handed : same handshapes in this thesis to identify signs that

exhibit bilateral symmetry in handshapes on the two hands. We ignore global hand

movement in defining this class. The two-handed : same handshapes signs thus include

signs in the ‘Type 1’ and ‘Type 2’ categories identified by Battison [Battison, 2000]

(these two classes in Battison’s notation correspond to signs that exhibit bilateral

symmetry in only handshape, and, bilateral symmetry in both handshape and hand

movement respectively).

In two-handed signs where the two hands take different handshapes (referred to as two-

handed : different handshapes), the handshape on the non-dominant hand is restricted

to a small subset of unmarked handshapes (Figure 2·3 lists the set of unmarked hand-

shapes in ASL). Furthermore, in such cases the non-dominant hand does not exhibit

any change in handshape configuration between the start and end points of the sign.

One-handed and two-handed signs can be further classified based on whether the start

and end handshapes are the same or different (‘single’ and ‘double’ in Battison’s terminol-

ogy [Battison, 2000]). When the start and end handshapes differ, the change in handshape

is constrained to involve either the closing or opening of the hand as noted in the previous

section (Section 2.3).

2.3.3 Handshape variation in monomorphemic lexical signs

Handshape variation in sign language, in general, is less well-studied than the topic of

handshape representation. Israel and Sandler [Israel and Sandler, 2009] review previous lit-

erature (e.g., [Battison et al., 1975, Van der Kooij, 2002]) analyzing handshape variations.

Bayley et al. [Bayley et al., 2002] have studied the patterns of variation in the ‘1’ handshape

for the sign DEAF. They find evidence for variations conditioned by factors such as gram-

matical function, assimilation effects from features of the preceding and following segments,
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along with a range of social factors including age, regional origin and language background.

Van der Kooij [Van der Kooij, 2002] presents an in-depth discussion of the different types of

variations observed in handshapes. She describes phonological environments where varia-

tions in the thumb position (crossed, flat, opposed or extended) are observed and concludes

that the non-extended thumb positions are often linguistically non-informative. She also

finds evidence for non-distinctiveness of certain features of the selected fingers such as the

degree of flexion of the base joint, the degree of flexion of the non-base joints and the degree

of spreading of the fingers. Other features that can also demonstrate variability are the

positions of the unselected fingers and the aperture of the hand.

The general consensus among researchers studying sign language is that a better picture

for the phenomenon of variations will emerge from the analysis of large sign language corpora

containing examples from many native speakers for each lexical item in the vocabulary. To

narrow the focus of our discussion we restrict our attention to the properties of handshape

variation attested within monomorphemic lexical signs. Furthermore, we are interested in

analyzing variations in the productions of citation-form signs. We do not therefore consider

assimilation effects due to either preceding or following sign segments as seen, for example,

in compound signs and in continuous signing sequences.

In order to facilitate the analysis of handshape variation, we broadly classify the attested

handshape variations into two classes: ‘alternations in handshape that are sign-specific

(lexical variations)’, and, ‘alternations in handshape that are produced as a result of general

language processes’.

(†) Variations in handshape that are attributable to general phonological principles are

of particular interest in developing the HSBN model for the handshape inference task,

and for purposes of this project, we have generally assumed that the handshape variations

that are attested across some set of different signs result from application of such general

phonological processes. However, it should be pointed out that from the limited data used

in the current study (this dataset is described in more detail in Chapter 4), we cannot rule

out the possibility that some of this variation may in fact, result from idiolectal or dialectal
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hand (end)

Non-dom 

hand (end)
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(D)DOCTOR

Distinctions in handshape on dominant hand
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end
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Distinctions in handshape on dominant hand

sign 

start

sign 

end
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(nd-U) RESTLESS

Distinctions in handshape on non-dominant hand

sign 

start

sign 

end

Dominant 

hand (start)

Non-dom 

hand (start)

Dominant 

hand (end)

Non-dom 

hand (end)
MINUTE

(nd-B-L) MINUTE
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sign 

start
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end

Figure 2·6: Examples of pairs of signs exhibiting sign-specific variations in
handshape on the dominant or non-dominant hand.

differences among signers in the phonological form used for specific signs. It is hoped that

such issues can be sorted out in future linguistic research, but at present, we point out that

the present approach is biased in favor of interpreting such patterns of handshape variation

across multiple signs as phonological in nature. The anticipation is that future refinements

in the linguistic analysis that may be achieved by work with larger datasets and queries of

native signers may yield improvements in the statistical modeling.

• Sign-specific variations in handshape

Sign-specific variations are tightly linked either to a specific sign (i.e., a lexical item

in the vocabulary) or to a small group of signs. The patterns of variation in this class

are not generally attested among many signs in the vocabulary. We use the term

‘lexical variants’ in this discussion to refer to the different versions of a sign produced

with sign-specific differences in articulation. The lexical variants of a given sign convey



30

similar, but not necessarily identical, meaning and/or linguistic interpretation. Lexical

variants of any given sign are treated as distinct signs in this research.

Examples of lexical variation in handshape are displayed in Figure 2·6. Lexical variants

are assigned distinct gloss labels (sometimes but not always incorporating information

about the distinguishing handshape for a given variant). {DOCTOR, (D)DOCTOR},

{LANTERN, (Y)LANTERN} differ in the handshapes articulated on the dominant

hand, whereas {RESTLESS, (nd-U)RESTLESS}, and, {MINUTE, (nd-B-L)MINUTE}

differ in the handshapes articulated on the non-dominant hand.

• Variations in handshape that are produced as a result of general language

processes

The patterns of handshape variation in this class are hypothesized to reflect general

phonological processes (but see the disclaimer, †, above). These patterns of variation

are observed among the productions of many different signs in the language. We em-

ploy the term ‘phonological variation’ to refer to variations in this class. Phonological

variations do not typically modify the linguistic interpretation of a given sign. Ex-

amples of phonological variations in the sign COLLECT are illustrated in Figure 2·7.

Handshapes among different phonological variants are often closely related in terms

of the underlying hand configurations.

We focus in this research on modeling the patterns of phonological variation in hand-

shape that are attested among multiple productions of different monomorphemic lexi-

cal signs. We leverage annotations for start/end handshapes prepared by linguists for

signs contained in the lexicon dataset (Chapter 4) for learning the properties of hand-

shape variation. The lexicon dataset contains isolated productions of monomorphemic

lexical signs organized into groups of distinct sign-variants. This grouping allows us

to accrue the patterns of handshape variation using a data-driven approach to esti-

mate the parameters of probability distributions that represent phonological variations

within the HSBN model. Our aim with the HSBN is to represent the properties of
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Figure 2·7: Examples of phonological variation in handshape. Variations
in this class are not specific to a particular lexical item.
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signer-independent variations in handshape and therefore person-specific preferences

for certain handshapes are not modelled in our formulation.

2.4 Summary

Signed languages are analyzed by linguists as possessing properties parallel to those of spo-

ken languages. However, words in spoken language are constructed from articulatory units

that are combined essentially linearly (i.e., sequentially, although not without significant

co-articulation effects), whereas different morphological classes of signs in signed languages

differ in the compositional principles by which the units of meaning are constructed from

articulatory units. The analysis of the internal composition of signs is therefore specific to

signs in each class. For this brief introduction we restrict our attention to the class of lexical

signs in ASL. Units of meaning, or morphemes, in lexical signs can be analyzed as being

composed of linguistically constrained choices of different shapes, orientations, locations

of the hand as well as movement types of the hands and arms. Non-manual articulations

also play a role in certain signs. Focusing specifically on handshapes, many sign language

researchers have identified particular hand configurations that are used distinctively for dif-

ferentiating signs. In this research we utilize a palette comprising 85 handshapes developed

by linguists for the purposes of preparing annotations for ASL video sequences.

The allowable combinations of different start/end handshapes on a given hand as well as

on the dominant and non-dominant hands in monomorphemic lexical signs are governed by

linguistic constraints that apply in general to monomorphemic lexical signs. Furthermore,

certain types of variation in the articulation of handshapes in monomorphemic lexical signs

can be analyzed as resulting from general language processes.

The constraints on combinations of different handshapes as well as the patterns of

phonological variation in handshape are modeled using the HSBN representation in this

thesis. A data-driven learning approach leveraging a large corpus of signs annotated with

linguistic attributes is employed for the purposes of estimating the model parameters. The

collection and development of the lexicon dataset arose as one of the contributions of a
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research project aimed at furthering the development of a query-by-sign lexical lookup

system for an ASL dictionary. This dataset is described in more detail in Chapter 4.



Chapter 3

Related Work

We review approaches for modeling and recognition of manual articulations. Approaches for

human gesture recognition and retrieval are frequently formulated in a trajectory analysis

framework wherein temporal sequences of hand locations, the positions and orientations

of the upper and lower arms are augmented with features describing the appearance of

handshapes. In the context of the handshape recognition research conducted here, we

place particular emphasis on approaches that either explicitly model or exploit features of

hand articulation. Since linguistically annotated sign language datasets that are currently

available do not include 3D and/or depth information, we focus our attention here on video

analysis based approaches.

We start with an overview contrasting modeling based approaches with nearest neighbor

retrieval approaches for incorporating spatio-temporal properties of human gestures. Out-

side of SLR there is a large body of computer vision research on tracking finger articulations

in video sequences; we describe some of these previous approaches in relation to the current

work. In the SLR context, several approaches for handshape recognition from isolated hand

images have also been developed.

The Hidden Markov Model (HMM) and Conditional Random Field (CRF) models are

two frequently used probabilistic formulations for representing the sequential properties

of articulation in human gestures. HMMs for different gesture classes are often trained

independently. The algorithms for training the HMMs and for performing inference given a

query sign are thus efficient. HMMs, however, are not trained explicitly to distinguish one

gesture from another. To overcome this drawback, different variants of the CRF [Lafferty

et al., 2001] formulation have been proposed to jointly model all the gesture classes in

34
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the vocabulary in a discriminative fashion. Dynamic CRF [Sutton et al., 2004], Hidden

CRF [Wang et al., 2006] and the Latent Dynamic CRF [Morency et al., 2007] are a few

examples. The LDCRF, for example, models the transitions between different gestures

(thus capturing extrinsic dynamics), and also incorporates hidden state variables to model

the internal sub-structure of gestures. Promising results for sign-spotting using CRF’s are

demonstrated in [Yang et al., 2009] (in a sign-spotting problem the start/end positions for

an input sign’s occurrences in a continuous signing query sequence need to be determined).

Nearest neighbor (NN) retrieval methods compute a similarity score between pairs of signs

(for instance, a query and a database sign) based on the trajectory and appearance features.

Approaches for nearest neighbor retrieval typically compute a spatio-temporal alignment

by employing the Dynamic Time Warping (DTW) algorithm to account for some of the

variation in the locations of hands and for variations in the speed of articulation [Dreuw

et al., 2006, Alon et al., 2009].

HMM and CRF based modeling methods assimilate information from multiple training

examples for each item in the vocabulary and therefore provide improved robustness to

variations in the articulation. Retrieval methods on the other hand are better suited to

datasets that do not contain multiple examples for each class label or in datasets where a

linguistic analysis to group examples into distinct lexical items is not yet available. HMM

and nearest neighbor retrieval based approaches have been widely studied for SLR applica-

tions, we describe these works in greater detail in the subsequent sections. In both classes of

approaches, however, phonological constraints that govern the different articulatory param-

eters in signs have so far not been fully exploited. Furthermore, signer-independent large

vocabulary SLR presents a difficult challenge for computer vision approaches. In order to

make progress towards both these goals, in formulating the HSBN model we leverage lin-

guistic constraints that pertain to handshape articulation in monomorphemic lexical signs

(these constraints are summarized in Section 2.3.2). The HSBN also represents the prop-

erties of handshape sequences and the patterns of handshape variation produced in lexical

signs to aid in the task of start/end handshape inference given sign language video input.
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Since the properties represented in the HSBN are not sign-specific but are properties that

are general to a large class of signs in a language, we learn a single HSBN model by utilizing

handshape annotations for all lexical signs in the dataset. A sufficient number of examples

are therefore available for training the HSBN even in datasets with only a small number of

examples for each sign.

3.1 HMM models for Sign Language Recognition

HMMs are frequently employed to exploit the sequential structure of phonemes in spo-

ken languages [Ljolje and Levinson, 1991, Jelinek, 1997]. In signed languages, however,

phonemes corresponding to different articulatory parameters (which include handshape,

hand location, palm orientation and movement type, as described in Section 2.2) are artic-

ulated simultaneously as well as sequentially [Battison, 2000]. Factored representations are

typically employed to avoid a combinatorial blow-up in the number of HMM states to allow

for simultaneous articulatory parameters in signs.

The HMM involves hidden variables whose representation needs to be inferred at train-

ing time. In datasets where phonetic transcriptions are not available, a mixture model

based representation for articulatory sub-units in signs is learnt from training sequences

using either a clustering or an Expectation Maximization (EM) method. Approaches for

learning articulatory sub-units are frequently formulated in a generative learning frame-

work, these approaches are described in Section 3.1. A few recent learning approaches

for articulatory sub-units have also been formulated with an objective towards retaining

discriminative properties between different signs, these are described in Section 3.1. The

HSBN representation involves hidden variables to account for the phenomena of handshape

variation. The HSBN learning algorithm utilizes handshape label annotations provided by

linguists for ≈ 7, 000 signs contained in the training set. The signs have also been carefully

delineated into different lexical items. Given this richer dataset, the HSBN learning algo-

rithm is more strongly constrained than in a fully unsupervised (i.e., without handshape

labels) learning formulation. The properties inferred for the latent states in the HSBN are
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therefore more easily interpretable (and also verifiable). Furthermore, the learnt HSBN

model shows promising improvement in performance over a baseline algorithm for signer-

independent handshape recognition. We conclude this section with a few examples of HMM

based approaches developed for different SLR applications.

• The Parallel-HMM formulation

Vogler and Metaxas [Vogler and Metaxas, 2001] propose the ‘parallel-HMM’ approach

assuming independent sequential processes for hand location and movement employing

3D tracks for arms and hands obtained using multiple cameras and physical sensors

mounted on the body. The authors define a phonetic representation to describe hand

location and hand movement. Phonetic transcriptions for signs in the vocabulary

allowing for epenthesis movements (movements occurring at boundaries between two

signs in continuous signing) are used to define HMM networks for each channel. The

authors show good recognition results for continuous signing sequences constructed

from a vocabulary of 22 signs. The authors extend the above approach with handshape

information represented by finger angles obtained using a data-glove in [Vogler and

Metaxas, 2004].

Von Agris et al. [von Agris et al., 2007] have adopted the parallel-HMM formula-

tion with features for the position and size of the hand along with the spread of

fingers. They demonstrate excellent isolated and continuous sign recognition rates for

signer-specific recognition on a vocabulary of approximately 230 signs. The signer-

independent recognition rates are, however, substantially lower. To improve signer-

independent recognition accuracy, the authors propose an approach for model adap-

tation. A set of annotated utterances produced by the test-signer are used to compute

a linear transformation of model parameters estimated from examples in a training

set. Handshape inference performance using the HSBN in this thesis is evaluated for

the signer-independent application wherein the signs in the test set were produced by

a signer whose signs were not included in the training set.
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• Unsupervised learning of articulatory sub-units in parallel-HMMs

Von Agris et al. [von Agris et al., 2007] propose a sub-unit based representation for

signs. Since a lexicon annotated with linguistic attributes was not available when

constructing the sub-unit models, the authors propose a data-driven decomposition

of signs into sub-units. Each sign in the vocabulary is first divided sequentially into

segments based on an analysis of the time-series for different articulatory features

(these segments have no linguistic interpretation). A subsequent algorithm determines

similarities between the identified segments. Similar segments are pooled and are

labeled as a single sub-unit. Each sign can thus be described as a sequence of sub-

units. The authors report good signer-specific isolated and continuous sign recognition

performance employing the sub-unit based representation (the signer wears colored

gloves to facilitate hand tracking for the video sequences used in these experiments).

In order to automatically segment signs into sub-units, Han et al. [Han et al., 2009]

develop an algorithm based on detecting hand motion discontinuities (i.e., disconti-

nuity in motion speed and trajectory) and using these detections as boundaries for

sub-units in signs. They also propose a temporal clustering algorithm using DTW in

order to merge similar segments.

• Discriminative learning of articulatory sub-units in parallel-HMMs

Simple clustering based approaches for sub-unit construction suffer from the problem

of over-fitting to the training set. One approach to reduce the over-fitting problem is

to employ a discriminative approach during sub-unit learning. The sought after objec-

tive for learning linguistically motivated sub-units can be stated as follows: the learned

sub-units should represent articulatory contrast in minimally distinguished pairs of

signs. For example, signs within each pair displayed in Figure 2·1 are contrasted in

one specific articulation parameter. However, with the small sizes of collected and

processed vocabularies available for sign language it is infeasible to exhibit minimally

contrasted pairs for each possible configuration for each of the different articulating
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parameters. While distinct signs in a lexicon do differ in certain articulatory properties

they often share several other articulatory properties. To circumvent this problem,

Yin et al. [Yin et al., 2009, Yin, 2010] develop algorithms to implicitly learn artic-

ulatory contrast in signs. They propose the segmental-boosting HMM algorithm to

construct a transformation of the input feature space to a new feature space in order

that observation likelihoods for the HMM trained in the transformed feature space

is better able to discriminate among the different hidden states. A second algorithm

reduces the number of hidden states by recursively combining states that are most

likely to be confused. The authors demonstrate that their algorithm recovers different

configurations of feature weights for certain contrasted pairs of signs. Their evaluation

is however limited to signs obtained from a single signer.

More recently, Pitsikalis [Pitsikalis et al., 2011] extend the data-driven sub-unit con-

struction approach to include phonetic transcription.

• Other applications of HMMs for SLR

Starner et al. [Starner et al., 1998] designed a real-time continuous sign language

recognition system based on HMMs for a 40 word lexicon. The features computed

from skin region based tracking of the two hands include: each hand’s x and y posi-

tion, change in x and y between frames, area (in pixels), angle of axis of least inertia

(found by the first eigenvector of the blob), length of this eigenvector, and eccentric-

ity of bounding ellipse. Promising results were demonstrated for a signer-dependent

recognition task.

A Markov model utilizing multiple articulation parameters was also proposed in [Bow-

den et al., 2004], however only a small number of handshape classes (6) were consid-

ered. A HMM was proposed for fingerspelled word recognition in [Liwicki and Ev-

eringham, 2009] using a lexicon consisting of proper nouns (names of people). Legal

state transitions in the model correspond to letter sequences for words in the lexicon.

In this study, we model linguistic constraints on handshape transitions in lexical signs
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(handshape transitions for signs in this class follow certain general rules) and further

incorporate variations in handshape across different signers.

3.2 Tracking hand articulations in general hand gestures

Many approaches have been proposed to explicitly track finger articulations in a video

sequence [Pavlovic et al., 1997, Erol et al., 2007]. However, these approaches impose strong

constraints on hand articulation: hands are typically assumed to have little global motion,

to occupy a large portion of the video frame, to not overlap with the face or the other hand,

and/or to be viewed from certain canonical orientations (the palm of the hand is oriented

parallel or perpendicular to the camera). The speed of hand articulation is also assumed

to be small. A 2D graphical model and a piecewise planar model for finger articulation

are proposed in [Wu et al., 2005, Wang et al., 2008]. Approaches that use a 3D computer

graphics hand model [Lu et al., 2003, Tomasi et al., 2003, Sudderth et al., 2004, Chang et al.,

2005, Bray et al., 2007, de La Gorce et al., 2008] need good initialization and sufficiently

well-resolved hand images in addition to the orientation constraints.

More recently, Oikonomidis et al. [Oikonomidis et al., 2012] have developed a 26 Degree

of Freedom (DoF) kinematic model for the hand. They formulate an optimization algo-

rithm to jointly estimate the parameters of the two interacting hands whilst accounting for

occlusion relationships and the geometric interactions between the two hands. The authors

demonstrate very promising results using RGB+depth input for articulated hand tracking

in challenging situations where the two hands are strongly interacting. The range hand

poses in their input sequence is, however, limited (the hand configurations correspond ap-

proximately to the {5, crvd-5 and A} shapes). In previous work, [Oikonomidis et al., 2011],

the authors demonstrate the ability to track a much broader range of hand articulations

in a constrained video capture environment using eight calibrated high-resolution cameras.

Their method also requires a specification for the 3D kinematic model’s geometry param-

eters and the joint angle parameters in the first frame for each of the tracking sequences.

The input initial configuration aids the optimization algorithm in searching for the optimal
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hand pose parameters in subsequent frames.

We offer the following observations as evidence suggesting that handshape classifica-

tion/inference in signs can in many ways be a simpler problem to address than full-DoF

articulated hand tracking in unconstrained human gestures. The parameters for different

articulations in signs (for example, the configuration, orientation and location as well as the

movement trajectory of the hand) are articulated in precise and predictable ways. Some

properties that pertain to the articulation of hand configurations in signs are highlighted

here. In the class of monomorphemic lexical signs, hand pose parameters are maximally in-

formative at the start and end points of the sign (the speed of articulation between the start

end end points of signs is very rapid, however). A certain set of handshapes from among the

set of all possible hand configurations are analyzed by linguists as being salient for the pur-

poses of conveying distinctions among different signs. Between 80 and 140 handshapes have

for example been employed by linguists for the purposes of analyzing hand configurations

in ASL [Whitworth, 2011]. There are constraints that govern how different handshapes can

be combined in signs – only a certain number of end handshapes are possible for each start

handshape on a given hand; in two-handed signs the non-dominant hand is constrained to

either adopt the same start/end handshapes as the dominant hand or to adopt handshapes

from a small set of unmarked handshapes. In addition, there are dependencies among the

different articulatory parameters such as the handshape, hand location and orientation –

only certain handshapes are observed at specific hand locations (wherein the hand locations

can be determined with respect to the face, the torso or the other hand), not every hand-

shape configuration is observed for each hand orientation. Van der Kooij [Van der Kooij,

2002] presents both theoretical and empirical analyses of many of these constraints. Our

aim in this thesis is to formulate the HSBN representation in order to model the properties

and constraints that pertain to the articulation of start/end handshapes in monomorphemic

lexical signs.

An observation likelihood distribution is required during handshape inference in order to

compute the probabilities of different handshape classes to be associated with hand images



42

observed in an input video sequence. Recent computer vision approaches have focused their

attention on utilizing 3D models along with multiple camera and/or depth input sources

to aid with computing observation likelihoods for hand articulation. In SLR applications,

however, we are often constrained to a single camera view in order that end-users who pos-

sess a webcam can utilize the proposed system. On the database side, an extensive amount

of sign language video data has been painstakingly collected and annotated (e.g., [Johnston,

2012, Schembri, 2012, Hanke et al., 2012, Crasborn et al., 2012, Neidle, 2012]) prior to the

advent of depth sensors. It is therefore essential that algorithms for SLR be able to utilize

the available annotated video data. In this work, the images of start and end handshapes

extracted from a large dataset of lexical signs serves as a set of representatives for handshape

appearance. In order to account for differences in anthropometry and small variations in

handshape articulation among different signers, we employ a non-rigid image alignment al-

gorithm to match the image of a query handshape with handshape images in the database.

In future work, we envision that a 3D model based observation likelihood model can be

used to augment the image appearance matching based likelihood scores employed in our

current implementation.

3.3 Handshape recognition in sign language

Active Appearance Model (AAM) based approaches are proposed for general hand pose

estimation by Heap and Hogg [Heap and Hogg, 1996], and, for recognizing handshapes

in sign language from static images in Fillbrandt et al. [Fillbrandt et al., 2003]. AAM

approaches use PCA to capture shape and appearance variations. The learnt modes of

variation, however, are tuned to the exemplars in the training set.

Athitsos et al. [Athitsos et al., 2008a] propose a fast nearest neighbor method to retrieve

images from a large dictionary of ASL handshapes with similar configurations to a query

hand image. The database is composed of renderings from a 3D graphics model for the

human hand. The synthetic nature of these images does not yield a robust similarity

score to real hand images. Fujimura et al. [Fujimura and Liu, 2006] propose a method
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for recognizing hand configurations from depth images, however, no empirical evaluation of

their approach is given.

Ding and Martinez [Ding and Martinez, 2009] construct a tree structure to represent

landmark locations (fiducials) on the hand. The chosen fiducials correspond to the knuckles

(finger joints with the palm), joints within each finger, finger tips and the wrist (palm joint

with the lower arm). A fixed handshape is assumed for the duration of a sign. Given 2D

coordinates for the visible fiducials in a sequence of frames, the authors propose a linear SVD

based reconstruction algorithm allowing for missing data due to self-occlusions to recover

the 3D coordinates of the fiducials and global transformations of the hand in each frame.

The fiducial co-ordinates in 2D and their visibility attribute are collected interactively with

human input: these are initialized in the first frame and predictions in subsequent frames

using the reconstruction method are manually verified. Handshape recognition is performed

by comparing two 3D hand configurations. The authors report 100% handshape recognition

rate using a set of 19 handshapes from 10 subjects producing 38 signs (the training and

test sets are from different signers). The results demonstrate a clear benefit in using 3D

reconstruction, however, the constraints imposed (handshape is fixed through the sign),

the inputs assumed (2D fiducials are given for each frame) and evaluation with signs from

participants who are not native users of sign language limits the general applicability of the

proposed approach. In our approach, only the hand location bounding boxes at the start

and end frames of the sign are assumed as input from the user. We work with a significantly

larger collection of signs (≈ 3, 000) and handshapes (85). Furthermore, signs in our dataset

are produced by native ASL users.

Roussos et al. [Roussos et al., 2010] propose an unsupervised clustering formulation in or-

der to extract handshape sub-units (or handshape clusters) from a training set of handshape

images. Similar to the AAM approach, a PCA representation is used to model appearance

variations for each handshape sub-unit. To impart a degree of robustness to global trans-

formations, the clustering formulation incorporates an affine alignment between a training

image and its reconstruction (the reconstructed handshape is computed using the PCA
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representation for the handshape sub-unit associated with the training handshape image).

Handshapes employed in signing, however, share very similar configurations (Figure 2·3)

and are also seen with several different orientations in the training set. These aspects ex-

acerbate the process of clustering training examples into different handshape classes. We

circumvent this problem by using a nearest neighbor search to retrieve candidate matches

from a database of labeled handshape instances. We develop a non-rigid image alignment

method for computing similarity scores between pairs of handshape images and demonstrate

its benefits over affine alignment in accommodating inter-signer variations for handshape

retrieval.

3.4 Appearance features for handshape verification

Image descriptors for handshape appearance are used along with hand location and move-

ment trajectory based features in a sign spotting framework by [Dreuw and Ney., 2008, Alon

et al., 2009, Yang et al., 2010]. Farhadi et al. [Farhadi et al., 2007] propose a transfer learn-

ing approach, where sign models learnt in a training domain are transferred to a test domain

utilizing a subset of labelled signs in the test domain that overlap with those of the training

domain (for instance, sign models learnt from one viewpoint can be transferred to a different

viewpoint). These approaches do not explicitly distinguish between different handshapes

and as a result do not leverage linguistic constraints on handshape transitions.

Buehler et al. [Buehler et al., 2009] describe an approach to automatically extract a

video template corresponding to a specified sign gloss (e.g., ‘GOLF’) from TV broadcast

continuous signing video with weakly aligned English subtitles. A similarity score for a pair

of windowed video sequences is defined based on image features for shape, orientation and

location of the hands. This framework, however, treats the sign recognition problem as an

instance of a general temporal sequence matching problem and does not exploit phonological

constraints on signing parameters. Inter-signer variations are not addressed and the image

alignment between hand image pairs is restricted to 2D rotations.
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3.5 Summary

In summary, while there has been work that has looked at handshape articulation in sign

language, none has modeled the linguistic constraints that govern the start and end hand-

shape articulations in lexical signs. We formulate a data-driven probabilistic model, the

HSBN, for start/end handshape inference in monomorphemic lexical signs. The HSBN

utilizes a layer of hidden variables in order to represent the properties of sign- and signer-

independent handshape variation. The properties of hidden variables and the probability

distributions that relate the values adopted by these variables are estimated using a vari-

ational Bayes learning approach utilizing a training set of monomorphemic lexical signs

annotated with start/end handshape labels. A grouping of signs into distinct lexical items

is also assumed. Since only a single HSBN model needs to be trained for the entire class of

monomorphemic lexical signs, the learning algorithm is able to utilize examples of all signs

in this class which in-turn substantially improves the robustness of the estimated HSBN

parameters. As a result, the HSBN shows promising improvement in handshape inference

performance on a person-independent handshape recognition task. The training set used

in our experiment contains 2, 636 distinct signs, the corresponding number of productions

from 5 signers is 6, 958. The test set used in our experiments contains 577 signs produced

by a single signer. In query signs from the two-handed : same handshapes articulatory class,

the HSBN yields further improvement in the handshape recognition accuracy by leveraging

bilateral symmetry properties in the handshapes articulated on the two hands.
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Task
Hand-
shape

References Approach Generality of approach

Hand pose

tracking for

general

hand

gestures

3D
model
based

[Stenger et al., 2001, Lu
et al., 2003, Tomasi
et al., 2003, Sudderth
et al., 2004, Chang

et al., 2005, Bray et al.,
2007, de La Gorce et al.,

2008, Oikonomidis
et al., 2012]

Track finger
articulations using a
3D kinematic model
for the hand skeleton

Models self-occlusions;
assumes constrained hand
orientation, high resolution

hand images, good
initialization and person

specific hand model

2D
model
based

[Wang et al., 2008, Wu
et al., 2005]

Finger articulation
via graphical and
piecewise planar

models

Initialization not needed;
assumes palm orientation
parallel to the camera

Sign

language

handshape

recognition

from static

images

Active
Appear-
ance

Models

[Fillbrandt et al., 2003]

Uses PCA to capture
shape and
appearance
variations

Fast computation; learnt
modes for shape and

appearance variation are
tuned to the training set

Nearest
neigh-
bor

[Athitsos, 2006, Athitsos
et al., 2008a]

Handshapes rendered
using 3D model,
BoostMap for fast

NN

Computationally fast and
person-independent;

difficult to match synthetic
images to real hand images

Handshape

classifica-

tion for sign

recognition

Cluster-
ing

based

[Ong and Bowden,
2004, Bowden et al.,

2004]

Markov chain used
to model hand

shape, movt. and
loc. aspects

Good performance on 40
signs; requires colored
gloves, inter-person

variations are not addressed

Handshape

verification

2D
appear-
ance

features

[Alon et al., 2009, Yang
et al., 2010]

Appearance used
along with hand

trajectory in DTW
framework

Used for sign recognition,
sign spotting and retrieval;
inter-person variations are

not handled

Learn video

templates

for signs

from

continuous

signing

video with

subtitles

2D
appear-
ance

[Buehler et al.,
2009, Buehler et al.,

2008]

Pictorial structures
model for upper

body tracking, hand
shape, movt., loc. for

spatio-temporal
similarity

Extracts video templates
using multiple instance
learning from broadcast

video with little
supervision; between signer
variations not addressed

image alignment restricted
to 2D-rigid

Phonetic

alphabet to

describe

hand loc.

and hand

movt.

Finger
angles
from
data-
glove

[Vogler and Metaxas,
2001, Vogler and
Metaxas, 2004]

Phonetic
transcriptions for loc.
and movt. aspects,

parallel HMM
(networks for each

channel)

Good recognition results
for continuous signing; uses

multiple cameras and
physical sensors mounted
on the body for tracking in

3D

movt.: hand movement trajectory, loc.: hand location with respect to torso.

Table 3.1: A review of approaches for handshape recognition (in sign lan-
guage) and handpose tracking (general hand gestures).



Chapter 4

ASL Lexicon Video Dataset (ASLLVD)

4.1 Objectives and requirements for the lexicon dataset

The data collection for this research was carried out with a view towards developing a com-

puter vision system for lexical lookup in sign language video datasets. A ‘lexicon dataset’

containing isolated signs was collected and annotated with linguistic attributes to enable

the implementation of a query-by-sign system for sign lookup in an ASL dictionary.

In this chapter we describe the aspects of the lexicon dataset as they pertain to the HSBN

formulation for handshape inference in monomorphemic lexical signs. We envision that the

lexicon dataset (in concert with other datasets under development for sign language) would

facilitate further research into person-independent large vocabulary SLR. Further details

about the lexicon dataset are presented in [Neidle et al., 2012b, Athitsos et al., 2008b] and

in this webpage [Neidle et al., 2012a].

A large number of distinct signs is needed to provide a representative sample set of lexical

items contained in the vocabulary. Productions from multiple native signers are also needed

to train recognition methods that are able to accommodate variations in articulation. In

this research, the lexicon dataset serves as the primary resource for articulatory patterns in

ASL. It is hence essential that videos in the dataset be collected in a controlled environment

to facilitate linguistic annotations and the development of reliable and accurate computer

models for sign language recognition and retrieval.

Linguistic distinctions between different signs are often attributable to subtle differences

in their articulation. To enable computer models to be trained to make such critical dis-

tinctions, annotations of several linguistic properties are essential. Some of these required

annotations are listed in Section 4.2.4. To the best of our knowledge, previous datasets do

47
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not include all these attributes.

4.2 Data collection and annotation

In this section, we present an overview of the methods employed to prepare the lexicon

dataset.

The dataset was constructed through collaboration with linguists (under the direction of

Carol Neidle), who were responsible for identification of the ASL signers who participated

in the project, elicitation of the data, painstaking linguistic annotation and verifications

of the annotations for ≈ 10, 000 signs contained in many hours of sign language video1.

Several challenges related to ensuring consistency in the annotation of linguistic attributes

also needed to be addressed as the annotations were being prepared.

4.2.1 Native ASL signers provide signs for the dataset

Six native ASL signers (two men {M1, M2} and four women {F1, F2, F3, F4}) contributed

signs for the lexicon dataset. The signers come from a diverse range of geographic and

linguistic backgrounds: F1 grew up in Fremont, CA; F2 grew up in Rochester, NY; F3 went

to the Minnesota School for the Deaf; F4 and M1 grew up in Boston/Newton, MA; and, M2

went to the Maryland School for the Deaf. The signers range in age from 19 – 40 years.

4.2.2 Video capture setup

Videos were captured in a photographic studio with uniform background and controlled

illumination. Four time-synchronized color cameras were employed for video capture. Three

of these cameras were of standard resolution (640×480 @ 60hz) while the fourth camera was

1The author wishes to acknowledge the contributions of many people who were involved in developing
the ASLLVD. The efforts of our SignStream developer, Iryna Zhuravlova, were instrumental in enabling
the preparation of annotations with the precision necessary for the research conducted here. A partial list
of native ASL signers and students who participated in the annotation and verification efforts includes:
Rachel Benedict, Naomi Berlove, Elizabeth Cassidy, Lana Cook, Alix Kraminitz, Jaimee DiMarco, Joan
Nash, Indya Oliver, Caelen Pacelli, Braden Painter, Chrisann Papera, Tyler Richard, Donna Riggle, Tory
Sampson, Dana Schlang, Jessica Scott, Jon Suen and Amelia Wisniewski-Barker. Some of the native ASL
signers also helped in resolving several difficult questions related to sign language use that arose during data
capture and in preparing annotations for the collected data. Computer science contributors include, Vassilis
Athitsos, Tianxiong Jiang, Stan Sclaroff, Alexandra Stefan, Gary Wong and Quan Yuan.
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of high-resolution (1600 × 1200 @ 30hz). The camera viewpoints chosen for video capture

include: a standard and high-resolution front view of the signer, a side view of the signer

and a close-up of the face. To facilitate computer vision based sign language recognition

the dataset also includes: video sequences in uncompressed-raw format, camera geometry

calibration sequences, and software for skin region extraction.

4.2.3 Elicitation methods

Video prompts for the ≈ 3, 000 signs contained in the Gallaudet Dictionary of American

Sign Language [Valli, 2005] were presented to the signers sequentially (in addition to these

signs about 500 signs that were not in the dictionary were also elicited). The signs were

collected in citation form: the signer is asked to start from a rest position, perform the sign

and then return to a rest position. The signers were asked to produce the displayed signs

as they naturally would (or not, if they do not use that sign). A total of 9, 776 productions

were collected from six signers.

The signers did not always produce the same sign as in the prompt, they instead some-

times produced:

• a totally different but synonymous sign;

• a lexical variant of the same sign;

• essentially the same sign but differing in subtle ways with respect to the articulation.

Linguistic annotations of signs in the dataset were thus crucial for the appropriate classifi-

cation of these productions.

4.2.4 Annotation methods

Signs were linguistically annotated using SignStream R©3. The following annotations are

included in general for all signs:

• Timecodes to denote the starting and ending frames of each sign in the video,
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• Gloss labels; these are English text that uniquely identifies each sign with a specific

item in the sign language vocabulary,

• Articulatory classifications following the typology in Figure 2·4, such as: one-

handed/two-handed, same/different handshapes on the two hands in two-handed

signs, and, same/different handshapes at start and end positions on each hand,

• Labels for start/end handshapes on one or both hands using the inventory of hand-

shapes displayed in Figure 2·3,

• Morphological classification of sign type (lexical / fingerspelled / loan / classifier

constructions) since, as discussed in Section 2.2.3, the compositional principles are

different for different classes of signs.

For compound signs, the ASLLVD includes annotations as listed above for each morpheme.

The SignStream interface allows for very detailed and precise annotations to be prepared

for signs in the video sequences. However, for the development of sign recognition methods

there is also a need to ensure that the annotated linguistic attributes are consistent across

different signs in the dataset. The Lexicon Viewer and Verification Tool (LVVT) was

therefore developed by the author to aid linguists in viewing, comparing, verifying, and

modifying SignStream annotations. The LVVT is designed to assist the annotator in the

daunting task of ensuring consistency in the labeling of glosses and articulatory attributes

across several thousand productions. The LVVT aids the annotator in the the task of

verifying the following attributes for signs: gloss labels, start/end handshapes, start/end

timecodes in the video, and the morphological and articulatory classifications of signs.

The LVVT facilitates the grouping of signs in order to delineate the different types of

variation attested in signs. The ASLLVD includes numeric ID labels to uniquely identify

different variants of a sign which further aids in the task of training computer models

for recognition. The LVVT allows the verification of the above attributes for morphemes

contained within compound signs. Several passes of verifications were made by student

annotators, native signers and linguistic experts through the ≈ 10, 000 productions using
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the LVVT to correct a substantial number of linguistic annotations initially prepared by

students using SignStream. A more detailed description of features offered by the LVVT is

presented in [Neidle et al., 2012b].

4.3 The ASLLVD corpus

Statistics for the dataset are summarized in Table 4.1 and are discussed in more detail

below. The stimuli employed during elicitation included a total of 2, 759 signs. Some stim-

uli resulted in the production of more than one variant and thus the actual number of

signs (including variants) collected is larger: 3, 457. With six signers providing the data,

a total of 9, 776 productions of sign-variants are currently available in the dataset. Signs

have been classified into one-handed/two-handed monomorphemic lexical signs, compound

constructions, number signs, loan signs, classifier constructions, and fingerspelled signs.

Monomorphemic lexical signs are the main focus of this thesis. A total of 2, 289 monomor-

phemic lexical signs are present in the ASLLVD. Including all variants this number is 2, 923

and the corresponding number of productions obtained from all six signers combined is

8, 562.

Signs in the dataset have been classified by linguists with careful consideration of differ-

ent articulatory properties (e.g., Figure 4·1). Annotation of these distinctions is an essential

step towards training computer models that are capable of making the same distinctions.

A unique gloss label is associated with each distinct sign-variant. For 73% of sign-variants

in the class of monomorphemic lexical signs, productions from more than one signer are

available. Articulatory variations are often observed among productions that correspond to

a given gloss label. The lexicon dataset can therefore serve as a valuable resource to further

the development of SLR methods that are able to accommodate articulatory variation.

We use ACCIDENT and APPOINTMENT as examples to describe the organization of

signs in the lexicon dataset. These signs were chosen because a wide range of interest-

ing handshape variation was attested among their different productions in the dataset.

The annotations prepared by linguists for the productions of these two signs are displayed
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Classification of signs
Number of 

signs

Number of 

signs   

(variants)

# sign-variants 

with {1, 2, …, 6} 

consultants

# tokens (examples) 

per sign-variant

{ 1,2,…,6, >6 }

Number of 

sign tokens

Monomorphemic

lexical signs

Two-

handed
1557 1960

×1 537 503 ×1

5687

×2 679 587 ×2

×3 273 267 ×3

×4 341 295 ×4

×5 55 100 ×5

×6 75 100 ×6

108 >6

One-

handed
824 968

×1 245 240 ×1

2875

×2 312 266 ×2

×3 136 138 ×3

×4 189 164 ×4

×5 31 47 ×5

×6 55 58 ×6

55 >6

Subtotal of 

above
2289(a) 2923(b)

×1 777 738 ×1

8562

×2 990 852 ×2

×3 410 405 ×3

×4 529 458 ×4

×5 87 149 ×5

×6 130 157 ×6

164 >6

Compound signs 291 346

×1 151 139 ×1

746

×2 109 107 ×2

×3 46 46 ×3

×4 28 31 ×4

×5 5 11 ×5

×6 7 10 ×6

2 >6

Numbers 78 103 260

Loan signs 46 52 136

Classifier constructions 29 32 41

Fingerspelled signs 21 21 25

ALL 2759(c) 3457(d) -- -- -- -- 9776

Counts in cells (a,b,c,d) are less than the totals of counts in their parent cells because of the following reasons:

(a) many signs often contain both one- and two-handed variants; adding the parent cells will count these signs 

twice, (b) minor annotation inconsistencies occur where one- and two-hand tokens have been incorrectly 

placed in the same variant collection and this contributes some extra counts,

(c) & (d) are very similar to (a) & (b) in that there are a few instances of conflation across different classes.

Table 4.1: Statistics for signs contained in the ASLLVD corpus.
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in Table 4.2. Figures 4·2 and 4·3 show the start/end frames for these sign productions. We

summarize the variations found for productions associated with these two example signs

in Table 4.3. The number of signers from whom each of the two signs were elicited are

in the first row. Variations attested among the productions of each sign are classified as

follows:

• Lexical variants

Three linguistically distinct variants – considered here to be three distinct lexical

items – are attested in both cases. These variants are differentiated from each other

in certain specific handshapes that are articulated on either one or both hands at ei-

ther the start or end positions of the sign. For example, although a sign corresponding

roughly to the meaning of the English word, ”appointment” can be produced with

either a start handshape of A or 5, these handshapes generally cannot be used inter-

changeably in other signs without changing meaning. Therefore variations classified

here as lexical variations reflect possibilities for specific lexical items rather than gen-

eral phonological processes in the language. The differences among these variants are

summarized in the fourth row of Table 4.3. Each lexical item is annotated with an

unique gloss label. The number of examples associated with each lexical item is given

in the fifth row of the same table.

• Variations produced as a result of general phonological processes

The multiple examples available for many of the lexical variants allow us to extract

the patterns of handshape variation that are attributable to general language phe-

nomena (i.e., phonological variation). The patterns of variation that are the focus

of this research are those produced without being influenced by the phonological en-

vironment within which the handshape appears. This is because the productions of

signs used in this research were all produced in isolation (i.e., in citation form). Sign-

independent handshape variations attested among the productions of ACCIDENT and

APPOINTMENT in the ASLLVD are described in the last row of Table 4.3. Handshape
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variations in other example signs from the dataset are illustrated in Figure 4·4. The

productions of each sign obtained from different signers are depicted in the table us-

ing annotations for the start/end handshapes. The handshape labels associated with

different examples of a given sign are grouped by utilizing the linguistic properties

associated with the articulatory class (one-handed / two-handed : same handshapes /

two-handed : different handshapes) that the sign belongs to. These groupings of hand-

shape labels are outlined in the chart using boxes drawn with distinct colors. The

sign BLOSSOM, for example, shares the same handshape on the dominant and non-

dominant hands. The start and end handshapes in this sign are different, however.

Returning to Table 4.1, we now describe the different columns in more detail: There are

a total of 2, 923 sign-variants (column 3) among monomorphemic lexical signs. For 777 of

those sign-variants (column 4), we have examples from only one signer; for 990 of them, we

have examples from two signers, etc., and for 130 of those sign-variants, we have examples

from all six of our native signers. Since we have more than one example per signer for some

sign-variants, the total number of examples per sign-variant may be greater than the total

number of signers whose productions of that sign-variant are included in our data set. In

fact, for 164 of the sign-variants (column 5), we have more than 6 examples. (For two of

the signs, we have as many as 19 productions.)
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sign 

variant 1

sign 

variant 3

sign 

variant 2

sign 

variant 1

sign 

variant 3

sign 

variant 2

Table 4.2: Handshape labels and attested variants among examples of
ACCIDENT and APPOINTMENT contained in the lexicon dataset.

↓ Properties attested in the 

lexicon dataset
ACCIDENT APPOINTMENT

Total number of examples 7 11

Number of signers who 

produced the given sign
5 6

Number of linguistically

distinct forms (i.e., sign-

variants) among the sign 

productions contained in the 

dataset, and their annotated 

glosses

3

(a) ACCIDENT

(b) (5)ACCIDENT

(c) (3)ACCIDENT

3

(a) APPOINTMENT

(b) (A)APPOINTMENT

(c) (nd-S)APPOINTMENT

Articulatory differences that

produce linguistic distinctions 

in these signs

(b) Differs from (a) in start

handshape on both hands

(c) Differs from (a) & (b) in 

start handshape on both 

hands

(b) Differs from (a) in start handshape on both hands

(c) Differs from (a) & (b) in start handshape on the 

non-dominant hand

Number of examples for each 

sign-variant
2, 4, 1 8, 1, 2

Articulatory differences likely 

to be produced as a result of 

regular phonological 

processes 

(modeling these processes is

the focus of this thesis)

(b) {A,10,S} variation in end 

handshape on both hands

(a) {5,crvd-5,crvd-flat-B} variation in start handshape on 

the non-dominant hand, 

{A,S} variation in end handshape on both hands

(c) {crvd-sprd-B,crvd-5} variation in start handshape on 

dominant hand, {A,S} variation in end handshape on 

dominant hand

Table 4.3: A summary of different variations observed in the lexicon dataset
for the signs ACCIDENT and APPOINTMENT based on annotations for dif-
ferent productions of these signs as listed in Table 4.2.



56

Dominant 

hand (start)

Non-dom 

hand (start)

Dominant 

hand (end)

Non-dom 

hand (end)
HOW-MANY

(1H)HOW-MANY

Distinctions attested in number of  hands used

sign 

start

sign 

end

Dominant 

hand (start)

Non-dom 

hand (start)

Dominant 

hand (end)

Non-dom 

hand (end)
EITHER+

EITHER+++

sign 

start

sign 

end

Distinctions attested in number of  reduplicated movements

2

4

Dominant 

hand (start)

Non-dom 

hand (start)

Dominant 

hand (end)

Non-dom 

hand (end)
EASTER

EASTER_2

Distinctions attested in hand movement trajectory

sign 

start

sign 

end

Dominant 

hand (start)

Non-dom 

hand (start)

Dominant 

hand (end)

Non-dom 

hand (end)
DOLLAR

DOLLAR_2

Distinctions attested in orientation of  the dominant hand

sign 

start

sign 

end

Dominant 

hand (start)

Non-dom 

hand (start)

Dominant 

hand (end)

Non-dom 

hand (end)
CATERPILLAR

CATERPILLAR_2

Distinctions attested in hand location

sign 

start

sign 

end

Dominant 

hand (start)

Non-dom 

hand (start)

Dominant 

hand (end)

Non-dom 

hand (end)
DOCTOR

(D)DOCTOR

Distinctions in handshape on dominant hand

sign 

start

sign 

end

Figure 4·1: Annotations in the ASLLVD delineate variations in articu-
latory features that are linguistically distinctive. A few examples of such
distinctions in different articulatory parameters are shown here.
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(5) ACCIDENT

(5) ACCIDENT

(5) ACCIDENT

(5) ACCIDENT

ACCIDENT ACCIDENT
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3

(3) ACCIDENT

Dominant 

hand (start)

Non-dom 

hand (start)

Dominant 

hand (end)

Non-dom 

hand (end)

Dominant 

hand (start)

Non-dom 

hand (start)

Dominant 

hand (end)

Non-dom 

hand (end)

Articulatory variations produced 

as a result of regular 

phonological processes 

Figure 4·2:
Examples of variations attested for the sign ACCIDENT in the ASLLVD. The three lexical variants of this sign are annotated
with the gloss labels ACCIDENT, (5)ACCIDENT, (3)ACCIDENT. Phonological variations in the end handshape (e.g., A, S,
10) are seen among the four examples of (5)ACCIDENT.
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start

APPOINTMENT

APPOINTMENT

APPOINTMENT

APPOINTMENT

Dominant 

hand (start)

Non-dom 

hand (start)

Dominant 

hand (end)

Non-dom 

hand (end)

Dominant 

hand (start)

Non-dom 

hand (start)

Dominant 

hand (end)

Non-dom 

hand (end)

sign 

end

(nd-S)APPOINTMENT (nd-S)APPOINTMENT
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a
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3

(A)APPOINTMENT

si
g

n
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a
ri

a
n

t 
2

Articulatory variations produced as a 

result of regular phonological processes 

Figure 4·3:
Examples of variations attested for the sign APPOINTMENT in the ASLLVD. The three lexical variants of this sign are
annotated with the gloss labels APPOINTMENT, (A)APPOINTMENT, (nd-S)APPOINTMENT. Phonological variations in the
end handshape of the non-dominant hand are seen among the examples of APPOINTMENT and in the start handshape of
the dominant hand among the examples of (nd-S)APPOINTMENT.
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4.3.1 Limitations in relying on handshape annotations as the ground-truth

One important aspect pertaining to the implementation of the proposed approach for mod-

eling the properties of handshape combinations as well as the properties of handshape

variations within the HSBN relates to the fact that the start/end handshapes annotated

for signs in the lexicon dataset are assumed to reflect the ground-truth hand configurations

articulated within a given video sequence. Preparing handshape annotations is inherently

subjective due to the difficulties involved in associating a particular label from among a finite

set of handshape classes to hand configurations that are observed as start/end hand images

in the input signing video. Since hand configurations observed in signs often do not exactly

match one of the predetermined set of handshapes, the annotators had to make a forced

choice (the apparent difference in handshapes in some signs may therefore be greater than

the actual difference in the hand configurations). Hands in many cases are only partially

visible due to both self-occlusions and occlusions produced by the other hand. Differences in

handshape annotations can also arise from differences in the start and end frames selected

by annotators for multiple productions of a sign. All these factors are additional sources

of differences/variations in the sets of handshape labels for a given sign-variant that are

employed for training the HSBN model. Therefore, a prior over the model parameters is

incorporated during the learning of the HSBN in order to improve the robustness of the

estimated parameters.

4.4 Summary

The lexicon dataset was prepared with a goal of facilitating the development of a query-

by-sign lookup system for an ASL dictionary. The lexicon dataset is unique in that it

includes extensive annotations painstakingly prepared by linguists for several attributes of

signs, with a specific focus on the properties of hand articulations. The annotations that

are available for productions of signs contained in the dataset include the start/end video

frames, the start/end handshapes, as well as morphological and articulatory classifications

of signs. With the goals of distinguishing between variations in articulation that occur in
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Handshape annotations for the productions
of four signs in the ASLLVD

An example production of each sign along
with its start/end handshape annotations

Sign Signer

Dominant 

hand START 

handshape

Non-dominant 

hand START 

handshape

Dominant 

hand END   

handshape

Non-dominant 

hand END   

handshape

Li flat-O flat-O 5 5

Ty flat-O flat-O crvd-5 crvd-5

Na O O crvd-sprd-B crvd-sprd-B

Br flat-O flat-O 5 5

BLOSSOM

Dominant 

hand (start)

Non-dom 

hand (start)

Dominant 

hand (end)

Non-dom 

hand (end)
BLOSSOM

sign 

start

sign 

end

Sign Signer

Dominant 

hand START 

handshape

Non-dominant 

hand START 

handshape

Dominant 

hand END   

handshape

Non-dominant 

hand END   

handshape

Li 5 5 A A

Ty 5 crvd-flat-B S S

Na crvd-5 crvd-5 S S

Br 5 5 A A

La 5 crvd-5 S S

Da 5 5 S S

APPOINTMENT

Dominant 

hand (start)

Non-dom 

hand (start)

Dominant 

hand (end)

Non-dom 

hand (end)

APPOINTMENT

sign 

start

sign 

end

Sign Signer

Dominant 

hand START 

handshape

Non-dominant 

hand START 

handshape

Dominant 

hand END   

handshape

Non-dominant 

hand END   

handshape

Li crvd-B B-L 10 B-L

Li crvd-5 B-L A B-L

Ty bent-B-L B-L 10 B-L

Na 5 B-L 10 B-L

Na crvd-5 B-L 10 B-L

Br 5 B-L A B-L

COLLECT

Dominant 

hand (start)

Non-dom 

hand (start)

Dominant 

hand (end)

Non-dom 

hand (end)
COLLECT

sign 

start

sign 

end

Sign Signer

Dominant 

hand START 

handshape

Non-dominant 

hand START 

handshape

Dominant 

hand END   

handshape

Non-dominant 

hand END   

handshape

Li crvd-5 crvd-5 crvd-5 crvd-5

Li 5-C-L 5-C-L crvd-5 crvd-5

Na crvd-5 crvd-5 bent-B-L bent-B-L

Br crvd-5 crvd-5 crvd-5 crvd-5

BREAK-DOWN

Dominant 

hand (start)

Non-dom 

hand (start)

Dominant 

hand (end)

Non-dom 

hand (end)
BREAK-DOWN

sign 

start

sign 

end

Figure 4·4: Examples of handshape variation attested in the ASLLVD corpus. The focus
here is on patterns of handshape variation that are produced as a result of general language
processes. These are handshape variations that are not tightly linked to a specific item
in the vocabulary. The start/end handshape labels on the dominant and non-dominant
hands annotated by linguists are shown in the left column for examples of selected signs.
An example for each sign (dashed outline) is depicted in the right column.
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general across the language and those variations that are, for the most part, particular

to certain specific items in the vocabulary, the productions of distinct signs have been

annotated with a unique gloss (these are text labels in English). Multiple productions of

signs, in many instances from different signers, are available for a large fraction of signs in

the dataset vocabulary. In total, the lexicon dataset includes 9, 776 productions of 3, 457

distinct signs.

We envision that the lexicon dataset can serve as a valuable resource for developing

data-driven approaches for learning the properties of articulation as well as the patterns of

articulatory variation observed in signs. In this research we will utilize the lexicon dataset

specifically for the purposes of learning and empirical evaluation of the HSBN formulation

for the task of handshape inference in monomorphemic lexical signs.



Chapter 5

HandShapes Bayesian Network (HSBN)

In this chapter, we aim to formulate probabilistic models to represent the properties of

start/end handshape combinations in monomorphemic lexical signs. The models are de-

veloped with an eye towards facilitating start/end handshape inference given video input

of a sign. As summarized in the preceding chapter on ASL linguistics, the three main

articulatory classes of monomorphemic lexical signs are:

(a) ‘two-handed : same handshapes’: the handshapes articulated on the two hands are

the same (or, are very similar),

(b) ‘two-handed : different handshapes’: the two-hands exhibit dissimilar handshapes in

either or both the start and end points of the sign. The non-dominant hand takes a

small subset of possible handshapes and also does not exhibit a change in handshape

between the start and end positions, and

(c) ‘one-handed’: only the dominant hand is involved in the articulation.

We will propose a HandShape Bayesian Network (HSBN) model for each of these three

articulatory classes. An HSBN is a probabilistic generative model that represents the likely

combinations of start/end handshapes in monomorphemic lexical signs. We start by formu-

lating the HSBN for the class of one-handed signs, and then extend this model to obtain the

HSBNs for two-handed signs. The mathematical notation used in the HSBN formulation is

summarized in Table 5.1.

62



63

Notation Description

Is;D, Ie;D Images of handshapes for the dominant hand observed in
the input video at the start and end of the sign

Is;N, Ie;N Images of handshapes for the non-dominant hand observed
in the input video in two-handed signs

X Inventory of handshape labels, which contains 85 handshape
distinctions in our implementation

Xs;D, Xe;D, Xs;N, Xe;N Handshape labels from the set X for the observed start/end
handshape images is;D, ie;D, is;N, ie;N

Zs, Ze Variables depicting hidden (unobserved) start/end states

Z = (Zs,Ze) State-space associated with the hidden variables Zs, Ze,
which are estimated during HSBN learning.

Table 5.1: Notations used in the HSBN formulation.

Figure 5·1: The HSBN dominant graphical model for handshape inference in
one-handed signs.

5.1 HSBN for one-handed signs

For one-handed signs, the dominant hand alone participates in the articulation. Thus, our

model for one-handed signs considers only the start and end handshapes of the signer’s

dominant hand. The corresponding HSBN dominant model is depicted in Figure 5·1. The

model comprises three layers of random variables. The lowest layer represents handshape

images observed for the dominant hand at the start and end positions of the sign. The
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images of the dominant hand are denoted using the random variables Is;D, Ie;D. The middle

layer in the model includes the random variables, Xs;D, Xe;D, to depict handshape labels for

the start/end handshape images. The inventory of handshapes, X , in our implementation

contains 85 labels. The top layer of the HSBN model accounts for the hidden variables. The

labels for observed handshapes Xs;D, Xe;D in the HSBN are obtained as different realizations

of certain hidden states, Zs, Ze. Hidden variables are included in the HSBN to model the

phenomena of handshape variation produced as a result of general phonological processes.

The phenomena of sign-independent phonological variation are described in more detail

in Chapters 2 and 4.

The HSBN is formulated for the handshape classification task wherein labels from a pre-

defined set of handshapes, X , are desired as outputs of the handshape inference algorithm.

A convenient modeling choice for the HSBN is to employ a collection of discrete states

to represent hidden variables. Probability distributions that involve the hidden variables,

Zs, Ze, reduce to multinomial distributions, a property that enables relatively efficient al-

gorithms for HSBN learning and handshape inference. Handshapes in signs are produced as

a result of the hands adopting configurations in a continuous parameter space and therefore

robustness to gradience in handshape configurations is essential in algorithms for hand-

shape inference. In the proposed HSBN implementation, a degree of robustness to small

differences in articulation is incorporated into the observation likelihood function by using

an algorithm for non-rigid handshape image alignment. An alternate modeling choice for

the hidden variables that utilizes a continuous domain representation (such as a Gaussian

mixture model) requires a significantly larger training set size in order to accommodate

the wide range of hand orientations attested in signs. Furthermore, several handshapes are

either indistinguishable or are very similar in many of their 2D projections. We set aside

the investigation of a continuous domain representation for hidden variables as a topic for

future work.

Given the assumed representation for hidden variables in the HSBN, the probability

distributions in the model and their associated parameters are defined as follows. The
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Notation Description

πzs or π[zs] The prior distribution P (Zs = zs), for the hidden state at
the start of a sign

azs, ze or a[zs, ze] Transition probabilities P (Ze = ze |Zs = zs) for start/end
hidden states

bszs(x
s) or bs[zs, xs],

beze(x
e) or be[ze, xe]

The probabilities for observed handshape labels to
be obtained as different realizations of hidden states:
P (Xs = xs |Zs = zs), P (Xe = xe |Ze = ze)

λ The parameters {π, a,bs,be} for the HSBN model

Table 5.2: Parameters for the HSBN formulation.

probability distribution over the start latent states are denoted as: πzs = P (Zs = zs).

The start/end transitions in the model are represented as: azs,ze = P (Ze = ze |Zs = zs).

The probability distributions for observed handshape configurations to be produced as

different realizations of hidden states are given by bszs(x
s;D) = P (Xs;D = xs;D |Zs = zs)

and beze(x
e;D) = P (Xe;D = xe;D |Ze = ze). These parameters taken together are denoted

as λ and are summarized in Table 5.2.

The likelihoods of producing the observed start/end handshape appearances in in-

put video given their corresponding handshape configuration labels are depicted as:

P (Is;D = is;D |Xs;D = xs;D) and P (Ie;D = ie;D |Xe;D = xe;D). The expressions for these dis-

tributions are derived in a subsequent section on handshape inference.

5.2 HSBN for two-handed signs

Signs in the class two-handed : same handshapes exhibit same or very similar handshapes on

the two hands. The pair of random variables Xs;D, Xs;N for handshape configurations on

the two hands at the start of the sign are therefore modelled as different realizations of

the same hidden state Zs. Similarly, the handshape pair Xe;D, Xe;N observed at the end of

the sign are modelled as different realizations of the hidden state Ze. The corresponding

HSBN congruent graphical model is depicted in Figure 5·2.

In the case of two-handed : different handshapes signs, the handshapes of the dominant
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START END

D: dominant hand,  N: Non-dominant hand

Figure 5·2: The HSBN congruent graphical model formulated for handshape
inference in two-handed : same handshapes signs.

Figure 5·3: The HSBN dominant and HSBN non-dominant graphical models for-
mulated for handshape inference in two-handed : different handshapes signs.

hand are represented using the same graphical model as in the case of one-handed. The

non-dominant hand adopts configurations from among a small set of unmarked handshapes

and the non-dominant hand does not exhibit a change in configuration between the start

and end positions of the sign. The properties that are unique to handshapes articulated

on the non-dominant hand are therefore represented using the HSBN non-dominant graphical

model depicted in Figure 5·3. The same hidden state Z produces the observed start and
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end handshapes Xs;N, Xe;N.

The handshapes on the non-dominant hand in two-handed : different handshapes are dealt

with separately in learning the HSBN model. In all the other cases, the hands can adopt

a full range of handshapes (Figure 2.3(a)); furthermore, they share the same patterns and

constraints with respect to the allowable changes in handshape configuration between the

start and end points in the sign. The algorithm for learning the HSBN parameters can

therefore utilize examples in the training set that belong to all three classes. At query time,

different versions of the HSBN, as determined by the class to which the query sign belongs

to, are constructed in order to perform handshape inference.

5.3 Handshape inference using the HSBN model

Given the HSBN representations described above, we now formulate the proposed approach

for handshape inference for an input video of a sign. We first develop the approach for hand-

shape inference in one-handed query signs and then extend this formulation for handshape

inference in two-handed query signs.

5.3.1 Handshape inference in one-handed signs

Given start/end handshape images is;D , ie;D for the dominant hand in an in-

put video sequence, we would like to infer the likely start/end handshape la-

bels. The HSBN dominant model yields the posterior probability distribution

P (Xs;D = xs;D, Xe;D = xe;D | Is;D = is;D, Ie;D = ie;D) for the start/end handshape labels

which can then be used to produce the inferred list start/end handshape pairs. The posterior
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distribution, in the HSBN dominant graphical model in Figure 5·1, is computed as follows,

P (Xs;D = xs;D, Xe;D = xe;D | Is;D = is;D, Ie;D = ie;D)

=
P (xs;D, xe;D, is;D, ie;D)

P (is;D , ie;D)
(5.1)

∝ P (xs;D, xe;D, is;D, ie;D)

= P (is;D, ie;D |xs;D, xe;D) P (xs;D, xe;D)

= P (is;D |xs;D) P (ie;D |xe;D) P (xs;D, xe;D)

= P (is;D)P (ie;D)
P (xs;D | is;D)

P (xs;D)

P (xe;D | ie;D)

P (xe;D)
P (xs;D, xe;D)

∝ P (xs;D | is;D) P (xe;D | ie;D)
P (xs;D, xe;D)

P (xs;D) P (xe;D)
. (5.2)

In order to evaluate the above expression, we need to specify the posterior form for the

observation likelihoods, P (xs;D | is;D), and the prior distribution over handshape label pairs,

P (xs;D, xe;D). We discuss one specific implementation for the observation likelihood function

in Chapter 8. The expression for the HSBN observation likelihood is formulated in Equa-

tion 8.1.

The HSBN dominant model yields the following decomposition for the prior distribution over

handshape label pairs in terms of the model parameters, λ:

P (xs;D , xe;D)

=
∑

zs∈Zs,ze∈Ze

P (Zs = zs)P (Xs;D = xs;D |Zs = zs)P (Ze = ze |Zs = zs)P (Xe;D = xe;D |Ze = ze)

=
∑

zs∈Zs,ze∈Ze

πzs azs, ze bszs(x
s;D) beze(x

e;D) . (5.3)

The distributions P (xs;D) , P (xe;D) are computed as marginals of P (xs;D, xe;D).

Substituting Equations 8.1 and 5.3 into Equation 5.2 completes the steps for handshape

inference in one-handed signs.
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5.3.2 Handshape inference in two-handed signs

For the task of handshape inference in two-handed signs we require a list of labels for

start/end handshapes attested on the dominant and non-dominant hands in a video se-

quence containing a two-handed sign. The respective start/end handshape images are de-

noted as is;D , ie;D, and, is;N , ie;N.

In two-handed : same handshapes signs, same (or very similar) handshapes are articu-

lated on the two hands. To infer the respective handshape labels we compute the following

joint posterior probability distribution: P (xs;D, xe;D, xs;N, xe;N | is;D, ie;D, is;N, ie;N). Utiliz-

ing the HSBN congruent graphical model in Figure 5·2, an expression for the joint posterior

distribution is derived as follows. We first obtain the following expression following the

sequence of steps as in Equations 5.1 and 5.2,

P (xs;D, xe;D, xs;N, xe;N | is;D, ie;D, is;N, ie;N)

∝ P (xs;D | is;D)P (xe;D | ie;D)P (xs;N | is;N)P (xe;N | ie;N)
P (xs;D, xe;D, xs;N, xe;N)

P (xs;D)P (xe;D)P (xs;N)P (xe;N)
. (5.4)

The posterior form of the observation likelihoods, P (x | i), are computed as in Equation 8.1.

The HSBN congruent graphical model yields the following decomposition of the prior proba-

bility distributions for the observed handshape labels:

P (xs;D, xe;D, xs;N, xe;N) =
∑

zs∈Zs,ze∈Ze

πzs azs,ze b
s
zs(x

s;D)bszs(x
s;N)beze(x

e;D)beze(x
e;N) .

(5.5)

The distributions P (xs;D), P (xe;D), P (xs;N), P (xe;N) are computed as marginals of the joint

prior distribution P (xs;D, xe;D, xs;N, xe;N).

Substituting the expressions for the joint prior distribution and the posterior form of obser-

vation likelihoods into Equation 5.4 yields the desired posterior distributions for handshape

label tuples.

In two-handed : different handshapes signs, the posterior distributions for handshape la-

bels on the dominant hand are computed using the same sequence of steps as for handshape

inference in one-handed signs (Section 5.3.1). The posterior distributions for handshapes on
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the non-dominant hand are computed as follows.

P (Xs;N = xs;N, Xe;N = xe;N | Is;N = is;N, Ie;D = ie;N)

∝ P (xs;N | is;N) P (xe;N | ie;N)
P (xs;N, xe;N)

P (xs;N) P (xe;N)
. (5.6)

The HSBN non-dominant model in Figure 5·3 yields the following decomposition of the prior

probability distributions for the observed handshape labels xs;N, xe;N:

P (xs;N , xe;N) =
∑

z∈ZN

πN
z bN

z (x
s;N) bN

z (x
e;N) . (5.7)

Computing the marginals and substituting into Equation 5.6 yields the required posterior

distributions for handshape labels on the non-dominant hand.

5.4 Summary

In this chapter we have described the HSBN graphical model for the task of start/end

handshape inference in monomorphemic lexical signs. We proposed different adaptations

of the HSBN model to accommodate the properties of articulation that are specific to

one-handed and two-handed signs. The HSBN includes a hidden layer of random variables

in order to model the properties of sign-independent phonological variation attested in

handshape articulation. Given the HSBN model parameters, closed form expressions for

posterior distributions over handshape labels are obtained and therefore the algorithm for

handshape inference is computationally straightforward. Handshape inference using the

HSBN produces a ranked list of candidate handshape labels and thereby facilitates the

integration of handshape inference results with other computer vision based components

towards developing a full-fledged system for sign recognition and retrieval.



Chapter 6

Learning the HSBN model

Given the HSBN model developed in the previous chapter, we now formulate a su-

pervised learning framework for estimating the model parameters. We need to esti-

mate the state-space Z = (Zs,Ze) for representing hidden variables and the parameters

λZ = {π, a, bs, be} for the multinomial distributions. In this chapter we develop an ap-

proach to estimate the multinomial parameters assuming that a state-space for the hidden

variables is available. In the next chapter we develop an algorithm to explore the state-space

in order to determine a suitable representation for the hidden variables. We rely on the

variational Bayes formulation [Beal, 2003] in developing the learning algorithms for these

two parameter estimation tasks.

The training set contains productions of monomorphemic lexical signs from a vocabulary

Vx. The training set is assumed to include examples produced by two or more native sign

language users for a significant fraction of items in the vocabulary. The availability of

multiple productions of a sign allows the learning algorithm to accrue patterns of sign-

independent variability in handshape articulation. The productions of signs in the training

set are assumed to be annotated with their start/end handshape labels.

The handshape label annotations in one-handed signs are depicted as xij =
(
xsij , x

e
ij

)
,

where, xsij , x
e
ij ∈ X are the start and end handshapes respectively. Here, i ranges over the

items in the vocabulary, i.e., 1 ≤ i ≤ |Vx|, and j ranges over the different productions

of the ith vocabulary item. X represents the set of all handshape labels. The handshapes

annotated in two-handed signs are depicted by the tuple xij =
(
x
s;D
ij , x

s;N
ij , x

e;D
ij , x

e;N
ij

)
; the

superscripts D and N refer to handshapes articulated on the dominant and non-dominant

hands respectively. The set xi = {xij} refers to the handshape tuples for all examples

71
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Notation Description

Vx The vocabulary of distinct monomorphemic lexical signs
contained in a given training set

x, xi, xij ,(
xsij , x

e
ij

)
, X

Start/end handshape label annotations for productions of
signs contained in the training set,

x = {xi}, 1 ≤ i ≤ |Vx|, xi = {xij}, 1 ≤ j ≤ |xi|,

xij =
(
xsij , x

e
ij

)
, xsij , x

e
ij ∈ X

z, zi, (z
s
i , z

e
i ) ,

(Zs,Ze) , Z

Hidden variables associated with signs in the vocabulary,

z = {zi}, 1 ≤ i ≤ |Vx|,

zi = ( zsi , z
e
i ), zsi ∈ Z

s, zei ∈ Z
e, Z = (Zs,Ze)

Table 6.1: Notations for the training set and hidden variables employed in
learning the HSBN dominant model.

of the ith vocabulary item and the set x = {xi} refers to the handshape tuples for all

vocabulary items contained in the training set. A summary of symbols for the training set

are given in Table 6.1.

The HSBN model includes unobserved start/end hidden variables. The start/end hand-

shape labels for the tuples contained in xi are assumed to arise as different realizations

of a single pair of hidden variables, zi = (zsi , z
e
i ). The collection of hidden variable pairs

for all signs in the vocabulary is represented as z = {zi} , 1 ≤ i ≤ |Vx|. The hidden

variables (zsi , z
e
i ) take values from their respective state-spaces (Zs,Ze). The one-to-many

associations between the hidden variables and the handshape label annotations for the

case of one-handed signs in the training set can be depicted using the plate representa-

tion as in Figure 6·1. An extension of this representation involving both one-handed and

two-handed : same handshapes signs is depicted in Figure 6·2.

Given the state-space Z for hidden variables, there is a choice among the different learn-

ing methods that can be adopted for parameter estimation. Here we consider the Maximum

A-Posteriori (MAP) approach and its extension the variational Bayes (VB) approach. The

VB formulation yields a lower bound, LVB
Z

, that will prove instrumental in formulating an

approach for state-space estimation.
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Observed
handshapes

zsi zei

|xi| multiple instances for sign i

|x| all signs in the lexicon

xsij xeij

Figure 6·1: A plate representation for one-handed signs contained in the
training set is used to depict the one-to-many associations between the hid-
den variables and the annotated start/end handshape labels that are utilized
in learning parameters involving hidden variables in the HSBN dominant model.

Observed
handshapes x

s;N
ij x

e;D
ij x

e;N
ijx

s;D
ij

|xi| multiple instances for sign i

zsi

|x| two-handed : same handshapes signs in the lexicon

zei

Figure 6·2: A plate representation of the training set consisting of start/end
handshape labels for two-handed : same handshapes signs is employed in learn-
ing parameters for the HSBN congruent model.

We first develop the MAP and VB approaches for the case of one-handed signs. These

learning formulations are subsequently extended to also include two-handed : same hand-

shapes signs.

6.1 The MAPEM formulation for learning HSBN dominant model parameters

We present the MAP (Maximum A-Posteriori) formulation to learn the HSBN model pa-

rameters, λ. The inputs given are a training set, x, and the prior distributions for the model
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Notation Description

πzs or π[zs] The prior distribution P (Zs = zs), for the hidden state at
the start of a sign

azs, ze or a[zs, ze] Transition probabilities P (Ze = ze |Zs = zs) for start/end
hidden states

bszs(x
s) or bs[zs, xs],

beze(x
e) or be[ze, xe]

The probabilities for observed handshape labels to
be obtained as different realizations of hidden states:
P (Xs = xs |Zs = zs), P (Xe = xe |Ze = ze)

λ The parameters {π, a,bs,be} for the HSBN model

ω = {ν, α, βs, βe} Dirichlet distribution parameters (hyper-parameters) as-
sociated with the HSBN parameters λ = {π, a, bs, be}.
These are defined as follows,

νzs or ν[zs] is associated with πzs or π[zs]

αzs, ze or α[zs, ze] is associated with azs, ze or a[zs, ze]

βszs(x
s) or βs[zs, xs] is associated with bszs(x

s) or bs[zs, xs]

βeze(x
e) or βe[ze, xe] is associated with beze(x

e) or be[ze, xe]

Table 6.2: Parameters in the HSBN learning formulation.

parameters. The priors belong to the Dirichlet family whose (hyper)parameters are ω. The

parameters are summarized in Table 6.2. In the MAP formulation we aim to maximize the

posterior distribution over model parameters to yield an estimate for the model parameters:

λ̂ = argmax
λ

[
lnP

(
λ |x, ωprior

) ]
. (6.1)

The exact posterior log-likelihood is intractable to optimize directly because the HSBN

involves unobserved hidden variables z. A lower bound to the posterior log-likelihood,

LMAP
Z

(λ | x, Qz), is therefore constructed by introducing variational distributions Qz(z)

for the hidden variables. Maximizing this lower bound using the Expectation-Maximization

algorithm yields an estimate for the desired model parameters, λMAP
Z .
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An expression for the MAPEM lower bound is formulated as follows,

lnP (λ |x, ωprior) = lnP (x |λ, ωprior) + lnP (λ |ωprior) − lnP (x |ωprior) (6.2)

≡ lnP (x |λ) + lnP (λ |ωprior) (6.3)

=

|Vx|∑

i=1

lnP (xi |λ) + lnP (λ |ωprior) (6.4)

=

|Vx|∑

i=1

ln
∑

zsi∈Z
s,zei∈Z

e

P (xi, z
s
i , z

e
i |λ) + lnP (λ |ωprior). (6.5)

Equation 6.2 is obtained by applying Bayes’ rule and is simplified in Equation 6.3 because

P (x |ωprior) is a constant for the given training set. The decomposition in Equation 6.4 is

obtained because the handshape tuples, xi, for different vocabulary items are condition-

ally independent given the model parameters. Equation 6.5 introduces the pair of hidden

variables, zsi , z
e
i , for each vocabulary item and marginalizes over them. We include the

subscript i when required for clarity to denote that a pair of hidden variables is associated

with a specific vocabulary item. These hidden variables take values from the corresponding

state-spaces (Zs,Ze). The marginalization is therefore performed over all settings of all

hidden variables.

Variational distributions, Qz(z) = {Qz,i(z
s
i , z

e
i )} , 1 ≤ i ≤ |Vx| , are now introduced to

yield a lower bound by allowing the log operator to be shifted inside the summation.

lnP (λ |x, ωprior) ≡

|Vx|∑

i=1

ln
∑

zs
i
∈Zs,ze

i
∈Ze

Qz,i(z
s
i , z

e
i )
P (xi, z

s
i , z

e
i |λ)

Qz,i(zsi , z
e
i )

+ lnP (λ |ωprior), (6.6)

where the variational distributions have the following constraints,

∑

zsi∈Z
s,zei∈Z

e

Qz,i(z
s
i , z

e
i ) = 1, Qz,i(z

s
i , z

e
i ) ≥ 0. (6.7)

We will also define the following marginals for the variational distributions,

Qz,i(z
s
i ) =

∑

zei∈Z
e

Qz,i(z
s
i , z

e
i ), Qz,i(z

e
i ) =

∑

zsi∈Z
s

Qz,i(z
s
i , z

e
i ). (6.8)
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Using Jensen’s inequality we obtain the desired MAPEM lower bound as follows,

lnP (λ |x, ωprior) ≥

|Vx|∑

i=1

∑

zsi∈Z
s,zei ∈Z

e

Qz,i(z
s
i , z

e
i ) ln

P (xi, z
s
i , z

e
i |λ)

Qz,i(zsi , z
e
i )

+ lnP (λ |ωprior)

(6.9)

=

|Vx|∑

i=1

∑

zsi∈Z
s,zei ∈Z

e

Qz,i(z
s
i , z

e
i ) [ lnP (xi, z

s
i , z

e
i |λ) − lnQz,i(z

s
i , z

e
i ) ]

+ lnP (λ |ωprior) (6.10)

= LMAP
Z (λ | x, Qz). (6.11)

The complete data log-likelihood term, lnP (xi, z
s
i , z

e
i |λ), in Equation 6.10 can be expanded

given the plate representation for the training set depicted in Figure 6·1,

lnP (xi, z
s
i , z

e
i |λ) = lnπzsi + lnazsi , zei +

|xi|∑

j=1

[
lnbszsi (x

s
ij) + lnbezei (x

e
ij)
]
. (6.12)

The priors for model parameters, P (λ |ωprior), in Equation 6.10 can be expanded as fol-

lows given, ωprior, the hyper-parameters for Dirichlet priors associated with each model

parameter,

lnP (λ |ωprior) = lnDir
(
π |νprior

)
+

∑

zs∈Zs

lnDir
(
azs |α

prior
zs

)

+
∑

zs∈Zs

lnDir
(
bszs |β

s prior
zs

)
+

∑

ze∈Ze

lnDir
(
beze |β

e prior
ze

)

(6.13)

=
∑

zs∈Zs

(
ν
prior
zs − 1

)
lnπzs +

∑

zs∈Zs,ze∈Ze

(
α

prior
zs,ze − 1

)
lnazs,ze

+
∑

zs∈Zs,x∈X

(
β
s prior
zs (x)− 1

)
lnbszs(x)

+
∑

ze∈Ze,x∈X

(
β
e prior
ze (x)− 1

)
lnbeze(x). (6.14)

With the above two terms in place, the overall objective for the MAPEM formulation is

given by:

max
λ, Qz

[
LMAP
Z (λ | x, Qz)

]
. (6.15)
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This lower bound is maximized using a block coordinate ascent approach [Dempster et al.,

1977]. The maximization is performed in alternation with respect to the variational distri-

butions, Qz, and the model parameters, λ, to yield the updated values for the variational

distributions and the model parameters respectively. These two maximization steps consti-

tute the E and M steps in the MAPEM algorithm. The two key equations (Equation 6.19

and Equations 6.24 - 6.27) for learning the HSBN differ from those of the MAP formulation

for HMMs by including the one-to-many associations between the hidden variables zsi , z
e
i

and observed variables xi =
{(
xsij , x

e
ij

)}
.

The equations for the E-step, the M-step and the update for the MAPEM lower bound

are derived below.

For the MAPEM E-step, we maximize the lower bound with respect to Qz while holding

λ constant:

max
Qz

[
LMAP
Z (λ | x, Qz)

]

Subject to:
∑

zs
i
∈Zs,ze

i
∈Ze

Qz,i(z
s
i , z

e
i ) = 1 (6.16)

The desired updates to the variational distributions are derived using Lagrange multipliers

µQz,i
for the sum-to-one constraints,

∇Qz,i
(LMAP

Z ) + µQz,i
= 0.

Substituting the expression for LMAP
Z

from Equation 6.10, we obtain,

∇Qz,i



|Vx|∑

i=1

∑

zsi∈Z
s,zei∈Z

e

Qz,i(z
s
i , z

e
i ) [ lnP (xi, z

s
i , z

e
i |λ) − lnQz,i(z

s
i , z

e
i ) ] + lnP (λ |ωprior)


 + µQz,i

= 0

∴ ∇Qz,i
[Qz,i(z

s
i , z

e
i ) ( lnP (xi, z

s
i , z

e
i |λ) − lnQz,i(z

s
i , z

e
i ) ) ] + µQz,i

= 0

∴

∂

∂ Qz,i(zsi , z
e
i )

[Qz,i(z
s
i , z

e
i ) ( lnP (xi, z

s
i , z

e
i |λ) − lnQz,i(z

s
i , z

e
i ) ) ] + µQz,i

= 0

∴ lnP (xi, z
s
i , z

e
i |λ) − lnQz,i(z

s
i , z

e
i ) − 1 + µQz,i

= 0.

(6.17)
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The variational distributions can therefore be expressed as,

lnQz,i(z
s
i , z

e
i ) = lnP (xi, z

s
i , z

e
i |λ) − CQz,i

, (6.18)

where the CQz,i
are normalizing constants for the variational distributions Qz,i.

Substituting from Equation 6.12 we obtain an expression for variational distributions asso-

ciated with the hidden variables, thereby concluding the derivation of the MAPEM E-step,

lnQz,i(z
s
i , z

e
i ) = lnπzsi + lnazsi ,zei +

|xi|∑

j=1

[
lnbszsi (x

s
ij) + lnbezei (x

e
ij)
]
− CQz,i

. (6.19)

For the MAPEM M-step, we maximize the lower bound with respect to λ while holding

the variational distributions Qz(z) constant:

max
λ

[
LMAP
Z (λ | x, Qz)

]

Subject to: The stochasticity constraints on λ given by,

∑

zs∈Zs

πzs = 1;
∑

ze∈Ze

azs,ze = 1, ∀zs ∈ Zs,

∑

x∈X

bszs(x) = 1, ∀zs ∈ Zs;
∑

x∈X

beze(x) = 1, ∀ze ∈ Ze. (6.20)

Introducing Lagrange multipliers µ for the above constraints, we obtain,

∇π(L
MAP
Z ) + µπ = 0, ∇azs

(LMAP
Z ) + µ azs

= 0

∇bs
zs
(LMAP

Z ) + µbs
zs

= 0, ∇be
ze
(LMAP

Z ) + µbe
ze

= 0. (6.21)

From Equation 6.10, we have,

LMAP
Z =

|Vx|∑

i=1

∑

zsi∈Z
s,zei ∈Z

e

Qz,i(z
s
i , z

e
i ) [ lnP (xi, z

s
i , z

e
i |λ) − lnQz,i(z

s
i , z

e
i ) ] + lnP (λ |ωprior).

(6.22)

Substituting the expression for P (xi, z
s
i , z

e
i |λ) from Equation 6.12 and the expression for
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P (λ |ωprior) from Equation 6.14 in the above equation we obtain,

LMAP
Z =

|Vx|∑

i=1

∑

zs
i
∈Zs,ze

i
∈Ze

Qz,i(z
s
i , z

e
i )


lnπzs

i
+ lnazs

i
,ze

i
+

|xi|∑

j=1

[
lnbszsi (x

s
ij) + lnbezei (x

e
ij)
]



−

|Vx|∑

i=1

∑

zsi∈Z
s,zei ∈Z

e

Qz,i(z
s
i , z

e
i ) lnQz,i(z

s
i , z

e
i )

+
∑

zs∈Zs

(
ν
prior
zs − 1

)
lnπzs +

∑

zs∈Zs,ze∈Ze

(
α

prior
zs,ze − 1

)
lnazs,ze

+
∑

zs∈Zs,x∈X

(
β
s prior
zs (x)− 1

)
lnbszs(x)

+
∑

ze∈Ze,x∈X

(
β
e prior
ze (x)− 1

)
lnbeze(x). (6.23)

Setting the derivatives of the above expression with respect to each of the model parameters

to 0 yields the desired updates for the model parameters (Equations 6.24 - 6.27).

The updated values for π⋆ are given by,

∂

∂ πzs



|Vx|∑

i=1

∑

zsi∈Z
s,zei∈Z

e

Qz,i(z
s
i , z

e
i ) lnπzsi +

∑

z̃s∈Zs

(
ν
prior
z̃s − 1

)
lnπz̃s


 + µπ = 0

∴

|Vx|∑

i=1

∑

zsi∈Z
s,zei∈Z

e

Qz,i(z
s
i , z

e
i ) δ(z

s, zsi )
1

πzsi

+
∑

z̃s∈Zs

(
ν
prior
z̃s − 1

)
δ(zs, z̃s)

1

πz̃s
+ µπ = 0

∴

|Vx|∑

i=1

∑

ze
i

Qz,i(z
s
i , z

e
i )

1

πzs
i

+
(
ν
prior
zs − 1

) 1

πzs
+ µπ = 0

∴ π⋆zs =
1

Cπ



|Vx|∑

i=1

Qz,i(z
s) +

(
ν
prior
zs − 1

)

 ∀ zs ∈ Zs. (6.24)
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The updated values for a⋆ are given by,

∂

∂ azs,ze



|Vx|∑

i=1

∑

zsi∈Z
s,zei∈Z

e

Qz,i(z
s
i , z

e
i ) lnazsi ,zei

+
∑

z̃s∈Zs,z̃e∈Ze

(
α

prior
z̃s,z̃e − 1

)
lnaz̃s,z̃e


 + µ azs

= 0

∴

|Vx|∑

i=1

∑

zs
i
∈Zs,ze

i
∈Ze

Qz,i(z
s
i , z

e
i ) δ(z

s, zsi ) δ(z
e, zei )

1

azs
i
,ze

i

+
∑

z̃s∈Zs,z̃e∈Ze

(
α

prior
z̃s,z̃e − 1

)
δ(zs, z̃s) δ(ze, z̃e)

1

az̃s,z̃e
+ µ azs

= 0

∴ a⋆zs,ze =
1

C azs



|Vx|∑

i=1

Qz,i(z
s, ze) +

(
α

prior
zs,ze − 1

)

 ∀ zs ∈ Zs, ze ∈ Ze. (6.25)

The updated values for bs ⋆ and be ⋆ are given by,

∂

∂ bszs(x)



|Vx|∑

i=1

∑

zs
i
∈Zs,ze

i
∈Ze

Qz,i(z
s
i , z

e
i )

|xi|∑

j=1

lnbszs
i
(xsij)

+
∑

z̃s∈Zs,x̃∈X

(
β
s prior
z̃s (x̃)− 1

)
lnbsz̃s(x̃)


 + µbs

zs
= 0

∴

|Vx|∑

i=1

∑

zsi∈Z
s,zei∈Z

e

Qz,i(z
s
i , z

e
i )

|xi|∑

j=1

δ(zs, zsi ) δ(x, x
s
ij)

1

bszs
i
(xsij)

+
∑

z̃s∈Zs,x̃∈X

(
β
s prior
z̃s (x̃)− 1

)
δ(zs, z̃s) δ(x, x̃)

1

bsz̃s(x̃)
+ µbs

zs
= 0

∴ bs ⋆zs (x) =
1

Cbs
zs



|Vx|∑

i=1

Qz,i(z
s)

|xi|∑

j=1

δ(x, xsij) +
(
β
s prior
zs (x)− 1

)

 ∀ zs ∈ Zs,

(6.26)

be ⋆ze (x) =
1

Cbe
ze



|Vx|∑

i=1

Qz,i(z
e)

|xi|∑

j=1

δ(x, xeij) +
(
β
e prior
ze (x)− 1

)

 ∀ ze ∈ Ze.

(6.27)

The scalars Cπ, C azs
, Cbs

zs
and Cbe

ze
are normalizing constants to satisfy stochasticity con-

straints for the multinomial parameters.
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The updated value for the MAPEM lower bound can now be derived as follows.

From Equation 6.10 we have,

LMAP
Z (λ | x, Qz) =

|Vx|∑

i=1

∑

zsi∈Z
s,zei ∈Z

e

Qz,i(z
s
i , z

e
i ) [ lnP (xi, z

s
i , z

e
i |λ) − lnQz,i(z

s
i , z

e
i ) ]

+ lnP (λ |ωprior) (6.28)

Substituting the expression for lnQz,i(z
s
i , z

e
i ) from Equation 6.18, we get,

LMAP
Z (λ | x, Qz) =

|Vx|∑

i=1

∑

zsi∈Z
s,zei∈Z

e

Qz,i(z
s
i , z

e
i )[CQz,i

] + lnP (λ |ωprior)

=

|Vx|∑

i=1

CQz,i
+ lnP (λ |ωprior). (6.29)

In the second step above we used the property that the variational distributions are nor-

malized:
∑

zsi∈Z
s,zei ∈Z

e

Qz,i(z
s
i , z

e
i ) = 1.

Substituting the terms for lnP (λ |ωprior) from Equation 6.14, we get,

LMAP
Z (λ⋆ | x, Qz) =

|Vx|∑

i=1

CQz,i
+
∑

zs∈Zs

(
ν
prior
zs − 1

)
lnπ⋆zs

+
∑

zs∈Zs,ze∈Ze

(
α

prior
zs,ze − 1

)
lna⋆zs,ze

+
∑

zs∈Zs,x∈X

(
β
s prior
zs (x)− 1

)
lnbs ⋆zs (x)

+
∑

ze∈Ze,x∈X

(
β
e prior
ze (x)− 1

)
lnbe ⋆ze (x). (6.30)

The complete MAPEM algorithm is summarized in Algorithm 6.1. The inputs given

are the training set x containing the start/end handshape labels for signs in a vocabulary

Vx, the initial value for model parameters λ◦, and the (hyper)parameters ωprior for the

Dirichlet distributions that serve as the priors for the model parameters. The outputs from

the algorithm are the MAP estimates for model parameters, λMAP
Z .

The model parameters are initialized in Algorithm 6.1, step 1. The E and M steps are

used in alternation until the estimated parameters and the MAPEM lower bound converge.

For the E-step, an estimate for the variational distributions, Q̃z,i, for each item in the
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vocabulary are computed as in Algorithm 6.1, step 4. The variational distributions are then

normalized (Algorithm 6.1, step 5) and the normalizing constant is saved (as CQz
[i]). These

constants are used in Algorithm 6.1, step 6 to compute theMAPEM lower bound LMAP
Z

. The

normalized variational distributions, Qz,i, are used in the M-step (Algorithm 6.1, steps 7 -

10) to obtain an update for the model parameters.

6.2 Variational Bayes formulation for learning HSBN dominant model param-

eters

The variational Bayes (VB) approach employs a lower bound LVB
Z

to the posterior likeli-

hood P (x) for the given training set, x. This is needed since the complete data-likelihood

is intractable to compute directly: the hidden parameters introduce dependencies be-

tween latent variables associated with different training samples. Through the process

of maximizing this lower bound, the VB approach yields an approximation to the de-

sired posterior distribution over model parameters P (λ |x). Choosing Dirichlet priors with

parameters ωprior = {νprior,αprior,βs prior,βe prior} for the multinomial distributions in the

HSBN model yields posterior distributions from the same family, denoted with parameters

ω⋆ = {ν⋆,α⋆,βs ⋆,βe ⋆}.

An expression for the VB lower bound is obtained by introducing two sets of variational

distributions, Qz,i, for hidden variables zi and, Qλ, for model parameters λ,

lnP (x) = ln

∫
dλ P (x |λ)P (λ) (6.31)

= ln

∫
dλ Qλ(λ)P (x |λ)

P (λ)

Qλ(λ)
. (6.32)

Variational distributions Qλ(λ) associated with the model parameters λ are introduced to
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Algorithm 6.1: MAPEM dominant algorithm for learning HSBN dominant parameters

Inputs : x Handshape label pairs for signs contained in a training set,

: λ◦ Initial values for the model parameters,

: ωprior Prior distributions for HSBN parameters.

Outputs : λMAP
Z Estimated HSBN parameters.

1 λ⋆ ← λ◦;

2 repeat

/* E-Step (derived in Equation 6.19) */

3 for i ← 1 to |Vx| do

4 Q̃z,i[z
s, ze] ←

exp


lnπ⋆[zs] + lna⋆[zs, ze] +

|xi|∑

j=1

lnbs ⋆[zs, xsij ] +

|xi|∑

j=1

lnbe ⋆[ze, xeij ]


 ∀ zs ∈ Zs, ze ∈ Ze;

5 CQz
[i] ←

∑

zs∈Zs,ze∈Ze

Q̃z,i[z
s, ze]; Qz,i[z

s, ze] ←
Q̃z,i[z

s, ze]

CQz
[i]

∀ zs ∈ Zs, ze ∈ Ze;

end

/* Update the MAPEM lower bound (derived in Equation 6.30) */

6 LMAP
Z ←

|Vx|∑

i=1

lnCQz
[i] +

∑

zs∈Zs

(
νprior[zs]− 1

)
lnπ⋆[zs] +

∑

zs∈Zs,ze∈Ze

(
αprior[zs, ze]− 1

)
lna⋆[zs, ze]

+
∑

zs∈Zs,x∈X

(
βs prior[zs, x]− 1

)
lnbs ⋆[zs, x] +

∑

ze∈Ze,x∈X

(
βe prior[ze, x]− 1

)
lnbe ⋆[ze, x];

/* M-step (derived in Equations 6.24 - 6.27) */

7 π⋆[zs] ←
1

Cπ



|Vx|∑

i=1

∑

ze∈Ze

Qz,i[z
s, ze] +

(
νprior[zs]− 1

)

 ∀ zs ∈ Zs;

8 a⋆[zs, ze] ←
1

C azs



|Vx|∑

i=1

Qz,i[z
s, ze] +

(
αprior[zs, ze]− 1

)

 ∀ zs ∈ Zs, ze ∈ Ze;

9 bs ⋆[zs, x] ←
1

Cbs

zs



|Vx|∑

i=1

∑

ze∈Ze

Qz,i[z
s, ze]

|xi|∑

j=1

δ(x, xsij) +
(
βs prior[zs, x]− 1

)

 ∀ zs ∈ Zs, x ∈ X ;

10 be ⋆[ze, x] ←
1

Cbe

ze



|Vx|∑

i=1

∑

zs∈Zs

Qz,i[z
s, ze]

|xi|∑

j=1

δ(x, xeij) +
(
βe prior[ze, x]− 1

)

 ∀ ze ∈ Ze, x ∈ X ;

until the lower bound, LMAP
Z

and the parameters, λ⋆ converge;

11 λMAP
Z ← λ⋆;
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shift the log inside the integral using Jensen’s inequality,

lnP (x) ≥

∫
dλ Qλ(λ) lnP (x |λ)

P (λ)

Qλ(λ)
(6.33)

=

∫
dλ Qλ(λ)



|Vx|∑

i=1

lnP (xi |λ) + ln
P (λ)

Qλ(λ)




=

∫
dλ Qλ(λ)



|Vx|∑

i=1

ln
∑

zsi∈Z
s,zei ∈Z

e

P (xi, z
s
i , z

e
i |λ) + ln

P (λ)

Qλ(λ)




=

∫
dλ Qλ(λ)



|Vx|∑

i=1

ln
∑

zsi∈Z
s,zei ∈Z

e

Qz,i(z
s
i , z

e
i )
P (xi, z

s
i , z

e
i |λ)

Qz,i(zsi , z
e
i )

+ ln
P (λ)

Qλ(λ)


 .

(6.34)

Variational distributions, Qz,i(z
s
i , z

e
i ), for the hidden variables zi = (zsi , z

e
i ) are introduced

with the same properties as in Equation 6.7 to yield the following lower bound once again

applying Jensen’s inequality to shift the log operator inside the summation,

lnP (x) ≥

∫
dλ Qλ(λ)



|Vx|∑

i=1

∑

zsi∈Z
s,zei ∈Z

e

Qz,i(z
s
i , z

e
i ) ln

P (xi, z
s
i , z

e
i |λ)

Qz,i(zsi , z
e
i )

+ ln
P (λ)

Qλ(λ)




(6.35)

=

∫
dλ Qλ(λ)

[ |Vx|∑

i=1

∑

zsi∈Z
s,zei ∈Z

e

Qz,i(z
s
i , z

e
i )

[
lnP (xi, z

s
i , z

e
i |λ) − lnQz,i(z

s
i , z

e
i )

]

+ lnP (λ) − lnQλ(λ)

]
(6.36)

= LVB
Z (x | Qλ, Qz). (6.37)

The complete data log-likelihood term, lnP (xi, z
s
i , z

e
i |λ), and the prior distribution

for model parameters, P (λ |ωprior), are expanded as in the MAPEM formulation Equa-

tions 6.12 and 6.14.

The objective function for the VBEM formulation is therefore given by:

max
Qλ, Qz

[
LVB
Z (x | Qλ, Qz)

]
. (6.38)
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This lower bound is maximized in alternation with respect to the two sets of variational

distributions, Qz and Qλ. These two updates constitute the E and M steps in the VBEM

algorithm.

The equations for the M-step are derived first followed by the equations for the E-step.

The equations to update the VB lower bound are then presented to conclude the VBEM

formulation.

In the VBEM M-step we maximize the lower bound with respect to Qλ while holding

Qz(z) constant,

max
Qλ

[
LVB
Z (x | Qλ, Qz)

]

Subject to:

∫
dλ Qλ(λ) = 1. (6.39)

The expression for Qλ(λ) obtained by optimizing the above objective approximates the

desired posterior distributions, P (λ |x). We proceed with this optimization using Lagrange

multipliers, µQλ
,

∇Qλ
(LVB

Z ) + µQλ
= 0. (6.40)

Substituting the expression for LVB
Z

from Equation 6.36, we get,

∇Qλ

(∫
dλ Qλ(λ)

[ |Vx|∑

i=1

∑

zsi∈Z
s,zei∈Z

e

Qz,i(z
s
i , z

e
i )
[
lnP (xi, z

s
i , z

e
i |λ) − lnQz,i(z

s
i , z

e
i )
]

+ lnP (λ) − lnQλ(λ)

])
+ µQλ

= 0

∴

[ |Vx|∑

i=1

∑

zsi∈Z
s,zei∈Z

e

Qz,i(z
s
i , z

e
i ) [ lnP (xi, z

s
i , z

e
i |λ) − lnQz,i(z

s
i , z

e
i ) ]

+ lnP (λ) − lnQλ(λ)

]
− 1 + µQλ

= 0

∴ lnQλ(λ) =

|Vx|∑

i=1

∑

zsi∈Z
s,zei ∈Z

e

Qz,i(z
s
i , z

e
i ) [ lnP (xi, z

s
i , z

e
i |λ) − lnQz,i(z

s
i , z

e
i ) ]

+ lnP (λ) − 1 + µQλ
. (6.41)
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Substituting the expression for lnP (xi, z
s
i , z

e
i |λ) from Equation 6.12, we obtain,

lnQλ(λ) =
|Vx|∑

i=1

∑

zsi∈Z
s,zei ∈Z

e

Qz,i(z
s
i , z

e
i )


lnπzs

i
+ lnazs

i
,ze

i
+

|xi|∑

j=1

[
lnbszs

i
(xsij) + lnbeze

i
(xeij)

]



−

|Vx|∑

i=1

∑

zsi∈Z
s,zei∈Z

e

Qz,i(z
s
i , z

e
i ) lnQz,i(z

s
i , z

e
i ) + lnP (λ) − 1 + µQλ

.

(6.42)

Substituting the expression for lnP (λ) from Equation 6.14 and simplifying further,

lnQλ(λ) =

|Vx|∑

i=1

∑

zsi∈Z
s

Qz,i(z
s
i ) lnπzsi +

|Vx|∑

i=1

∑

zsi∈Z
s,zei ∈Z

e

Qz,i(z
s
i , z

e
i ) lnazsi ,zei

+

|Vx|∑

i=1

∑

zsi∈Z
s

Qz,i(z
s
i )

|xi|∑

j=1

lnbszsi (x
s
ij)

+

|Vx|∑

i=1

∑

zei∈Z
e

Qz,i(z
e
i )

|xi|∑

j=1

lnbezei (x
e
ij)

+
∑

zs∈Zs

(
ν
prior
zs − 1

)
lnπzs +

∑

zs∈Zs,ze∈Ze

(
α

prior
zs,ze − 1

)
lnazs,ze

+
∑

zs∈Zs,x∈X

(
β
s prior
zs (x)− 1

)
lnbszs(x)

+
∑

ze∈Ze,x∈X

(
β
e prior
ze (x)− 1

)
lnbeze(x)

+ CQλ
. (6.43)
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Therefore,

lnQλ(λ) =
∑

zs∈Zs


ν

prior
zs +

|Vx|∑

i=1

Qz,i(z
s) − 1


 lnπzs

+
∑

zs∈Zs,ze∈Ze


α

prior
zs,ze +

|Vx|∑

i=1

Qz,i(z
s, ze) − 1


 lnazs,ze

+
∑

zs∈Zs,x∈X


β

s prior
zs (x) +

|Vx|∑

i=1

Qz,i(z
s)

|xi|∑

j=1

δ(x, xsij) − 1


 lnbszs(x)

+
∑

ze∈Ze,x∈X


β

e prior
ze (x) +

|Vx|∑

i=1

Qz,i(z
e)

|xi|∑

j=1

δ(x, xeij) − 1


 lnbeze(x)

+ CQλ
, (6.44)

where, CQλ
is a normalizing constant for the Qλ variational distribution.

Further simplification yields the desired expression for the variational distributions Qλ(λ)

associated with the model parameters. The expression obtained below for Qλ(λ) in-

volves Dirichlet distributions with parameters ω⋆. The update equations for these hyper-

parameters given in Equation 6.46 concludes the derivation for the M-step of the VBEM

algorithm.

lnQλ(λ |ω
⋆) = lnDir (π |ν⋆) +

∑

zs∈Zs

lnDir (azs |α
⋆
zs)

+
∑

zs∈Zs

lnDir (bszs |β
s ⋆
zs ) +

∑

ze∈Ze

lnDir (beze |β
e ⋆
ze ) . (6.45)

A normalizing constant is not needed in Equation 6.45 because the RHS integrates to 1.
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The updated hyper-parameters ω⋆ in the above expression are as follows,

ν⋆zs = ν
prior
zs +

|Vx|∑

i=1

Qz,i(z
s),

α⋆
zs,ze = α

prior
zs,ze +

|Vx|∑

i=1

Qz,i(z
s
i , z

e
i ),

βs ⋆zs (x) = β
s prior
zs (x) +

|Vx|∑

i=1

Qz,i(z
s)

|xi|∑

j=1

δ(x, xsij),

βe ⋆ze (x) = β
e prior
ze (x) +

|Vx|∑

i=1

Qz,i(z
e)

|xi|∑

j=1

δ(x, xeij), (6.46)

where, Qz,i(z
s) and Qz,i(z

e) are the marginals described in Equation 6.8.

The variational distributions, Qλ(λ |ω
⋆) in Equation 6.45, approximate the desired pos-

terior distribution over model parameters, P (λ |x, ωprior). The mean for the estimated

posterior distribution of model parameters is commonly employed as a point estimate for

prediction given test inputs,

λVB
Z = EQλ(λ |ω⋆) [λ ] . (6.47)

The expected values for the model parameters are obtained as follows,

π⋆zs =
1

Cπ

ν⋆zs ∀ zs ∈ Zs,

a⋆zs,ze =
1

C azs

α⋆
zs,ze ∀ zs ∈ Zs, ze ∈ Ze,

bs ⋆zs (x) =
1

Cbs
zs

βs ⋆zs (x) ∀ zs ∈ Zs,

be ⋆ze (x) =
1

Cbs
ze

βe ⋆ze (x) ∀ ze ∈ Ze. (6.48)

The scalars Cπ, C azs
, Cbs

zs
and Cbe

ze
are normalizing constants to satisfy stochasticity con-

straints for the multinomial parameters.

In the VBEM E-step we maximize the lower bound with respect to Qz(z) while holding
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Qλ constant,

max
Qz

[
LVB
Z (x | Qλ, Qz)

]

Subject to:
∑

zsi∈Z
s,zei∈Z

e

Qz,i(z
s
i , z

e
i ) = 1. (6.49)

Using Lagrange multipliers µQz,i
we obtain the desired updates to the variational distribu-

tions:

∇Qz,i
(LVB

Z ) + µQz,i
= 0 . (6.50)

Substituting the expression for LVB
Z

from Equation 6.36, we get,

∇Qz,i

(∫
dλ Qλ(λ)

[ |Vx|∑

i=1

∑

zsi∈Z
s,zei∈Z

e

Qz,i(z
s
i , z

e
i ) [ lnP (xi, z

s
i , z

e
i |λ) − lnQz,i(z

s
i , z

e
i ) ]

+ lnP (λ) − lnQλ(λ)

])
+ µQz,i

= 0

∴

∫
dλ Qλ(λ) [ lnP (xi, z

s
i , z

e
i |λ) − lnQz,i(z

s
i , z

e
i ) − 1 ] + µQz,i

= 0.

(6.51)

The desired expressions for lnQz,i(z
s
i , z

e
i ) can now be derived as follows. Since∫

dλ Qλ(λ) = 1, we have,

lnQz,i(z
s
i , z

e
i ) =

∫
dλ Qλ(λ) lnP (xi, z

s
i , z

e
i |λ) − CQz,i

. (6.52)

The scalars CQz,i
are normalizing constants for the variational distributions, Qz,i.

Using the expression for lnP (xi, z
s
i , z

e
i |λ) from Equation 6.12 we get,

lnQz,i(z
s
i , z

e
i ) =

∫
dλ Qλ(λ)


lnπzsi + lnazsi ,zei +

|xi|∑

j=1

[
lnbszsi (x

s
ij) + lnbezei (x

e
ij)
]



− CQz,i
. (6.53)
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Substituting the expression for Qλ(λ) from Equation 6.45,

lnQz,i(z
s
i , z

e
i ) =

∫
dπ Dir (π |ν⋆) lnπzsi +

∫
dazsi Dir

(
azsi |α

⋆
zsi

)
lnazsi ,zei

+

|xi|∑

j=1

∫
dbszsi Dir

(
bszsi |β

s ⋆
zsi

)
lnbszsi (x

s
ij)

+

|xi|∑

j=1

∫
dbezei Dir

(
bezei |β

e ⋆
zei

)
lnbezei (x

e
ij) − CQz,i

. (6.54)

Using the identity
∫

dπ Dir (π |ν) lnπi = ψ (νi) − ψ

(
∑

k

νk

)
, (6.55)

where ψ is the digamma function, we obtain,

lnQz,i(z
s, ze) = −CQz,i

+ ψ (ν⋆zs) − ψ

(
∑

z̃s∈Zs

ν⋆z̃s

)
+ ψ

(
α⋆
zs,ze

)
− ψ

(
∑

z̃e∈Ze

α⋆
zs,z̃e

)

+
|xi|∑

j=1

[
ψ
(
βs ⋆zs (x

s
ij)
)
− ψ

(
∑

x∈X

βs ⋆zs (x)

)
+ ψ

(
βe ⋆ze (x

e
ij)
)
− ψ

(
∑

x∈X

βe ⋆ze (x)

)]
.

(6.56)

The final step in the VBEM formulation is to obtain an expression for the updated value

of the VB lower bound, LVB
Z

. We use the expression for the VB lower bound in Equa-

tion 6.35,

LVB
Z (x | Qλ, Qz) =

∫
dλ Qλ(λ)



|Vx|∑

i=1

∑

zs
i
∈Zs,ze

i
∈Ze

Qz,i(z
s
i , z

e
i ) ln

P (xi, z
s
i , z

e
i |λ)

Qz,i(zsi , z
e
i )

+ ln
P (λ)

Qλ(λ)




=

|Vx|∑

i=1

∑

zsi∈Z
s,zei∈Z

e

Qz,i(z
s
i , z

e
i )

[ ∫
dλ Qλ(λ) lnP (xi, z

s
i , z

e
i |λ)

− lnQz,i(z
s
i , z

e
i )

]
+

∫
dλ Qλ(λ) ln

P (λ)

Qλ(λ)
. (6.57)

Substituting the expression for lnQz,i(z
s
i , z

e
i ) from the E-step (Equation 6.52) and using
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the property that
∑

zsi∈Z
s,zei ∈Z

e

Qz,i(z
s
i , z

e
i ) = 1, we get,

LVB
Z (x | Qλ, Qz) =

|Vx|∑

i=1

CQz,i
−

∫
dλ Qλ(λ) ln

Qλ(λ)

P (λ)
. (6.58)

Substituting the expressions for P (λ) from Equation 6.13 and Qλ(λ) from Equation 6.45,

we obtain the following expression for the VB lower bound,

LVB
Z =

|Vx|∑

i=1

CQz,i
− KL

(
ν⋆ ‖νprior

)
−
∑

zs∈Zs

KL
(
α⋆
zs ‖α

prior
zs

)

−
∑

zs∈Zs

KL
(
βs ⋆zs ‖β

s prior
zs

)
−
∑

ze∈Ze

KL
(
βe ⋆ze ‖β

e prior
ze

)
, (6.59)

where,

KL
(
ν⋆ ‖νprior

)
= ln

Γ(ν⋆0)

Γ(νprior
0 )

−

len(ν)∑

j=1

[
ln

Γ(ν⋆j)

Γ(νprior
j )

− (ν⋆j − ν
prior
j )

(
ψ(ν⋆j )− ψ(ν

⋆
0)
)
]
,

(6.60)

with,

ν0 =

len(ν)∑

j=1

νj . (6.61)

The complete VBEM algorithm is summarized in Algorithm 6.2. The inputs to the

algorithm are the training set x that contain start/end handshape labels for signs in a

vocabulary, Vx and two sets of Dirichlet distribution parameters: the initial values for the

hyper-parameters, ω◦, and, the parameters for prior distributions over model parameters,

ωprior. The outputs of the VBEM algorithm are the estimated values for model parameters,

λVB
Z .

The sequence of steps in the VBEM algorithm closely parallel those of the MAPEM

algorithm. The M-step in the VBEM algorithm differs slightly from the MAPEM algorithm

in that VBEM involves updating, ω, the hyper-parameters for Dirichlet distributions over

model parameters while MAPEM involves directly updating the model parameters, λ. The

hyper-parameters therefore do not need to be normalized in each EM iteration. The E-step

in both cases involves updating the variational distributions Qz,i associated with each item

i in the vocabulary and also the respective normalizing constants to be used in updating the
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estimated lower bounds. After convergence of the algorithm, the model parameters, λVB
Z ,

are computed as the expected values of the Dirichlet distributions with parameters ω⋆.

6.3 Learning the HSBN congruent model parameters

In two-handed : same handshapes signs, the handshapes articulated on the two hands are the

same, or, are very similar. The other properties pertaining to the change in handshape

between the start and end points as well as the patterns of variation in handshape config-

uration are similar to that of one-handed signs. The learning formulations developed for

one-handed signs can therefore be extended in a straightforward fashion to the HSBN congruent

model. The corresponding MAPEM congruent and VBEM congruent formulations essentially in-

volve a summation over the handshapes on the two hands. We present the corresponding

equations below in the interest of completeness.

We will use a training set x containing start/end handshape annotations for the pro-

ductions of two-handed : same handshapes signs from a vocabulary, Vx. The training set is

arranged as, x = {xi}, where i ranges over the items in the vocabulary. The productions of

the ith vocabulary item are denoted as, xi = {xij}. The start/end handshapes annotated

for each example are denoted using the tuple, xij =
(
x
s;D
ij , x

s;N
ij , x

e;D
ij , x

e;N
ij

)
. The label set

for handshapes x is denoted as X .

As in the case of the learning formulation for one-handed signs, each vocabulary item i

is associated with a pair of hidden variables denoted as zi = (zsi , z
e
i ). The set of all hidden

variables is denoted as z = {zi}. The start and end latent variables take values from their

associated state-spaces, Zs,Ze.

The expressions for the MAPEM and VBEM lower bounds remain the same as in the

one-handed case, Equations 6.11 and 6.37.

The complete data log-likelihood term, lnP (xi, z
s
i , z

e
i |λ), in Equations 6.10 and 6.36

can be expanded given the plate representation for the training set depicted in Figure 6·2
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Algorithm 6.2: VBEM dominant algorithm for learning HSBN dominant parameters

Inputs : x Handshape label pairs for signs contained in a training set,

: ωprior Prior distributions for HSBN parameters, λ,

: ω◦ Initial parameters of Dirichlet distributions for λ.

Outputs : λVB
Z Estimated HSBN parameters,

: LVB
Z Estimated VB lower bound to [ lnP (x) ].

1 ω⋆ ← ω◦;

2 repeat

/* E-Step (derived in Equation 6.56) */

3 for i ← 1 to |Vx| do

4 Q̃z,i[z
s, ze] ← exp

[
ψ (ν⋆[zs]) − ψ

(
∑

z̃s∈Zs

ν⋆[z̃s]

)
+ ψ (α⋆[zs, ze]) − ψ

(
∑

z̃e∈Ze

α⋆[zs, z̃e]

)

+

|xi|∑

j=1

[
ψ
(
βs ⋆[zs, xsij ]

)
− ψ

(
∑

x∈X

βs ⋆[zs, x]

)
+ ψ

(
βe ⋆[ze, xeij]

)
− ψ

(
∑

x∈X

βe ⋆[ze, x]

)]


∀ zs ∈ Zs, ze ∈ Ze;

5 CQz
[i] ←

∑

zs∈Zs,ze∈Ze

Q̃z,i[z
s, ze]; Qz,i[z

s, ze] ←
Q̃z,i[z

s, ze]

CQz
[i]

∀ zs ∈ Zs, ze ∈ Ze;

end

/* Update the VBEM lower bound (derived in Equation 6.59) */

6 LVB
Z ←

|Vx|∑

i=1

lnCQz
[i] − KL

(
ν⋆ ‖νprior

)
−
∑

zs∈Zs

KL
(
α⋆[zs, ∗] ‖αprior[zs, ∗]

)

−
∑

zs∈Zs

KL
(
βs ⋆[zs, ∗] ‖βs prior[zs, ∗]

)
−
∑

ze∈Ze

KL
(
βe ⋆[ze, ∗] ‖βe prior[ze, ∗]

)
;

/* M-step (derived in Equation 6.46) */

7 ν⋆[zs] ←



|Vx|∑

i=1

∑

ze∈Ze

Qz,i[z
s, ze] + νprior[zs]


 ∀ zs ∈ Zs;

8 α⋆[zs, ze] ←



|Vx|∑

i=1

Qz,i[z
s, ze] + αprior[zs, ze]


 ∀ zs ∈ Zs, ze ∈ Ze;

9 βs ⋆[zs, x] ←



|Vx|∑

i=1

∑

ze∈Ze

Qz,i[z
s, ze]

|xi|∑

j=1

δ(x, xsij) + βs prior[zs, x]


 ∀ zs ∈ Zs, x ∈ X ;

10 βe ⋆[ze, x] ←



|Vx|∑

i=1

∑

zs∈Zs

Qz,i[z
s, ze]

|xi|∑

j=1

δ(x, xeij) + βe prior[ze, x]


 ∀ ze ∈ Ze, x ∈ X ;

until the lower bound, LVB
Z

and the parameters, ω⋆ converge;

11 λVB
Z ← EQλ(λ |ω⋆) [λ ] ; /* computed using Equation 6.48 */
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as follows,

lnP (xi, z
s
i , z

e
i |λ) = lnπzsi + lnazsi , zei

+

|xi|∑

j=1

[
lnbszsi (x

s;D
ij ) + lnbszsi (x

s;N
ij ) + lnbezei (x

e;D
ij ) + lnbezei (x

e;N
ij )

]
.

(6.62)

We present the ‘E’ and ‘M’ steps for the MAPEM congruent algorithm followed by the same

for the VBEM congruent algorithm.

6.3.1 The MAPEM formulation for learning HSBN congruent model parameters

In the E-step the following updates for the hidden variable variational distributions, Qz(z),

are obtained using the sequence of steps as in Equations 6.16 - 6.19,

lnQz,i(z
s, ze) = lnπ⋆zs + lna⋆zs,ze

+

|xi|∑

j=1

[
lnbs ⋆zs (x

s;D
ij ) + lnbs ⋆zs (x

s;N
ij ) + lnbe ⋆ze (x

e;D
ij ) + lnbe ⋆ze (x

e;N
ij )
]

− CQz,i
. (6.63)

For the M-step, the sequence of steps as in Equations 6.20 - 6.27 yields the desired updates

for the model parameters,

π⋆zs =
1

Cπ



|Vx|∑

i=1

Qz,i(z
s) +

(
ν
prior
zs − 1

)

 ,

a⋆zs,ze =
1

C azs



|Vx|∑

i=1

Qz,i(z
s, ze) +

(
α

prior
zs,ze − 1

)

 ,

bs ⋆zs (x) =
1

Cbs
zs



|Vx|∑

i=1

Qz,i(z
s)

|xi|∑

j=1

[
δ
(
x, x

s;D
ij

)
+ δ

(
x, x

s;N
ij

)]
+
(
β
s prior
zs (x)− 1

)

 ,

be ⋆ze (x) =
1

Cbe
ze



|Vx|∑

i=1

Qz,i(z
e)

|xi|∑

j=1

[
δ
(
x, x

e;D
ij

)
+ δ

(
x, x

e;N
ij

)]
+
(
β
e prior
ze (x)− 1

)

 .

(6.64)
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The expression for the update of the MAPEM lower bound remains the same as in the

one-handed case, Equation 6.30. The complete MAPEM congruent algorithm is summarized

in Algorithm 6.3.

6.3.2 The VBEM formulation for learning HSBN congruent model parameters

In the E-step, the following updates for the hidden variable variational distributions, Qz(z),

are obtained using the sequence of steps as in Equations 6.49 - 6.56,

lnQz,i(z
s, ze) = −CQz,i

+ ψ (ν⋆zs) − ψ

(
∑

z̃s∈Zs

ν⋆z̃s

)
+ ψ

(
α⋆
zs,ze

)
− ψ

(
∑

z̃e∈Ze

α⋆
zs,z̃e

)

+

|xi|∑

j=1

[
ψ
(
βs ⋆zs (x

s;D
ij )

)
+ ψ

(
βs ⋆zs (x

s;N
ij )

)
− 2ψ

(
∑

x∈X

βs ⋆zs (x)

)]

+

|xi|∑

j=1

[
ψ
(
βe ⋆ze (x

e;D
ij )

)
+ ψ

(
βe ⋆ze (x

e;N
ij )

)
− 2ψ

(
∑

x∈X

βe ⋆ze (x)

)]
,

(6.65)

where, ψ is the digamma function and CQz,i
are the normalizing constants for the variational

distributions Qz,i.

For the M-step, the updates for Qλ(λ) approximating the desired posterior distributions

P (λ|x) are obtained following the same sequence of steps as in Equations 6.39 - 6.46. The

expression for lnQλ(λ) is the same as in Equation 6.45. The expressions for the Dirichlet
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Algorithm 6.3: MAPEM congruent algorithm for learning HSBN congruent parameters

Inputs : x Handshape labels for two-handed : same handshapes signs;

: The other inputs, λ◦,ωprior, are the same as in Algorithm 6.1.

Outputs : λMAP
Z Estimated HSBN parameters.

1 λ⋆ ← λ◦;

2 repeat

/* E-Step (derived in Equation 6.63) */

3 for i ← 1 to |Vx| do

4 Q̃z,i[z
s, ze] ← exp

[
lnπ⋆[zs] + lna⋆[zs, ze]

+

|xi|∑

j=1

(
lnbs ⋆[zs, xs;Dij ] + lnbs ⋆[zs, xs;Nij ] + lnbe ⋆[ze, xe;Dij ] + lnbe ⋆[ze, xe;Nij ]

)



∀ zs ∈ Zs, ze ∈ Ze;

5 Normalize the variational distributions as in Algorithm 6.1, step 5;

end

/* Update the MAPEM lower bound (derived in Equation 6.30) */

6 LMAP
Z ← same as in Algorithm 6.1, step 6;

/* M-step (derived in Equation 6.64) */

7 π⋆[zs] ←
1

Cπ



|Vx|∑

i=1

∑

ze∈Ze

Qz,i[z
s, ze] +

(
νprior[zs]− 1

)

 ∀ zs ∈ Zs;

8 a⋆[zs, ze] ←
1

C azs



|Vx|∑

i=1

Qz,i[z
s, ze] +

(
αprior[zs, ze]− 1

)

 ∀ zs ∈ Zs, ze ∈ Ze;

9 bs ⋆[zs, x] ←
1

Cbs

zs



|Vx|∑

i=1

∑

ze∈Ze

Qz,i[z
s, ze]

|xi|∑

j=1

[
δ
(
x, x

s;D
ij

)
+ δ

(
x, x

s;N
ij

)]
+
(
βs prior[zs, x]− 1

)



∀ zs ∈ Zs, x ∈ X ;

10 be ⋆[ze, x] ←
1

Cbe

ze



|Vx|∑

i=1

∑

zs∈Zs

Qz,i[z
s, ze]

|xi|∑

j=1

[
δ
(
x, x

e;D
ij

)
+ δ

(
x, x

e;N
ij

)]
+
(
βe prior[ze, x]− 1

)



∀ ze ∈ Ze, x ∈ X ;

until the lower bound, LMAP
Z

and the parameters, λ⋆ converge;

11 λMAP
Z ← λ⋆;
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parameters extend from the one-handed case (Equation 6.46) and are given below,

ν⋆zs = ν
prior
zs +

|Vx|∑

i=1

Qz,i(z
s) ,

α⋆
zs,ze = α

prior
zs,ze +

|Vx|∑

i=1

Qz,i(z
s, ze) ,

βs ⋆zs (x) = β
s prior
zs (x) +

|Vx|∑

i=1

Qz,i(z
s)

|xi|∑

j=1

[
δ
(
x, x

s;D
ij

)
+ δ

(
x, x

s;N
ij

) ]
,

βe ⋆zs (x) = β
e prior
zs (x) +

|Vx|∑

i=1

Qz,i(z
e)

|xi|∑

j=1

[
δ
(
x, x

e;D
ij

)
+ δ

(
x, x

e;N
ij

) ]
. (6.66)

The expression to update the VB lower bound remains the same as in the one-handed

case, Equation 6.59. The complete VBEM congruent algorithm is summarized in Algorithm 6.4.

The learning algorithms for one-handed signs can be obtained as a special case of the

algorithms for two-handed : same handshapes signs by leaving out the terms that involve

variables depicting handshapes on the non-dominant hand (the corresponding equations

are Equations 6.63, 6.64 and Equations 6.65, 6.66). Therefore only the MAPEM congruent and

VBEM congruent versions need to be implemented and these algorithms utilize both one-handed

and two-handed : same handshapes signs contained in the training set.

6.4 Summary

Learning the HSBN model involves estimating a state-space for the hidden variables and

the parameters for multinomial distributions contained in the model. In this chapter we

developed learning formulations for the parameter estimation task assuming a training

set containing examples of monomorphemic lexical signs in a vocabulary along with their

associated start/end handshape labels. The learning formulations were first developed for

one-handed signs and subsequently extended to also include two-handed signs. We considered

the MAPEM and the VBEM learning formulations for HSBN model parameter estimation.

These two approaches are briefly summarized in Tables 6.3 and 6.4. Despite their many

similarities, the key difference between the two approaches lies in the objective function
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Algorithm 6.4: VBEM congruent formulation for learning HSBN congruent parameters

Inputs : x Handshape labels for two-handed : same handshapes signs;

: The other inputs, ωprior,ω◦, are the same as in Algorithm 6.2.

Outputs : λVB
Z Estimated HSBN parameters,

: LVB
Z Estimated VB lower bound to [ lnP (x) ].

1 ω⋆ ← ω◦;

2 repeat

/* E-Step (derived in Equation 6.65) */

3 for i ← 1 to |Vx| do

4 Q̃z,i[z
s, ze] ← exp

[
ψ (ν⋆[zs]) − ψ

(
∑

z̃s∈Zs

ν⋆[z̃s]

)

+ ψ (α⋆[zs, ze]) − ψ

(
∑

z̃e∈Ze

α⋆[zs, z̃e]

)

+

|xi|∑

j=1

[
ψ
(
βs ⋆[zs, xs;Dij ]

)
+ ψ

(
βs ⋆[zs, xs;Nij ]

)
− 2ψ

(
∑

x∈X

βs ⋆[zs, x]

)]

+

|xi|∑

j=1

[
ψ
(
βe ⋆[ze, xe;Dij ]

)
+ ψ

(
βe ⋆[ze, xe;Nij ]

)
− 2ψ

(
∑

x∈X

βe ⋆[ze, x]

)]


∀ zs ∈ Zs, ze ∈ Ze;

5 Normalize the variational distributions as in Algorithm 6.2, step 5;
end

/* Update the VBEM lower bound (derived in Equation 6.59) */

6 LVB
Z ← same as in Algorithm 6.2, step 6;

/* M-step (derived in Equation 6.66) */

7 ν⋆[zs] ←



|Vx|∑

i=1

∑

ze∈Ze

Qz,i[z
s, ze] + νprior[zs]


 ∀ zs ∈ Zs;

8 α⋆[zs, ze] ←



|Vx|∑

i=1

Qz,i[z
s, ze] + αprior[zs, ze]


 ∀ zs ∈ Zs, ze ∈ Ze;

9 βs ⋆[zs, x] ←



|Vx|∑

i=1

∑

ze∈Ze

Qz,i[z
s, ze]

|xi|∑

j=1

[
δ
(
x, x

s;D
ij

)
+ δ

(
x, x

s;N
ij

) ]
+ βs prior[zs, x]




∀ zs ∈ Zs, x ∈ X ;

10 βe ⋆[ze, x] ←



|Vx|∑

i=1

∑

zs∈Zs

Qz,i[z
s, ze]

|xi|∑

j=1

[
δ
(
x, x

e;D
ij

)
+ δ

(
x, x

e;N
ij

) ]
+ βe prior[ze, x]




∀ ze ∈ Ze, x ∈ X ;

until the lower bound, LVB
Z

and the parameters, ω⋆ converge;

11 λVB
Z ← EQλ(λ |ω⋆) [λ ] ; /* computed using Equation 6.48 */
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Notation Description

lnP (λ |x) MAP objective: maxλ

[
lnP (x |λ) + lnP (λ |ωprior)

]

LMAP
Z

(λ | x, Qz) Lower bound to the posterior distribution [ lnP (λ |x) ] max-
imized by the MAPEM formulation:

maxλ, Qz

[
LMAP
Z

(λ | x, Qz)
]

Qz Variational distributions, Qz, for hidden variables z are in-
troduced to formulate the lower bound LMAP

Z
:

Qz(z) = {Qz,i(z
s
i , z

e
i )}, 1 ≤ i ≤ |Vx|,

∑

zsi∈Z
s,zei∈Z

e

Qz,i(z
s
i , z

e
i ) = 1, Qz,i(z

s
i , z

e
i ) ≥ 0

MAPEM E-step maxQz

[
LMAP
Z

(λ | x, Qz)
]

yields an update for Qz(z)

MAPEM M-step maxλ

[
LMAP
Z

(λ | x, Qz)
]

yields an update for λ⋆

λMAP
Z MAPEM estimated parameters for the HSBN model

Table 6.3: Summary of the MAPEM formulation for learning the HSBN.

Notation Description

lnP (x) Complete data log-likelihood for the training set x

LVB
Z

(x | Qλ, Qz) Lower bound for data log-likelihood [ lnP (x) ] maximized
by the VBEM formulation:

maxQλ, Qz

[
LVB
Z

(x | Qλ, Qz)
]

Qz Variational distributions, Qz, for hidden variables z. These
are defined the same as in the MAPEM formulation above

Qλ Variational distributions, Qλ, for model parameters λ are
introduced to derive the lower bound LVB

Z
; obtained as:

lnQλ(λ |ω
⋆) = lnDir (π |ν⋆) +

∑
zs lnDir

(
azs,· |α

⋆
zs,·

)

+
∑

zs lnDir (bszs(·) |β
s ⋆
zs (·)) +

∑
ze lnDir (beze(·) |β

e ⋆
ze (·))

VBEM E-step maxQz

[
LVB
Z

(x | Qλ, Qz)
]

yields an update for Qz(z)

VBEM M-step maxQλ

[
LVB
Z

(x | Qλ, Qz)
]

yields an update for ω⋆

λVB
Z = EQλ(λ |ω⋆) [λ ] VBEM estimated parameters for the HSBN model

Table 6.4: Summary of the VBEM formulation for learning the HSBN.



100

chosen for optimization. Because the VBEM approach aims to estimate the total data

log-likelihood for a given training set, it requires an integration over the space of model

parameters. The VBEM objective function therefore encapsulates an implicit penalty for

model complexity [Beal, 2003] – a property that will prove instrumental for the hidden

variable state-space estimation approach formulated in the next chapter.

An arrangement of the training set into groups of different productions of signs with

each group associated with one specific lexical item in the vocabulary allows the learning

algorithm to accrue patterns of sign-independent handshape variation. Because each lexical

item is associated with one pair of hidden variable states, one-to-many associations are

produced between the hidden (unobserved) variables and the handshape labels observed

(annotated) in the training set. This property constitutes the key difference between the

learning formulations developed here for parameter estimation in the HSBN vis-a-vis the

learning formulations for parameter estimation in the HMM [Beal, 2003].

As with other Expectation Maximization approaches, the HSBN parameter estimation

algorithms are gradient ascent based and therefore the convergence to a local optimum

is guaranteed. However, the algorithms are sensitive to initialization. We describe one

approach to perform model initialization in the next chapter. The other aspects of the

HSBN parameter estimation are straightforward to implement and are computationally

efficient.



Chapter 7

Learning a State-space for Hidden Variables in the

HSBN

In this chapter we formulate the HSBNStateSpaceEstimation algorithm to learn a suitable

state-space, Ẑ = (Ẑs, Ẑe), to represent hidden variables, (zs, ze), in the HSBN.

In a reference implementation we may assume that the cardinality of the set of hid-

den states corresponds to the cardinality of the set of observed handshape labels, i.e.,

Ẑ := (X ,X ). The respective model parameters, λ
Ẑ
, are then estimated given a training

set, x, using either the MAPEM or VBEM algorithms presented in the previous chapter.

This reference implementation suffers from the drawback that it involves a large number

of hidden states and therefore requires a commensurate number of free parameters to be

estimated during the learning. As a consequence, the learnt model can more easily ac-

crue statistical irregularities contained in the training set (this is especially the case when

the model is trained using datasets with a modest number of examples as are currently

available for sign language research). The ability of the learnt model to generalize to un-

seen data is crucial for robust performance in a person-independent recognition task. This

aspect therefore motivates the question of whether a different state-space representation,

Z̃, presumably with a smaller number of hidden states, could be inferred given the train-

ing set towards improving the generalization performance of the estimated model (with

corresponding parameters λ
Z̃
).

Optimization based learning approaches for estimating the hidden variable state-space

aim to reduce the structural complexity of the model learnt given a training set. This

is typically accomplished in two ways. A regularization term that consists of priors for

the probability distribution parameters contained in the model (often also referred to as

101



102

smoothness priors) is included in the learning objective. Additionally, the objective func-

tion incorporates a bias towards models with a smaller number of free parameters. This

preference can either be included as an explicit term in the objective function (e.g., BIC

uses a function of the number of free parameters in a model as a measure of its structural

complexity) or can arise as an implicit property of the objective function formulated for

learning (e.g., through an integration performed over the space of model parameters in the

variational Bayes approach [Beal, 2003]). A learning algorithm is subsequently formulated

to optimize the objective function chosen for state-space estimation. A combinatorial op-

timization approach is necessary when a collection of discrete states are used to represent

hidden variables in the model (as is the case for the HSBN).

In this chapter we investigate a stochastic optimization approach to estimate the HSBN

hidden variable state-space1. We select the variational Bayes lower bound estimated by

the VBEM approach as the optimization objective to maximize via the state-space search

algorithm. The motivations behind this choice are described in the next section. The state-

space estimation algorithm employs a sequence of learning ‘epochs’ to iteratively refine the

state-space with a goals towards increasing the estimated VB lower bound. The algorithm

can either start with a small number of randomly specified hidden states and augment this

set with new states in the subsequent learning epochs, or alternatively, can start with a

large number of explicitly initialized hidden states and attempt to reduce this number in

the subsequent epochs. We use the latter approach for the HSBN since, as in the reference

implementation, the set of handshape labels determined by linguists for annotating signs

serves as an appropriate initial representation for the hidden variable states. The algorithm

generates candidates for the state-space in the next epoch by applying one of the following

methods for state-space refinement: {merge-states, drop-state, reset-state, add-state}. The

selection of a state-space from among these candidates is based on the degree to which

the generated hypothesis improves the VB lower bound. The algorithm stops when no

further improvement to the VB lower bound is possible. The state-space estimation strat-

1Other optimization formulations such as reversible jump Markov chain Monte-Carlo (RJMCMC) [Green,
1995] would also be applicable in this context.
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egy adopted here is in essence a local search formulation wherein the model initialized in

the first learning epoch serves to anchor the state-space exploration. The complete HSBN-

StateSpaceEstimation algorithm is summarized in Algorithm 7.1. The different steps of this

algorithm are described in more detail in the rest of this chapter.

7.1 Overview of the HSBNStateSpaceEstimation algorithm

The HSBNStateSpaceEstimation algorithm for learning the HSBN is developed as follows.

We utilize the variational Bayes lower bound to the complete data log-likelihood, lnP (x) ,

specifically, the lower bound LVB
Z

estimated by the VBEM algorithm, as the learning objec-

tive to maximize with respect to the hidden variable states Z,

[
Ẑ, ω

Ẑ

]
← argmax

Z,ωZ

[
LVB
Z (x )

]
. (7.1)

In formulating this lower bound (Equations 6.31 - 6.37), the VB approach incorporates

Dirichlet priors for multinomial parameters contained in the model. The VB lower bound

also incorporates a bias towards models with a smaller number of free parameters because

of the integration over model parameters performed in Equation 6.32. A computationally

attractive feature of the VBEM formulation in the HSBN context is that it yields closed form

expressions for the different steps and therefore circumvents the implementation complexity

of sampling based formulations that can also provide other lower bounds to the complete

data log-likelihood. The general theme of utilizing the VB lower bound for the purpose of

comparing among models with different complexities was employed for estimating Gaussian

mixtures with an unknown number of mixture components in [Beal, 2003]. A somewhat

different combinatorial approach is required for the HSBN because its state-space is discrete.

An overview of the optimization formulation for learning the HSBN is illustrated in Fig-

ure 7·1. Given a training set, x, and, the parameters of Dirichlet priors for model parame-

ters, ωprior, the HSBNStateSpaceEstimation algorithm iteratively adapts the state-space for

hidden variables, Zτ , in a sequence of learning epochs (the epochs are indexed by τ) with a

goal towards increasing the value of the estimated VBEM lower bound, LVB
τ . In each epoch,
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Figure 7·1: An overview of the proposed optimization formulation for learn-
ing the HSBN parameters.

the algorithm selects from among a set of state-space hypotheses to determine an appropri-

ate state-space candidate to use in the next epoch. The hyper-parameters estimated in an

epoch, after state-space refinement, serve as the initialization for state-space hypotheses in

the next epoch, i.e., ω ⋆
τ  {ω

◦
τ+1, k}. An alternate (essentially equivalent) implementation

that we do not consider here would be to apply the state-space refinements to the hidden

variable variational distributions, i.e., Q ⋆
z,τ  {Q

◦
z,τ+1,k}. To aid with circumventing lo-

cal maxima in the objective function, the selection of a state-space from among the set

of hypotheses is performed in a stochastic fashion. Larger improvements in the VB lower

bound are assigned higher probabilities for being selected than hypotheses with smaller

improvements (or even negative changes) in the estimated value of the VBEM lower bound.
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7.2 Initializing the HSBN state-space

The initialization of the hidden variable states, Zτ=1, is performed explicitly in the

first learning epoch by providing the initial values for the variational distributions,

Q ◦z = {Q ◦z,i(z
s, ze)}. These variational distributions are then used as the initial conditions

for the VBEM algorithm to estimate the hyper-parameters in the first epoch.

The HSBNStateSpaceInitialization algorithm to initialize the HSBN learning is summa-

rized in Algorithm 7.2. The set of handshape labels, X , are utilized to serve as an initial

representation, Zτ=1, for the hidden variable states in Algorithm 7.2, step 2. The algorithm

then aggregates the start/end handshape pairs annotated in the training set for the examples

of each vocabulary item i into the respective initial variational distributions, Q ◦z,i in Algo-

rithm 7.2, steps 4 - 8. These distributions are subsequently used in Algorithm 7.2, steps 9 - 16

to initialize the VBEM algorithm towards estimating the hyper-parameters, ω τ=1, for the

first epoch.

7.3 Hyper-parameters for the prior distributions

Hyper-parameters, ωprior, for prior distributions over model parameters play an important

role in the VBEM algorithm. The priors influence both the estimated variational Bayes

lower bound and the estimated model parameters. Uniform priors are frequently chosen to

serve as the regularization terms during parameter estimation. In some cases, it is feasible

to construct informative priors that reflect certain underlying properties that are relevant

to the problem domain. For the HSBN, we construct Dirichlet priors in the first learning

epoch with hyper-parameters, ωprior
τ=1 = {νprior

τ=1 ,α
prior
τ=1 ,β

s prior
τ=1 ,β

e prior
τ=1 }. The procedure used

for specifying the hyper-parameters for the prior distributions will be described in the

experiments chapter.

In the HSBNStateSpaceEstimation algorithm, the prior distributions specified in the first

epoch, ω
prior
τ=1, are propagated forwards through the subsequent epochs by applying the

same state-space refinement methods as those employed for the hyper-parameters, ω τ .

The only difference being that a max operation is employed instead of a summation in
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the merge-states state-space refinement (the corresponding lines in the pseudo-code listing

are Algorithm 7.4, steps 7 - 9, Algorithm 7.4, steps 15 - 16). The hyper-parameters for priors

are omitted from the following presentation in the interest of clarity.

7.4 HSBN state-space refinement

In each learning epoch, the HSBNStateSpaceEstimation algorithm generates state-space can-

didates for the next epoch, {Zτ+1, k}, by applying different state-space refinement meth-

ods to modify the current state-space, Zτ . The methods chosen in our implementa-

tion are denoted as {MergeHSBNstates,DropHSBNstate,ResetHSBNstate,AddHSBNstate}.

These methods correspond to accumulating the properties of a pair of hidden variable

states into a single state, to disregarding the properties of a selected state in order that the

remaining states can adopt its properties, to resetting the properties of a selected state to

the corresponding values estimated during model initialization and to augmenting the set

of hidden states with an additional state. The reset-state and add-state refinements were

specifically chosen to allow the HSBNStateSpaceEstimation algorithm to revert changes that

were performed to the state-space during drop-state and merge-state refinements in earlier

epochs.

The state-space candidates generated in the epoch τ are denoted as

{Zτ+1, k} = {Z merge : ρ, l←m
τ } ∪ {Z drop : ρ, n

τ } ∪ {Z reset : ρ, o
τ } ∪ {Z add : ρ, p

τ }. The subscript k

in the LHS indexes the items in the generated set. The superscript ρ denotes whether

the state-space refinement is applied to the start or the end hidden variable state-space

(i.e, either Zsτ and Zeτ ). As the state-space Zτ evolves during the learning, each of the

state-space refinement algorithms are designed so as to retain the associations of hidden

variable states with the states chosen for initialization in the first epoch. Ensuring this

property simplifies the formulation of the proposed state-space refinement algorithms. The

superscripts l,m, n, o, p are therefore indices into the initial set of hidden variable states,

Zτ=1.

The state-space candidates in an epoch of the HSBNStateSpaceEstimation algorithm
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are produced by means of applying the above mentioned state-space refinements to the

hyper-parameters associated with the current epoch, ω τ . The merge-states, drop-state

and reset-state refinements are straightforward to perform. We adopt a simple approach

for the add-state refinement wherein the properties of the hyper-parameters computed in

the first epoch for a selected state are included into the current set of hyper-parameters.

The generated hyper-parameters and their associated VBEM lower bounds are denoted as,

{ω τ+1, k}, {L
VB
τ+1, k}.

The different state-space refinements are formulated as follows.

• MergeHSBNstates

The algorithm for the MergeHSBNstates state-space refinement is summarized in Al-

gorithm 7.4. The inputs are the training set x, the hyper-parameters for the cur-

rent epoch ω τ , whether a start or an end state has been chosen for applying the

merge state-space refinement ρ, and, the indices for the pair of states selected to

be merged ψ, ϕ. The following are obtained as outputs after applying the specified

state-space refinement: the hyper-parameters, ωmerge : ρ, ψ←ϕ
τ ; the VBEM lower bound,

L
merge : ρ, ψ←ϕ
τ ; and the state-space, Z merge : ρ, ψ←ϕ

τ . The candidate hyper-parameters,

ω̃, are obtained by summing together either a pair of rows or columns, indexed

as specified by the inputs (ρ, ψ, ϕ), in the hyper-parameters for the current epoch,

ω τ . The steps used to compute the candidate hyper-parameters are listed in Algo-

rithm 7.4, steps 1 - 16. For the purposes of retaining the hidden variable state associa-

tions through the learning epochs, the state ϕ is regarded as having been incorporated

into the state ψ. The candidate hyper-parameters, ω̃, are used as initialization for

the VBEM algorithm in Algorithm 7.4, step 17 in order to compute the transformed

hyper-parameters, ωmerge : ρ, ψ←ϕ
τ , and the associated VB lower bound, Lmerge : ρ, ψ←ϕ

τ .

In a subsequent learning epoch, the ResetHSBNstate and AddHSBNstatemethods com-

pute ω
reset : ρ, ψ
τ , ω

add : ρ, ϕ
τ that serve to revert the changes performed by the above

merge state-space refinement to the target and source states, ψ and ϕ.
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• DropHSBNstate

The algorithm for the DropHSBNstate state-space refinement is summarized in Algo-

rithm 7.5. The inputs provided are similar to that of the MergeHSBNstates algorithm

and include ρ that denotes whether a start or an end state has been chosen for the

drop-state state-space refinement, and, the index ψ of the state selected to be dropped

from the current state-space. The outputs are same as those of the MergeHSBNstates

algorithm. The candidate hyper-parameters, ω̃, are obtained by removing either a

row or a column, indexed as specified in the inputs (ρ, ψ). The steps used to compute

the candidate hyper-parameters are listed in Algorithm 7.5, steps 1 - 11. The updated

set of hyper-parameters, ω drop : ρ, ψ
τ , and the VB lower bound, L drop : ρ, ψ

τ are obtained

as listed in Algorithm 7.5, step 12.

The AddHSBNstate method serves the role of reverting a DropHSBNstate operation

performed in a previous epoch.

• ResetHSBNstate

The algorithm for the ResetHSBNstate state-space refinement is summarized in Al-

gorithm 7.6. The inputs ρ, ψ provided are the same as that of the DropHSBNstate

algorithm. The candidate hyper-parameters, ω̃, are obtained by replacing the val-

ues of either a row or a column (indexed as specified in the inputs ρ, ψ) with the

corresponding values of the hyper-parameters, ω τ=1, estimated in the first learning

epoch. The steps used to compute the candidate hyper-parameters are listed in Algo-

rithm 7.6, steps 5 - 10. The updated set of hyper-parameters, ω reset : ρ, ψ
τ , and the VB

lower bound, L reset : ρ, ψ
τ are obtained as listed in Algorithm 7.6, step 11.

• AddHSBNstate

The algorithm for the AddHSBNstate state-space refinement is summarized in Algo-

rithm 7.7. The hidden variable state ψ specified in the inputs for the purposes of

incorporating into the current state-space belongs to the initial set of hidden variable

states, Zρτ=1. The AddHSBNstate state-space refinement is accomplished by incor-
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porating the values of hyper-parameters estimated in the first epoch ω τ=1 for the

selected hidden variable state indexed by (ρ, ψ) into the hyper-parameters for the

current epoch, ω τ . These steps are listed in Algorithm 7.7, steps 5 - 12. The updated

set of hyper-parameters, ω add : ρ, ψ
τ , and the VB lower bound, L add : ρ, ψ

τ , are obtained

as listed in Algorithm 7.7, step 13.

The HSBNStateSpaceSelection algorithm to generate a collection of state-space candi-

dates by applying different state-space refinements to the current (epoch τ) state-space and

to subsequently select a candidate state-space for the next learning epoch (τ + 1) is sum-

marized in Algorithm 7.3. The state-space and hyper-parameters for the current epoch, τ ,

(and also for the first epoch, τ = 1) are provided as inputs. The outputs produced are

parameters for the next epoch. The four different state-space refinements (merge, drop,

reset, add) are applied to the current state-space to produce a list of state-space candi-

dates, Algorithm 7.3, steps 1 - 8. Applying each of these state-space refinements involves

iterating over the different possible state selections and computing the updated parameters

and VB lower bounds. Specifically, the merge-state state-space refinement iterates over

pairs of states, the drop-state and reset-state refinements iterate over individual states and

the add-state state-space refinement iterates over the states in the initial state-space not

contained in the current state-space. Given the VB lower bounds computed for each of

the generated state-space candidates, their difference with the current VB lower bound is

taken, Algorithm 7.3, step 9 (we may recall here that the lower bound computed in the

VBEM algorithm is the log of the true value). An approximately equal number of candi-

dates for the different refinement types are chosen from among the generated candidates.

The number of latter candidates selected are an implementation choice. The differences in

VB lower bounds are transformed into an acceptance ratio based sampling distribution, Al-

gorithm 7.3, step 11. A state-space candidate for the next epoch is then sampled from this

distribution, Algorithm 7.3, steps 12 - 13.

The HSBNStateSpaceEstimation algorithm summarized in Algorithm 7.1 brings together

all the different aspects of the HSBN learning formulation. The HSBNStateSpaceInitializa-
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Figure 7·2: An illustration of results produced using the proposed algo-
rithm for learning the HSBN. Parameters obtained after model initialization
are displayed in the left column. The state-space refinement methods em-
ployed to generate model candidates in each epoch are listed in the center
column. The estimated start/end latent states and model parameters in
the final epoch after convergence of the variational Bayes lower bound are
displayed in the last column.

tion algorithm is used to initialize the state-space in Algorithm 7.1, step 1 and the HSBN-

StateSpaceSelection algorithm is used to iteratively refine the state-space towards increasing

the estimated VB lower bound Algorithm 7.1, step 4. The estimated HSBN state-space

and model parameters are returned fulfilling the objectives of the learning problem posed

in Equation 7.1. Figure 7·2 illustrates the HSBN parameters produced during model ini-

tialization along with the model parameters produced by the HSBN state-space refinement

algorithm in the final epoch (the results from one particular learning trial are shown here).

7.5 Summary

The HSBN utilizes a representation consisting of a collection of discrete states for the hidden

variables. The HSBNStateSpaceEstimation algorithm was developed in this chapter to infer

the set of hidden states and their associated properties. The variational Bayes lower bound is

utilized as the objective to maximize in the state-space estimation algorithm. The start and
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end hidden variable states are initialized to correspond to the set of observed handshape

labels. The model computed using this initialization was chosen to ‘anchor’ the state-

space exploration performed by the HSBNStateSpaceEstimation algorithm because the initial

model parameters (these are also the properties of the initial latent states) are closely

related to the statistics of start/end handshape sequences and their variations observed in

the training set. The initial model parameters are therefore easy to interpret.

The HSBNStateSpaceEstimation algorithm evolves the state-space in a sequence of learn-

ing epochs. The algorithm utilizes four different state-space refinement methods denoted as

{merge-states, drop-state, reset-state, add-state} to modify the current state-space in order

to generate candidates from among which to select a suitable state-space for the next epoch.

These state-space refinement methods were designed so that the changes performed by a

particular state-space refinement method in a given learning epoch can be reversed using

a different type of state-space refinement in a subsequent epoch thereby allowing sufficient

freedom for the HSBNStateSpaceEstimation algorithm to explore the state-space in the local

neighborhood of the initial model. Each of the refinement methods attempts to retain the

association of the latent states through the learning epochs. Maintaining these associations

simplifies several aspects of the learning algorithm including the forward propagation of

hyper-parameters for the priors.

In the experiments chapter we analyze several aspects of the HSBNStateSpaceEstimation

algorithm. These include the specification of appropriate priors in the initialization step, the

stopping criteria (in terms of the number of learning epochs) for the learning algorithm, an

assessment of the properties estimated for latent states in the final epoch and an evaluation

of handshape inference performance on a sequestered test set as a function of the sequence

of learning epochs.
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Algorithm 7.1: HSBNStateSpaceEstimation: Estimate a state-space Ẑ and associ-
ated parameters λ

Ẑ
for the HSBN

Inputs : x Handshape label pairs for signs contained in a training set,

: x is arranged as described in Section 6.3.

Outputs : Ẑ State-space estimated for the HSBN,

: λ
Ẑ

HSBN parameters associated with the estimated state-space, Ẑ.

/* Initialize the state-space and the associated hyper-parameters

using Algorithm 7.2 */

1

(
ω τ=1, L

VB
τ=1, Zτ=1

)
← HSBNStateSpaceInitialization (x );

/* Adapt the state-space by applying a sequence of state-space

refinements */

2 τ ← 1;

3 repeat

/* Estimate the state-space and the parameters for the next epoch

using Algorithm 7.3 */

4

(
ω τ+1, L

VB
τ+1, Zτ+1

)
←

HSBNStateSpaceSelection
(
x, ω τ , L

VB
τ , Zτ , ω τ=1, Zτ=1

)
;

5 τ ← τ + 1;

until the lower bound, LVB
τ , converges;

6 Ẑ ← Zτ ;

7 λ
Ẑ
← Eωτ

[λ ];
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Algorithm 7.2: HSBNStateSpaceInitialization: Compute HSBN hyper-parameters in
the first learning epoch

Inputs : x Training set (as in Algorithm 7.1).

Outputs : ω τ=1 HSBN hyper-parameters estimated in the first learning epoch,

: LVB
τ=1 VB lower bound estimated in the first learning epoch,

: Zτ=1 State-space chosen in the first learning epoch.

1 X ← The set of handshape labels in x;

/* Compute initial estimates for the hidden variable variational

distributions {Q ◦z,i[z
s, ze]} */

2 Zsτ=1 ← X ; Zeτ=1 ← X ; Zτ=1 ← (Zsτ=1,Z
e
τ=1);

3 for i ← 1 to |Vx| do

4 Q ◦z,i[z
s, ze] ← 0, ∀ zs ∈ Zsτ=1, z

s ∈ Zeτ=1;

5 for j ← 1 to |xi| do

6 Q ◦z,i

[
x
s;D
ij , x

e;D
ij

]
← Q ◦z,i

[
x
s;D
ij , x

e;D
ij

]
+ 1;

7 Q ◦z,i

[
x
s;N
ij , x

e;N
ij

]
← Q ◦z,i

[
x
s;N
ij , x

e;N
ij

]
+ 1;

end

8 Q ◦z,i[z
s, ze] ←

Q ◦z,i[z
s, ze]

∑

zs∈Zs

τ=1
, zs∈Ze

τ=1

Q ◦z,i[z
s, ze]

∀ zs ∈ Zsτ=1, z
s ∈ Zeτ=1;

end

/* The computed initial variational distributions Q ◦z,i are used to

initialize the VBEM algorithm, Algorithm 6.4 */

9 repeat

10 if first EM iteration then

11 Qz,i[z
s, ze] ← Q ◦z,i[z

s, ze] ∀ zs ∈ Zsτ=1, z
s ∈ Zeτ=1;

else

12 Qz,i[z
s, ze] ← Update using VBEM E-step, Algorithm 6.4, steps 4 - 5;

13 LVB
Z ← Update the VB lower bound, Algorithm 6.4, step 6;

end

14 ω⋆ ← Update using VBEM M-step, Algorithm 6.4, steps 7 - 10;

until the lower bound, LVB
Z

and the parameters, ω⋆ converge;

15 ω τ=1 ← ω⋆;

16 LVB
τ=1 ← LVB

Z ;
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Algorithm 7.3: HSBNStateSpaceSelection: Select state-space for the next epoch

Inputs : x Training set (as in Algorithm 7.1),

: ω τ Hyper-parameters estimated in epoch τ ,

: LVB
τ VB lower bound estimated in epoch τ ,

: Zτ = (Zsτ ,Z
e
τ ) Where, Zsτ ⊆ Z

s
τ=1 and Zeτ ⊆ Z

e
τ=1, cur. state-space,

: ω τ=1 Hyper-parameters estimated in the first epoch,

: Zτ=1 State-space estimated in the first epoch.

Outputs : Zτ+1 State-space selected for the next epoch,

: ω τ+1 Hyper-parameters after the state-space refinement,

: LVB
τ+1 VB lower bound after the state-space refinement.

/* Generate state-space candidates */

1 for ρ ∈ {s, e}, (ψ, ϕ) ∈ {unique pairs of states taken from Zρτ , ψ < ϕ} do

/* Apply MergeHSBNstates state-space refinement, Algorithm 7.4 */

2

(
ω τ+1, k, L

VB
τ+1, k, Zτ+1, k

)
← MergeHSBNstates (x, ω τ , Zτ , ρ, ψ, ϕ ) ; k++;

3 for ρ ∈ {s, e}, ψ ∈ Zρτ do

/* Apply DropHSBNstate state-space refinement, Algorithm 7.5 */

4

(
ω τ+1, k, L

VB
τ+1, k, Zτ+1, k

)
← DropHSBNstate (x, ω τ , Zτ , ρ, ψ ) ; k++;

5 for ρ ∈ {s, e}, ψ ∈ Zρτ do

/* Apply ResetHSBNstate state-space refinement, Algorithm 7.6 */

6

(
ω τ+1, k, L

VB
τ+1, k, Zτ+1, k

)
← ResetHSBNstate (x, ω τ , Zτ , ω τ=1, ρ, ψ ) ; k++;

7 for ρ ∈ {s, e}, ψ ∈ Zρτ=1\Z
ρ
τ do

/* Apply AddHSBNstate state-space refinement, Algorithm 7.7 */

8

(
ω τ+1, k, L

VB
τ+1, k, Zτ+1, k

)
← AddHSBNstate (x, ω τ , Zτ , ω τ=1, ρ, ψ ) ; k++;

/* Compute acceptance log-ratios for the state-space candidates */

9 r̃[k] ← LVB
τ+1, k − LVB

τ ; ∀ k : 1 ≤ k ≤ |{ω τ+1, ·}|

10 r ← Select equal number of top candidates for different refinement types from r̃;

/* Transform r to construct an acceptance ratio distribution */

11 r[k] ← exp

(
r[k]

max ( |max(r) | , 1 )

)
; r[k] ←

r[k]∑
k r[k]

; ∀ k : 1 ≤ k ≤ len( r )

/*Sample state-space candidate using acceptance ratio distribution*/

12 l ∼ r ;

13

(
ω τ+1, L

VB
τ+1, Zτ+1

)
←
(
ω τ+1, l, L

VB
τ+1, l, Zτ+1, l

)
;
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Algorithm 7.4: MergeHSBNstates: Merge selected pair of HSBN hidden variable
states

Inputs : x Training set (as in Algorithm 7.1),

: ω τ Hyper-parameters estimated in epoch τ ,

: Zτ = (Zsτ ,Z
e
τ ) Where, Zsτ ⊆ Z

s
τ=1 and Zeτ ⊆ Z

e
τ=1, cur. state-space,

: ρ ∈ {s, e} Select start or end hidden variable states,

: ψ, ϕ ∈ Zρτ Selected indices of start/end hidden states to merge.

Outputs : ωmerge : ρ, ψ←ϕ
τ Hyper-parameters after the state-space refinement,

: Lmerge : ρ, ψ←ϕ
τ VBEM lower bound after the state-space refinement,

: Z merge : ρ, ψ←ϕ
τ State-space after applying the state-space refinement.

/* Merge specified ψ, ϕ rows/columns in the hyper-parameter arrays */

1 if ρ == s then

2 (Z̃s, Z̃e) ← (Zsτ\{ϕ},Z
e
τ );

3 ν̃[zs] ← ντ [z
s] ∀ zs ∈ Z̃s;

4 α̃[zs, ze] ← ατ [z
s, ze] ∀ zs ∈ Z̃s, ze ∈ Z̃e;

5 β̃
s
[zs, x] ← βsτ [z

s, x] ∀ zs ∈ Z̃s, x ∈ X ;

6 β̃
e
[ze, x] ← βeτ [z

e, x] ∀ ze ∈ Z̃e, x ∈ X ;

7 ν̃[ψ] ← ντ [ψ] + ντ [ϕ];

8 α̃[ψ, ze] ← ατ [ψ, z
e] + ατ [ϕ, z

e] ∀ ze ∈ Z̃e;

9 β̃
s
[ψ, x] ← βsτ [ψ, x] + βsτ [ϕ, x] ∀x ∈ X ;

else

10 (Z̃s, Z̃e) ← (Zsτ ,Z
e
τ\{ϕ});

11 ν̃[zs] ← ντ [z
s] ∀ zs ∈ Z̃s;

12 α̃[zs, ze] ← ατ [z
s, ze] ∀ zs ∈ Z̃s, ze ∈ Z̃e;

13 β̃
s
[zs, x] ← βsτ [z

s, x] ∀ zs ∈ Z̃s, x ∈ X ;

14 β̃
e
[ze, x] ← βeτ [z

e, x] ∀ ze ∈ Z̃e, x ∈ X ;

15 α̃[zs, ψ] ← ατ [z
s, ψ] + ατ [z

s, ϕ] ∀ zs ∈ Z̃s;

16 β̃
e
[ψ, x] ← βeτ [ψ, x] + βeτ [ϕ, x] ∀x ∈ X ;

end

/* The transformed hyper-parameter candidates, ω̃, are used to

initialize the VBEM algorithm, Algorithm 6.4 */

17

(
ωmerge : ρ, ψ←ϕ
τ , Lmerge : ρ, ψ←ϕ

τ

)
← VBEM congruent

(
x, ω◦ =

{
ν̃, α̃, β̃

s
, β̃

e
})

;

18 Z merge : ρ, ψ←ϕ
τ ← (Z̃s, Z̃e);
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Algorithm 7.5: DropHSBNstate: Removes a state from the HSBN hidden variable
state-space

Inputs : x Training set (as in Algorithm 7.1),

: ω τ Hyper-parameters estimated in epoch τ ,

: Zτ = (Zsτ ,Z
e
τ ) Where, Zsτ ⊆ Z

s
τ=1 and Zeτ ⊆ Z

e
τ=1, cur. state-space,

: ρ ∈ {s, e} Start or end hidden variable state selected to drop,

: ψ ∈ Zρτ Selected index of start/end hidden state to drop.

Outputs : ω drop : ρ, ψ
τ Hyper-parameters after the state-space refinement,

: L drop : ρ, ψ
τ VBEM lower bound after the state-space refinement,

: Z drop : ρ, ψ
τ State-space after applying the state-space refinement.

/* Remove ψth row or ψth column from the hyper-parameter arrays */

1 if ρ == s then

2 (Z̃s, Z̃e) ← (Zsτ\{ψ},Z
e
τ );

3 ν̃[zs] ← ντ [z
s] ∀ zs ∈ Z̃s;

4 α̃[zs, ze] ← ατ [z
s, ze] ∀ zs ∈ Z̃s, ze ∈ Z̃e;

5 β̃
s
[zs, x] ← βsτ [z

s, x] ∀ zs ∈ Z̃s, x ∈ X ;

6 β̃
e
[ze, x] ← βeτ [z

e, x] ∀ ze ∈ Z̃e, x ∈ X ;

else

7 (Z̃s, Z̃e) ← (Zsτ ,Z
e
τ\{ψ});

8 ν̃[zs] ← ντ [z
s] ∀ zs ∈ Z̃s;

9 α̃[zs, ze] ← ατ [z
s, ze] ∀ zs ∈ Z̃s, ze ∈ Z̃e;

10 β̃
s
[zs, x] ← βsτ [z

s, x] ∀ zs ∈ Z̃s, x ∈ X ;

11 β̃
e
[ze, x] ← βeτ [z

e, x] ∀ ze ∈ Z̃e, x ∈ X ;

end

/* The transformed hyper-parameter candidates, ω̃, are used to

initialize the VBEM algorithm, Algorithm 6.4 */

12

(
ω drop : ρ, ψ
τ , L drop : ρ, ψ

τ

)
← VBEM congruent

(
x, ω◦ =

{
ν̃, α̃, β̃

s
, β̃

e
})

;

13 Z drop : ρ, ψ
τ ← (Z̃s, Z̃e);
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Algorithm 7.6: ResetHSBNstate: Resets the values of hyper-parameters for a se-
lected HSBN hidden variable state to corresponding hyper-parameter values from the
first epoch, ω τ=1

Inputs : x Training set (as in Algorithm 7.1),

: ω τ Hyper-parameters estimated in epoch τ ,

: Zτ = (Zsτ ,Z
e
τ ) Where, Zsτ ⊆ Z

s
τ=1 and Zeτ ⊆ Z

e
τ=1, cur. state-space

: ω τ=1 Hyper-parameters estimated in the first epoch,

: ρ ∈ {s, e} Start or end hidden variable state selected to reset,

: ψ ∈ Zρτ Selected index of start/end hidden state to reset.

Outputs : ω reset : ρ, ψ
τ Hyper-parameters after the state-space refinement,

: L reset : ρ, ψ
τ VBEM lower bound after the state-space refinement,

: Z reset : ρ, ψ
τ State-space after applying the state-space refinement.

1 ν̃[zs] ← ντ [z
s] ∀ zs ∈ Zsτ ;

2 α̃[zs, ze] ← ατ [z
s, ze] ∀ zs ∈ Zsτ , ze ∈ Zeτ ;

3 β̃
s
[zs, x] ← βsτ [z

s, x] ∀ zs ∈ Zsτ , x ∈ X ;

4 β̃
e
[ze, x] ← βeτ [z

e, x] ∀ ze ∈ Zeτ , x ∈ X ;

/* Replace the values of ψth row or ψth column in ω̃ with values from

the initial hyper-parameter arrays (ω τ=1) */

5 if ρ == s then

6 ν̃[ψ] ← ντ=1[ψ];

7 α̃[ψ, ze] ← ατ=1[ψ, z
e] ∀ ze ∈ Zeτ ;

8 β̃
s
[ψ, x] ← βsτ=1[ψ, x] ∀x ∈ X ;

else

9 α̃[zs, ψ] ← ατ=1[z
s, ψ] ∀ zs ∈ Zsτ ;

10 β̃
e
[ψ, x] ← βeτ=1[ψ, x] ∀x ∈ X ;

end

/* The transformed hyper-parameter candidates, ω̃, are used to

initialize the VBEM algorithm, Algorithm 6.4 */

11

(
ω reset : ρ, ψ
τ , L reset : ρ, ψ

τ

)
← VBEM congruent

(
x, ω◦ =

{
ν̃, α̃, β̃

s
, β̃

e
})

;

12 Z reset : ρ, ψ
τ ← (Zsτ ,Z

e
τ );



118

Algorithm 7.7: AddHSBNstate: Adds a state to the HSBN hidden variable state-
space by splicing in values for hyper-parameters from the first epoch, ω τ=1

Inputs : x Training set (as in Algorithm 7.1),

: ω τ Hyper-parameters estimated in epoch τ ,

: Zτ = (Zsτ ,Z
e
τ ) Where, Zsτ ⊆ Z

s
τ=1 and Zeτ ⊆ Z

e
τ=1, cur. state-space

: ω τ=1 Hyper-parameters estimated in the first epoch,

: ρ ∈ {s, e} Start or end hidden variable state selected to add,

: ψ ∈ Zρτ=1\Z
ρ
τ Selected index of start/end hidden state to add.

Outputs : ω add : ρ, ψ
τ Hyper-parameters after the state-space refinement,

: L add : ρ, ψ
τ VBEM lower bound after the state-space refinement,

: Z add : ρ, ψ
τ State-space after applying the state-space refinement.

1 ν̃[zs] ← ντ [z
s] ∀ zs ∈ Zsτ ;

2 α̃[zs, ze] ← ατ [z
s, ze] ∀ zs ∈ Zsτ , ze ∈ Zeτ ;

3 β̃
s
[zs, x] ← βsτ [z

s, x] ∀ zs ∈ Zsτ , x ∈ X ;

4 β̃
e
[ze, x] ← βeτ [z

e, x] ∀ ze ∈ Zeτ , x ∈ X ;

/* Splice the ψth row or ψth column from the initial hyper-parameter

arrays (ω τ=1) into the transformed hyper-parameter arrays (ω̃) */

5 if ρ == s then

6 (Z̃s, Z̃e) ← (Zsτ ∪ {ψ},Z
e
τ );

7 ν̃[ψ] ← ντ=1[ψ];

8 α̃[ψ, ze] ← ατ=1[ψ, z
e] ∀ ze ∈ Z̃e;

9 β̃
s
[ψ, x] ← βsτ=1[ψ, x] ∀x ∈ X ;

else

10 (Z̃s, Z̃e) ← (Zsτ ,Z
e
τ ∪ {ψ});

11 α̃[zs, ψ] ← ατ=1[z
s, ψ] ∀ zs ∈ Z̃s;

12 β̃
e
[ψ, x] ← βeτ=1[ψ, x] ∀x ∈ X ;

end

/* The transformed hyper-parameter candidates, ω̃, are used to

initialize the VBEM algorithm, Algorithm 6.4 */

13

(
ω add : ρ, ψ
τ , L add : ρ, ψ

τ

)
← VBEM congruent

(
x, ω◦ =

{
ν̃, α̃, β̃

s
, β̃

e
})

;

14 Z add : ρ, ψ
τ ← (Z̃s, Z̃e);



Chapter 8

Handshape image observation likelihood model

The observation likelihoods in the HSBN based handshape inference formulation (developed

in Chapter 5) are represented in the posterior form as, P (X = x | I = i ). Given image, i,

of a handshape in an input video at either the start or end points of a sign, we need the

likelihoods of different handshape classes, x ∈ X .

Variations in the image appearance of handshapes makes estimation of the observa-

tion likelihood challenging. Some sources of variation in handshape appearance include

differences in the 3D orientation of the hands, differences in the anthropometric properties,

differences in how a handshape is articulated either by the same signer or by different sign-

ers, and differences in handshape production influenced by the phonological environment

within which the handshape appears in a sign. Image clutter is another issue that makes

the estimation of the observation likelihood for hand images in sign language video a chal-

lenge. Even after skin color based segmentation these images include considerable amounts

of clutter because the hands are frequently articulated close to the face or to the other hand.

We adopt a data-driven approach in this work wherein a collection of annotated

start/end handshapes obtained from several native signers serves as a database for the

purposes of retrieving handshape matches. We start by describing the proposed model for

constructing an observation likelihood given the retrieved handshape images and their an-

notated handshape labels. We then develop an algorithm for non-rigid image alignment to

incorporate robustness to some of the variations described above during handshape retrieval.

119
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8.1 Computing the handshape observation likelihood

A database of hand images { i iDB } annotated with handshape labels {x iDB } is obtained

by collecting start/end handshapes for signs contained in the training set. A method to

compute the similarity score, sim( i, j ), for handshape image pairs is assumed in computing

the observation likelihoods. Given an image i in the query sign, its K-nearest neighbors

from the database ranked in decreasing order of appearance similarity are denoted as,

{ (i kDB, x
k
DB) }, 1 ≤ k ≤ K. The retrieved handshape labels are then used in computing

the observation likelihoods using the following expression,

P (X = x | I = i ) =
1

CP

K∑

k=1

e−β(k−1) δ(x kDB , x ) . (8.1)

Here, β,K are predefined parameters for the handshape inference algorithm, CP is a nor-

malizing constant and δ is the indicator function. The handshape match, x kDB, retrieved at

rank k contributes a score e−βk to the observation likelihood for the label x kDB.

Unlike in a conventional k-NN density estimator wherein the similarity score, or a dis-

tance measure, sim( i, j ) appears in the exponent, the above expression for the handshape

observation likelihood employs the retrieved ranks for the handshape labels. This is because

certain regularity properties satisfied by the similarity scores employed in conventional k-

NN methods (such as the properties required for the underlying distance to define a metric)

are violated by the alignment based methods employed here in computing a similarity score

for handshape image pairs. Utilizing the retrieved rank for handshape labels was therefore

observed to yield more predictable results in our empirical evaluation. The rank based for-

mulation also simplifies the comparison of handshape inference accuracies obtained using

different types of image alignment methods.

8.2 Computing the handshape appearance similarity score, sim( i, j )

Given an input image of a handshape, i, we use a similarity scoring function sim( i, j )

to retrieve similar handshapes from our annotated database. To provide robustness to

variations in the handshape image appearances, a non-rigid image alignment is needed.



121

8.2.1 Background

To align an image pair, (i, j), we compute the vectors ai→j that map feature locations in

image i to pixel locations in image j by minimizing an image alignment cost comprising two

terms: (a) the data association cost that measures the accuracy of the predicted registration

in aligning local image features, and (b) the spatial prior that imposes a smoothness con-

straint on the estimated alignment vectors. The alignment cost minimization can therefore

be formulated in general terms as follows,

a⋆:i→j = argmin
ai→j

[
E align(a

i→j )
]

= argmin
ai→j

[
E data-association(a

i→j ) + E spatial-smoothness(a
i→j )

]
. (8.2)

The alignment vectors, a j→i, in the converse direction are computed in a similar fashion.

Specific choices for the data-association cost and smoothness prior terms are presented

here towards developing a computationally efficient HandshapeImageAlignment algorithm

for computing non-rigid alignments for handshape image pairs.

Solving for the global minimum of the total alignment cost, E align(a
i→j ), is typically

intractable as this minimization corresponds to a NP-hard MAP estimation problem in

general MRFs [Felzenszwalb and Zabih, 2011], and therefore many approximate methods to

minimize the cost have been proposed in the literature. These approaches fall into two broad

categories: approaches based on the message passing algorithm (Loopy Belief Propagation

or LBP) [Liu et al., 2008] and approaches based on solving sparse linear system of equations

(LSEs) [Pilet et al., 2008, Huang et al., 2006].

Loopy Belief Propagation approaches typically assume a discrete label set for the align-

ment vectors. A quantization of the alignment vectors using a locally sampled set of feature

locations in the spatial neighborhood of each control lattice location yields the label set

containing the alignment candidates. Even though LBP is widely used with several types of

spatial smoothness priors (examples include non-convex priors as are often used for optical

flow computation [Liu et al., 2008]), the algorithm remains computationally expensive. The

message passing cost in the case of general smoothness priors scales quadratically in the
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label set size, |W|. A large number of message passing iterations is also typically needed

for message passing algorithms to converge to a stable solution. This computational cost

precludes using a large densely sampled local search neighborhood in computing alignments

for handshape image pairs.

Linear system of equations based approaches employ spatial smoothness priors from the

Free Form Deformation (FFD) family. The Thin Plate Spline (TPS) [Huang et al., 2006]

and the spring mesh system are two such examples. FFD priors are defined as quadratic

functions of the predicted displacements: E spatial-smoothness(a
i→j ) = ai→j T K ai→j. The

FFD prior is parameterized by the stiffness matrix, K. The quadratic form of the smooth-

ness term admits an efficient gradient descent solution, which involves solving a sequence

of sparse linear systems of equations (LSEs). To help circumvent the problems of local

minima, [Huang et al., 2006] propose a coarse-to-fine refinement of the control lattice,

while, [Pilet et al., 2008] develop a RANSAC [Fischler and Bolles, 1981] based approach.

Huang et al. develop their approach in the context of aligning contours in 2D and mesh

based surface representations in 3D. Pilet et al.’s method requires that the inputs possess

distinctive local image features to allow the representation of the input images using a sparse

set of feature point based descriptors; the authors demonstrate results for the problem of

flexible 2D surface detection/re-identification. In handshape images, however, a significant

portion of the handshape appearance information is contained within the handshape sil-

houette, a boundary contour or a sparse feature representation is therefore insufficient to

capture the internal details of handshape appearance. In the proposed approach, we regard

each pixel in the foreground region as containing information that is potentially useful for

the task of handshape matching.

8.2.2 Proposed formulation for non-rigid image alignment

The HandshapeImageAlignment algorithm computes alignment vectors that map lattice coor-

dinates in one image to pixel coordinates in the other image. The proposed algorithm retains

the computational efficiency afforded by the LSE formulation by employing a smoothness
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prior from the Free Form Deformation (FFD) family. One key distinguishing aspect of the

proposed algorithm is that it iteratively adapts the smoothness prior to accommodate the

different amounts of displacements in different regions of the image. This is accomplished

by modifying the stiffness values for individual springs that comprise the smoothness prior

based on the predicted displacements computed at each node. A randomization step as

in the RANSAC algorithm is utilized to improve the robustness of the algorithm to local

minima.

Representation chosen for the alignment vectors

We choose a lattice of regularly sampled control points, Gi = {Gik,l} =
{[
Gik,l;X , G

i
k,l;Y

]}
,

as feature locations to extract local image descriptors for the image i. The corresponding

lattice of control points in image j is denoted as G j. The vectors, ai→j, computed by the

proposed algorithm map lattice coordinates, Gik,l, in image i to pixel coordinates, P j
x,y, in

image j,

ai→j
k,l : Gik,l → P j

x,y − G
j
k,l, ∀Gik,l ∈ G

i. (8.3)

An expanded representation for the alignment vectors is therefore written as,

ai→j =
[
ai→j
k,l

]
, with, ai→j

k,l =
[
ai→j
k,l;X , a

i→j
k,l;Y

]
. (8.4)

Local feature descriptors

The local image descriptors at a given feature location in the image are computed using the

Histogram of Oriented Gradients (HOG) [Dalal and Triggs, 2005] method. To accommodate

differences in the in-plane orientations of the hands, the HOG descriptors at a given feature

location are computed for a sampled set of local image orientations, θ = {θ}. The HOG

descriptors in image i computed at the control lattice locations, Gik,l, are denoted as hi, θ=0
k,l .

The descriptors computed in image j at the coordinates, G j
k,l:m,n, G

j
x,y, are denoted as,

h j, θ
k,l:m,n, h

j, θ
x,y, ∀ θ ∈ θ.

The online computation of HOG features can be substantially sped up by pre-computing

summed-area tables for each of the different in-plane orientation angles, θ, and for each of
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the different gradient orientation bins that are employed in computing the HOG feature

representation.

Data-association cost term

Given the local image descriptors described above, the data-association cost for a pair of

feature locations (Gik,l, G
j
k,l:m,n ) is computed by searching for the best feature match among

the sampled set of local orientations,

E data-association(G
i
k,l, G

j
k,l:m,n ) = min

θ∈θ

∥∥∥hi, θ=0
k,l − h j, θ

k,l:m,n

∥∥∥ . (8.5)

The HandshapeImageAlignment algorithm computes a solution to the alignment problem in

a sequence of iterations indexed by τ . The total data-association cost for an alignment,

aτ :i→j, is given by,

E data-association(a
τ :i→j ) =

∑

k,l∈Gi

E data-association

(
Gik,l , G

j
k,l + aτ :i→j

k,l

)
. (8.6)

Computing local displacements by minimizing the data-association cost

Given the alignment, aτ :i→j, computed in the current iteration the local displacements for

the next iteration, ∆aτ :i→j, are computed as,

∆aτ :i→j
k,l = argmin

Gτ : j
k,l:m,n

∈Wτ : j

k,l

[
E data-association(G

i
k,l, G

τ : j
k,l:m,n )

]
− Gτ : jk,l , ∀Gik,l ∈ G

i. (8.7)

Here, Gτ : j are the updated control lattice coordinates in image j that are obtained by

incorporating the current alignment: Gτ : jk,l = G j
k,l + aτ :i→j

k,l . The feature locations for

the above minimization are situated on a local neighborhood grid; these are denoted as,

Wτ : j
k,l = {Gτ : jk,l:m,n} .

The local displacements, ∆aτ :i→j, are subsequently used to compute the re-

fined alignment, aτ+1:i→j, by incorporating the spatial smoothness term:

∆aτ :i→j
 ∆̃a

τ :i→j
 aτ+1:i→j = aτ :i→j + ∆̃a

τ :i→j
.
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Spatial smoothness term

A spring mesh system connecting pairs of nodes in the lattice is chosen to yield the following

quadratic spatial smoothness cost,

E spatial-smoothness(a
τ :i→j ) = aτ :i→j T Kτ :i→j aτ :i→j . (8.8)

The smoothness term is parameterized by a global stiffness matrix, Kτ :i→j, obtained by

assembling several local stiffness matrices, kτ :i→j
s,t , each of which is associated with a spring

connecting a pair of nodes (Gτ : js , Gτ : jt ) in the control lattice. These terms include the

iteration index, τ , to denote that they are updated in each iteration of the HandshapeIm-

ageAlignment algorithm. The stiffness matrices kτs,t are defined as,

kτs,t =
κτs,t

len(s, t)




cos2(βs,t) cos(βs,t) sin(βs,t) − cos2(βs,t) − cos(βs,t) sin(βs,t)

cos(βs,t) sin(βs,t) sin2(βs,t) − cos(βs,t) sin(βs,t) − sin2(βs,t)

− cos2(βs,t) − cos(βs,t) sin(βs,t) cos2(βs,t) cos(βs,t) sin(βs,t)

− cos(βs,t) sin(βs,t) − sin2(βs,t) cos(βs,t) sin(βs,t) − sin2(βs,t)


.

(8.9)

Here, κτs,t is the spring stiffness parameter, len(s, t) and βs,t are the length and angle with

x-axis for the spring connecting a pair of control lattice nodes, (Gτ : js , Gτ : jt ).

Proposed algorithm for handshape image alignment

Given the data-association and spatial smoothness terms as defined above, we now formulate

the proposed algorithm to solve for the image alignment by minimizing the alignment cost.

For the rest of this discussion we focus on computing the forward alignment vectors, ai→j

(and therefore drop the superscript, i→ j). We start with the gradient descent formulation,

which suggests an iterative approach to minimize the following alignment cost,

E align(a ) = E data-association(a ) + aT Ka . (8.10)

Setting the gradient of the total alignment cost to 0 we obtain the following condition

satisfied by a local minimum, a⋆, of the alignment cost function,

−∇a E data-association(a
⋆ ) = Ka⋆ . (8.11)
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We note here that the RHS represents the smoothness constraint and the LHS is a direction

vector that decreases the data-association cost at the current solution of the image alignment

objective function. We introduce force vectors, f , to represent the above equation in a

standard linear form. The forces applied to the lattice coordinates in the spring mesh are

defined as,

f ⋆ = −∇a E data-association(a
⋆ ) . (8.12)

Here, f =
[
fk,l
]
, and, fk,l =

[
fk,l;X , fk,l;Y

]
. The local solution constraint in Equation 8.11

is written as,

f ⋆ = Ka⋆ . (8.13)

The HandshapeImageAlignment algorithm deviates from this formulation in that the spring

stiffness values κτs,t are updated to conform to the predicted local displacements, thereby

providing a spatially non-uniform smoothness prior to accommodate the different amounts

of deformation found in different regions of the handshape image(s).

Given the solution for the alignment vectors aτ in iteration τ , we now present the steps

to compute the updated alignments, aτ+1.

The local displacements, ∆aτ , are computed by minimizing the data-association cost term,

as derived in Equation 8.7. To incorporate a degree of robustness to local minima of the

alignment objective in our implementation, the selection of the minimum in Equation 8.7

is performed in a stochastic fashion by choosing from among the top U matches.

The force vectors, f τ , are obtained by normalizing the local displacements, ∆aτ ,

f τk,l =
∆aτk,l
‖∆aτk,l‖

. (8.14)

The magnitudes of the local displacements, ‖∆aτk,l‖, are used to adapt the spring stiffness

parameters, κτ , in the spring mesh to match the different degrees of local displacements

predicted for different locations in the control lattice. The stiffness parameter, κτs,t, for a

spring that connects the pair of nodes (Gτ : js , Gτ : jt ) is specified to be inversely proportional

to the average of the displacement magnitudes predicted for the two ends of the spring –

thereby relaxing the stiffness term in regions where higher local displacements are predicted
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in the current iteration, τ . Furthermore, the springs get progressively stiffer through the

iterations as the alignment solution converges to a local minimum. The spring stiffness

parameters are given by,

κτs,t = min

(
2κbase

‖∆aτs ‖ + ‖∆aτt ‖
, κmax

)
. (8.15)

Where, κbase, is the base spring stiffness parameter. The stiffness values, κτs,t, are used

in Equation 8.9 to compute the local stiffness matrices, kτs,t . These local stiffness matrices

are assembled to yield the global stiffness matrix, Kτ .

Given the force vectors, f τ and the stiffness matrix Kτ , a refined alignment, ∆̃a
τ
, is

computed by solving the following linear system,

Kτ ∆̃a
τ

= f τ . (8.16)

Since K is sparse, we utilize the conjugate gradient algorithm in our implementation to

solve this linear system.

The updated values for the alignment vectors, aτ+1, are computed by using a line-search

for the scaling parameter that minimizes the data-association cost,

α⋆ = argmin
α∈ [ 0, αmax ]

[
E data-association

(
α ∆̃a

τ
+ aτ

) ]
, (8.17)

aτ+1 = α⋆ ∆̃a
τ
+ aτ . (8.18)

In order to determine the initial alignments, aτ =0, for the HandshapeImageAlignment al-

gorithm, we solve for the affine transformation parameters utilizing the alignment vector

candidates, ∆aτ =0, computed in the first iteration.

Summing the data association costs corresponding to the independently computed bi-

directional alignments, a⋆:i→j, a ⋆: j→i, yields the appearance based similarity score for the

handshape image pair,

sim( i, j ) = E data-association(a
⋆:i→j ) + E data-association(a

⋆: j→i ) . (8.19)

The complete HandshapeImageAlignment algorithm is summarized in Algorithm 8.1.



128

Image i Image j

Spring stiffness
adapted to local
displacements in

the proposed
approach

Displacement
field

computed by
the proposed

approach

Displacement
field

computed
using

MRF-LBP

j→ i

i→ j

Figure 8·1: Computing a bi-directional alignment for an example hand-
shape image pair ( i, j ). The displacement fields computed using the pro-
posed algorithm are compared with those obtained using MRF-LBP. The
same data association cost (obtained by comparing HOG features) and
smoothness prior terms (given by a spring-mesh system) are employed in
this comparison. While both approaches yield similar results, the proposed
approach is an order of magnitude faster. The proposed approach adapts
the spring stiffness values to provide higher rigidity in areas where less defor-
mation is expected (darker colors indicate higher stiffness). Stiffness values
displayed here correspond to the final iteration of the proposed approach.

8.2.3 Illustration of alignment results using the proposed algorithm

We show alignment results for an example hand image pair in Figure 8·1. The first column

displays an image i of a handshape in a query sign obtained from the test signer. The

second column displays the handshape image j from the database that was retrieved as

one of the top-5 matches by using the proposed non-rigid image alignment algorithm. The

top row displays the results of computing the alignment a j→i using the proposed non-rigid

alignment method and using the MRF-LBP approach. The bottom row displays the cor-

responding results for computing the alignment ai→j. The third column in the two rows

visualizes the inferred spring stiffness values in the final iteration of the proposed non-rigid
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image alignment algorithm. In the top row we observe that the ring structure with two

of the fingers is essentially rigid and hence higher stiffness values (darker link colors) are

inferred within it and conversely, lower stiffness values are inferred in regions surrounding

the extended fingers. The displacement field computed using the proposed approach is

displayed in the fourth column. Results for the MRF-LBP approach minimizing the same

alignment cost (but with a spatially uniform spring-mesh smoothness prior) are shown in

the last column. In practice, while both approaches yield comparable alignment results, the

proposed approach is an order of magnitude faster (2.4s vs. 58s) which allows a larger frac-

tion of the database to be scanned during nearest neighbor search. Section 9.3.4 describes

the details of the filter+refine method adopted for handshape retrieval. We demonstrate in

our experiments that the proposed non-rigid image alignment method improves handshape

retrieval accuracy when compared to an approach that does not include an image alignment

step and an approach that incorporates an affine alignment between a pair of handshape

images.

8.3 Summary

In this chapter we propose a specific implementation of an observation likelihood model

to use within the HSBN formulation. The choice of a nearest neighbor approach as the

underlying method in computing the handshape image observation likelihood was motivated

by application domain considerations. There are a large number of handshape classes,

many of which share similar configurations. Differences that arise as a consequence of

gradience in handshape configuration need to be dealt with in computing the handshape

observation likelihood. Furthermore, handshapes in video arise as projections of different

3D orientations of the hand. With an eye towards incorporating robustness to these factors,

we propose a computationally efficient algorithm for non-rigid handshape image alignment.

The nearest neighbor results computed using this method are used to produce observation

likelihood scores that are compatible with the HSBN based handshape inference formulation.
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Algorithm 8.1: HandshapeImageAlignment: Estimate the appearance based simi-
larity score for handshape image pair.

Inputs : i, j A pair of handshape images, centered, cropped, normalized

: to the same size with foreground segmentation.

Outputs : sim(i, j) The similarity score for the input handshape image pair.

/* In subsequent steps we compute ai→j (we drop the superscript) */

/* Initialize the control point lattice for i, j */

1 Gi ← {Gik,l } ; G j ← {G j
k,l } ;

/* Initialize spring mesh connecting control point pairs (s, t) */

2 S ← {(s, t)} ; where, s, t ∈ Gi

/* Pre-compute sum-area tables for HOG features in i, j, Section 8.2.2 */

/* Compute the initial alignments aτ =0 using affine alignment */

3 ∆aτ =0 ← Computed as in Equation 8.7 ;

4 aτ =0 ← Affine transformation computed using ∆aτ =0 ;
5 τ ← 0 ;
6 repeat

/* Update control lattice for j to include current alignment */

7 Gτ : jk,l ← G j
k,l + aτk,l ; ∀ G j

k,l ∈ G
j

/* Compute candidate alignments using data-association cost */

8 ∆aτk,l ← Computed as in Equation 8.7 ;

/* Compute force vectors */

9 f τk,l ←
∆aτk,l
‖∆aτk,l‖

; ∀ G j
k,l ∈ G

j

/* Compute spring stiffness values for the spring mesh */

10 κτs,t ← min

(
2κbase

‖∆aτs ‖ + ‖∆aτt ‖
, κmax

)
; ∀ (s, t) ∈ S

/* Compute local and global stiffness matrices */

11 kτs,t ← Equation 8.9 ; ∀ (s, t) ∈ S

12 Kτ ← Assemble the local spring stiffness matrices kτs,t ;

/* Compute the updated alignment aτ+1 */

13 ∆̃a
τ
← Solve: Kτ ∆̃a

τ
= f τ ;

14 α⋆ ← Computed as in Equation 8.17 ;

15 aτ+1 ← α⋆ ∆̃a
τ
+ aτ ;

16 τ ← τ + 1 ;

until Until non-rigid alignments, aτ , converge or #iterations are exceeded

/* Compute similarity score using the bi-directional alignments */

17 sim( i, j ) ← E data-association(a
τ⋆:i→j ) + E data-association(a

τ⋆: j→i ) ;



Chapter 9

Experiments: Implementation

Experiments were conducted to assess the usefulness of the HSBN formulation. Ranked

handshape retrieval was chosen as the criterion for performance evaluation. The per-

formance assessment was conducted for person-independent handshape recognition. The

training and test sets were constructed from monomorphemic lexical signs contained in the

ASLLVD; Chapter 4 summarizes the key aspects of the complete dataset as it pertains to

the HSBN formulation. The learning of the HSBN is performed using the variational Bayes

approach and involves estimating the hidden variable state-space along with the HSBN

model parameters as described in Chapter 7. Handshape inference for query signs involves

retrieving handshape matches from a database of start/end handshape images annotated

with handshape labels. The retrieved handshape labels are re-ranked utilizing the HSBN

model. Comparing the retrieved ranks of ground-truth labels before and after HSBN based

inference enables us to quantify the improvement in recognition performance afforded by

the proposed formulation.

In the following sections we describe the construction of the training and test sets, the

procedure adopted for training the HSBN model, the procedure adopted to compute the

observation likelihood for start/end hand images in a query sign and the procedure employed

for evaluating the handshape inference performance.

9.1 Training, retrieval and test sets for HSBN evaluation

Among the several sign language datasets available for SLR research, the ASLLVD is unique

in that it provides a reasonably large collection of signs annotated by linguists with the

attributes necessary to train and evaluate the HSBN. The attributes annotated for each

131
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Number of productions from the ASLLVD

Signer ID HSBN
training set

HSBN
retrieval set
(subset of

training set)

HSBN test set

F1 2,567 728 –

M1 – – 646

F2 1,162 688 –

M2 2,515 – –

F3 381 – –

F4 333 – –

All 6,958 1,416 646

Table 9.1: Statistics for the productions of monomorphemic lexical signs
from six native signers contained in the HSBN training, retrieval and test
sets. The sizes of the retrieval and test sets are constrained by the availability
of bounding box annotations for the start/end handshapes.

HSBN
training set

HSBN
retrieval set

HSBN test set

# distinct signs 2,636 783 577

Table 9.2: Statistics for the number of distinct monomorphemic lexical
signs in the HSBN training, retrieval and test sets.

Number of productions from the ASLLVD

Articulatory sub-class of
monomorphemic lexical signs

HSBN
training set

HSBN
retrieval set

HSBN test set

one-handed 2,258 408 176

two-handed : same handshapes 3,072 670 320

two-handed : different handshapes 1,629 338 150

Table 9.3: Statistics for the different articulatory classes contained in the
HSBN training, retrieval and test sets.

monomorphemic lexical sign include the locations of the start/end frames, an articulatory

class label (one-handed, two-handed : same handshapes, or, two-handed : different handshapes)

for each sign, start/end handshape labels on the dominant hand in one-handed signs and
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on both hands in two-handed signs, and, a gloss label that uniquely identifies each sign

with a specific item in the vocabulary. Multiple productions from native sign language

users (two male and four female signers) are available in a majority of signs as summarized

in Chapter 4. The availability of multiple examples for several signs is essential for the

HSBN learning algorithm to accrue sign independent, and also signer-independent, patterns

of handshape variation.

The primary inputs required for learning the HSBN are start/end handshape labels

of signs in a training set, the articulatory class label for these signs and a grouping of

signs into distinct lexical items. A database of start/end hand images (which we term

as the ‘retrieval set’) annotated with handshape labels is required in order to compute

the observation likelihoods for handshapes observed in the query sign. The algorithm for

start/end handshape inference requires the articulatory class associated with a query sign,

the start/end video frames and the start/end hand location bounding boxes. Ground-truth

handshape labels for signs in the test set are also needed in order to evaluate the handshape

inference accuracy.

The test and training and sets for HSBN evaluation are obtained by partitioning the

set of monomorphemic lexical signs contained in the ASLLVD. Towards our objectives of

assessing handshape inference performance in a person-independent recognition scenario,

the signs in the test and training sets were obtained from different signers. The retrieval set

is constructed from a subset of signs in the training set. These three datasets were prepared

as follows.

We identified one of the six signers (M1) as the test-user. The test set consists of the

subset of signs obtained from M1 where we have hand location annotations. We restrict our

attention to one specific test-user due to the computational expense involved in performing

image alignment based handshape retrieval for computing the observation likelihoods during

handshape inference. Signs in the retrieval set are a subset of the signs in the training set

from signers F1 and F2 with start/end hand location annotations. The setup employed

here for evaluating the HSBN is challenging because the retrieval set consists of start/end
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handshapes in signs produced by female signers whereas the test set consists of handshapes

in signs produced by a male signer. The numbers of productions from different signers

contained in the three datasets are summarized in Table 9.3. The three columns list the

number of productions of signs in the training set, the retrieval set and the test set. The

numbers of distinct monomorphemic lexical signs that correspond to these productions are

given in Table 9.2.

In preparing the database of handshape images for handshape retrieval, we use the

natural distribution of handshapes as observed in the retrieval set. The expressions for

handshape inference derived in Equations 5.2 and 5.4 include the necessary normalizing

terms in the denominator for the start/end handshape frequency distributions. Handshapes

on the non-dominant hand were included after mirroring about the vertical axis. The

retrieval set contains 5226 handshape images.

The distributions of signs belonging to the different articulatory classes in the training,

retrieval and test sets are summarized in Table 9.3. For the evaluation conducted here we

did not implement the training and inference algorithms for the HSBN non-dominant model

proposed in Section 5.2 to represent the properties specifically ascribed to handshapes ar-

ticulated on the non-dominant hand in two-handed : different handshapes signs. Signs in the

latter class were therefore grouped together with one-handed signs (handshapes on the non-

dominant hand for these signs were not considered during training and inference, they were

however included in the retrieval set). A subset of two-handed : same handshapes signs in the

ASLLVD was classified by linguists as ‘two-handed : same handshapes : alternating movement’

signs. The articulation of the two hands in these signs are out of phase by ≈ 180 degrees.

Examples include signs where one hand translates forwards into the signing space while the

other hand moves towards the signer, or, where one hand exhibits an open-to-close change

in the hand configuration while the other hand exhibits a close-to-open change in hand

configuration. A large fraction of signs in this class does not exhibit a change in handshape

and these signs were pooled together with two-handed : same handshapes signs for the hand-

shape inference experiments (323 productions of such signs are present in the ASLLVD).
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In ‘two-handed : same handshapes : alternating movement’ signs with different start and end

handshapes, however, the start (and end) points for the basic movements on the two hands

differ. Since our annotations included identification of only a single start and end point for

the two hands of the sign as a whole, we have removed these signs (31 productions in the

ASLLVD) from consideration in this research.

9.2 Learning the HSBN

The HSBNStateSpaceEstimation (Algorithm 7.1) is used in training the HSBN. The HSB-

NStateSpaceEstimation algorithm maximizes the variational Bayes lower bound, LVB
Z

, with

respect to the hidden variable state-space, Z, and the model hyper-parameters, ωZ . In

order to perform this maximization, the HSBNStateSpaceEstimation algorithm invokes the

VBEM algorithm (Algorithm 6.4) several times to generate the state-space hypotheses that

are required in each learning epoch. The latter algorithm was therefore implemented in opti-

mized multi-threaded C code while the other components of the HSBNStateSpaceEstimation

algorithm were implemented in Matlab. The HSBNStateSpaceEstimation algorithm requires

approximately three days utilizing 25 threads on a 32 core Intel Xeon E5-2680 compute node

to complete 200 learning epochs. The memory requirements are nominal, however: ≈ 5GB

for the current training set size.

The main inputs required for the HSBNStateSpaceEstimation algorithm are the training

set, x, and the hyper-parameters for priors, ωprior
τ=1, associated with the model parameters

in the first epoch. The training set was prepared as described in Section 9.1. The specific

implementation chosen here to construct the hyper-parameters for priors is described in the

next section.

9.2.1 Hyper-parameters for prior distributions

During initialization of the HSBNStateSpaceEstimation algorithm in the first learning epoch

(the corresponding algorithm is listed in Algorithm 7.2), a one-to-one correspondence is

assumed between the hidden states, Zsτ=1,Z
e
τ=1, and the set of handshape labels, X . This

assumed correspondence also facilitates in choosing appropriate hyper-parameters for priors
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in the first learning epoch, ωprior
τ=1 = {νprior

τ=1 ,α
prior
τ=1 ,β

s prior
τ=1 ,β

e prior
τ=1 }. These hyper-parameters

represent Dirichlet distributions for priors defined over the multinomial model parameters,

λ τ=1 = {πτ=1, aτ=1,b
s
τ=1,b

e
τ=1}. The latter are respectively the parameters of the proba-

bility distribution for start latent states, the probability distributions for start→ end transi-

tions, and, the probability distributions for start and end latent state emissions. The model

parameters and their associated hyper-parameters are also summarized in Tables 5.2 and 6.2.

We use the illustration depicted in Figure 9·1 to highlight a few of the different choices

(among several others) that are available when defining hyper-parameters for Dirichlet

priors. For this illustration we chose priors for the emission distributions, β
prior
τ=1 . The

flat prior shown in Figure 9.1(a) does not influence parameter estimation, the learning in

this case is therefore purely data-driven. The uniform hyper-priors in Figure 9.1(b) bias the

multinomial parameters towards assuming equal values. Larger values for hyper-parameters

increase this bias. The uniform prior therefore serves to reduce the spread of values for the

estimated multinomial parameters. The diagonal dominant prior in Figure 9.1(c) encodes

the notion that each latent state is primarily responsible for emitting its corresponding

handshape label. The above three classes of priors are data-agnostic. A prior of the form

displayed in Figure 9.1(d) can be useful for the purposes of encapsulating certain domain

knowledge derived properties that are specific to a given learning task. The latter version

was therefore adopted for the hyper-parameters of priors associated with the transition and

emission distributions.

We restricted our attention to hyper-parameter values β
prior
τ=1 [zi, xj] ≥ 1 because the

corresponding prior distribution has a simple interpretation in terms of synthetic examples

having been hypothesized for each location (zi, xj) in the array with a frequency equal to

β
prior
τ=1 [zi, xj] − 1. We refer to the set of coordinates in the hyper-parameter array with values

β
prior
τ=1 [zi, xj] > 1 as ‘selected’ locations in the following discussion.

The hyper-parameters, νprior
τ=1 , were chosen to specify a flat prior distribution for the

model parameters, πτ=1.

The hyper-parameters, α
prior
τ=1 , are derived from the matrix of start→end handshape
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β
prior
τ=1 [zi, xj ] x1 x2 x3

z1 1 1 1

z2 1 1 1

z3 1 1 1

(a) ‘Flat’ prior

β
prior
τ=1[zi, xj ] x1 x2 x3

z1 2 2 2

z2 2 2 2

z3 2 2 2

β
prior
τ=1 [zi, xj ] x1 x2 x3

z1 5 5 5

z2 5 5 5

z3 5 5 5

(b) ‘Uniform’ prior with lower (left) and higher (right) degrees of influence in drawing the
estimated multinomial parameters towards the uniform distribution

β
prior
τ=1 [zi, xj ] x1 x2 x3

z1 5 1 1

z2 1 5 1

z3 1 1 5

(c) ‘Diagonal dominant’ prior

β
prior
τ=1 [zi, xj ] x1 x2 x3

z1 5 5 1

z2 1 5 5

z3 5 1 5

(d) ‘Domain dependent’ prior

Figure 9·1: An illustration of a few different choices (among several oth-
ers) that are possible in defining the hyper-parameters, βprior

τ=1 , of Dirichlet
priors in the first learning epoch for the multinomial emission distribution
parameters, bτ=1. Here, z ∈ Z are the latent states and x ∈ X are the ob-
served handshape labels. Hyper-parameter values ≥ 1 were chosen because
the corresponding Dirichlet distributions have easy to interpret properties
(the actual numerical values are chosen for illustration).

transition frequencies for signs in the training set. Examples for start/end handshape co-

occurrences are shown in Table 9.4. The first image in each row of the figure shows a

handshape, along with the number of instances where it appears in the ASLLVD. The

handshape B-L, for example, appears 1162 times in the dataset. The remaining handshapes

in a given row of the figure correspond to handshapes that occur as the end handshape.
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Figure 9·2: The hyper-parameters, αprior
τ=1 , β

s prior
τ=1 , β

e prior
τ=1 , specified for prior

distributions associated with the model parameters a, bs, be are displayed
above. The selected locations in the above arrays are set to the value 3 while
the unselected locations are set to the value 1.

Locations with non-zero values in the start/end handshape co-occurrence matrix are chosen

as the selected locations for the αprior
τ=1 hyper-parameter array. The hyper-parameters for the

transition distributions in the first learning epoch are displayed in Figure 9·2(a). The

number of rows and columns in this array corresponds to the number of handshape labels,

|X |. The selected locations in the hyper-parameter arrays were set to 3 while the unselected

locations were set to 1.

The hyper-parameters, βs priorτ=1 , β
e prior
τ=1 , associated with the start/end observation prob-

ability distribution parameters, bsτ=1, b
e
τ=1, play an important role in the learning. These

are derived from the statistics of handshapes that were observed to have been produced in

variation with other handshapes among multiple productions of the same lexical item in the

training set. The computation of these statistics is described first followed by the procedure

adopted for constructing the hyper-parameters, βs priorτ=1 , β
e prior
τ=1 .

Start/end handshape labels from different productions of lexical items in the ASLLVD



139

are used to construct the table of handshapes that are observed to have been produced

together with other handshapes. Examples from this table are shown in Table 9.5. The

first image in each row of the figure shows a handshape, along with the number of instances

where it appears in the ASLLVD. The remaining handshapes in a given row of the figure

correspond to handshapes that appear in other instances of the same sign in the ASLLVD

(each instance corresponds to one video clip of a monomorphemic lexical sign in the ASLLVD

lexicon). The statistics of handshapes that were observed to have been produced together

are displayed using ratios in each cell of the above table. Taking as an example the cell in

the top-row, second column of this table, we observe that among the set of lexical items

from the vocabulary where the handshapes B-L and B have been produced, there were 240

instances that were annotated with the handshape label B-L while there were 160 other

instances that were annotated with the handshape label B. The number of lexical items

from among which the above ratios were obtained for each cell has not been included in

this table.

In preparing the above table, to ensure equivalence with the modeling assumptions made

in the HSBN congruent representation, we did not distinguish between whether the handshape

appears on the dominant hand or on the non-dominant hand in two-handed : same handshapes

signs. However, handshape variants that occurred in the start and end positions of signs

were considered separately and their statistics were later accumulated together to produce

the counts in the above table. It is an empirical question whether the handshapes found

at the start and end points of signs exhibit the same (or perhaps slightly different) types

of variation. In designing the learning algorithm for the HSBN, we chose to separate the

start and end latent states and their emission distribution parameters (the training data

therefore determines the respective properties). A common set of hyper-parameters for the

priors were however specified for both the start and end handshape emission distributions.

Several factors contribute to variations in articulation among signs produced by native

sign language users [Battison et al., 1975, Van der Kooij, 2002, Bayley et al., 2002]. In

formulating the HSBN, we restricted our attention to start/end handshape variations in
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monomorphemic lexical signs. The algorithm proposed for learning the HSBN relies on

start/end handshape labels annotated for productions of signs in the training set and also

relies on the grouping of productions into different lexical items. The latter groupings

are necessary for the proposed algorithm to learn the patterns of phonological handshape

variations (i.e., sign- and signer-independent handshape variations) that occur in different

productions of the same lexical item. Preparing the annotations for both these attributes

(along with many other linguistic properties) presented several daunting challenges, how-

ever. The difficulties we faced in annotating a large collection (≈ 10, 000) of signs resulted

in some handshape combinations appearing in this set that do not, in fact, truly represent

phonological variants. Ensuring consistency among annotations provided by a large number

of student annotators was extremely difficult, particularly since we had available a discrete

set of handshape labels to account for handshapes that frequently did not exactly match

any of our labelled handshapes, but, for example, exhibited properties that were interme-

diate between two different handshapes (e.g., with respect to degree of curvature of the

fingers, or the degree to which they were spread). Parts of the hands for many signs are

often occluded in both front and side views and there is hence some degree of uncertainty

in some of the annotated handshape labels. Furthermore, annotators (and also the signers)

may have differed slightly in assessing the exact start point of a sign in which the hand

configuration changes over the course of production of that sign. To maximize the degree

of consistency in the annotations, several passes of verifications were made, but there are

surely still cases where the differences in the annotations of two different signs would sug-

gest a greater degree of difference between the actual productions than is actually attested.

Despite the painstaking efforts of linguists, the determination of whether two productions

should be considered to be instances of a single lexical item was also not totally straight-

forward. This again required judgment calls about degrees of difference in articulation and

meaning. The difficulties involved in such categorizations also contributes to confounds in

the sets of apparent handshape variants.

A carefully specified set of hyper-parameters, βs priorτ=1 , β
e prior
τ=1 , for the prior distributions
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provides one means to ensure that, βs ⋆τ , β
e ⋆
τ , the hyper-parameters of emission distributions

for latent states inferred by the learning algorithm are appropriate for the class of phono-

logical variations that are representable in the HSBN. To construct the hyper-parameters

for priors, we start with the table of handshape variations (as in Table 9.5) whose statis-

tics were computed from signs in the training set. From among the handshape labels that

were attested as having been produced in free variation with the handshape shown in the

first column, we separated out handshape labels that were regarded as particularly unlikely

to arise as phonological variants of the handshape label in the first column. Thus the

set of handshape variants in each row was split into a ‘primary’ set and a ‘secondary’ set

(Table 9.6 displays examples of annotations of these separations for first six handshapes

from Table 9.5). The determination of these subsets was performed by the author based on

the perceived similarity in internal configuration among handshape pairs. These selections

do not carry any particular linguistic significance, however. An extensive linguistic analysis

with a substantially larger dataset and many more signers is necessary to obtain deeper in-

sights into the phenomenon of phonological variation in sign language. An alternate method

for specifying the hyper-parameters of the priors could be derived based on comparing the

3D internal configurations for the handshapes.

The hyper-parameters, βs priorτ=1 , β
e prior
τ=1 , of the start/end emission distribution priors spec-

ified in the initial learning epoch share the same values. The corresponding hyper-parameter

matrix is displayed in Figure 9·2(b). The number of rows and columns in this matrix cor-

responds to the number of handshape labels, |X |. The locations in the hyper-parameter

arrays that were annotated as ‘primary handshape variations’ were set to 3 while the re-

maining locations were set to 1. The hyper-parameter array is nearly symmetric about the

main diagonal because it reflects the symmetry properties of the table of handshapes that

were observed to have been produced together.
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Handshapes Handshapes that occur as END handshapes in signs where

the handshape in the first column occurs as the START handshape
B-L

1162

B-L

1007

bent-B-L

84

10

24

flat-O

16

crvd-B

16

A

6

5

2

crvd-5

2

Y

2

crvd-sprd-B

1

bent-B

1

tight-C

1

1

976

1

864

X

62

bent-1

27

5

8

S

5

cocked-S

4

A

3

X-over-thumb

2

B-L

1

5

893

5

613

S

101

flat-O

48

5-C

33

A

25

crvd-5

23

8

15

10

9

crvd-sprd-B

8

fanned-flat-O

6

B-L

4

5-C-L

3

crvd-B

1

4

1

bent-B

1

O

1

5-C-tt

1

S

766

S

531

5

103

crvd-5

43

1

32

4

10

V/2

9

U/H

9

crvd-sprd-B

8

C

4

bent-1

4

3

4

B-L

2

bent-B-L

2

P/K

2

W

2

crvd-W

1

crvd-5

567

crvd-5

389

S

83

flat-O

30

A

14

5-C

14

5-C-L

7

10

6

bent-B-L

6

crvd-sprd-B

5

8

4

5

3

crvd-B

3

tight-C

2

5-C-tt

1

10

512

10

506

A

4

5

2

A

369

A

296

5

48

10

11

crvd-5

7

B-L

3

4

2

U/H

1

6

1

V/2

366

V/2

282

U/H

45

crvd-V

30

bent-U

5

P/K

2

T

1

bent-V

1

Handshapes

  →     2-hands End HS
F/9

364

F/9

352

5

7

B-L

4

B

1

flat-O

359

flat-O

195

5

90

A

28

crvd-sprd-B

16

crvd-5

12

B-L

6

4

6

C

2

P/K

2

crvd-B

1

fanned-flat-O

1

bent-B-L

313

bent-B-L

277

B-L

19

crvd-B

7

5

3

10

3

A

2

bent-B

2

U/H

293

U/H

276

bent-U

9

crvd-U

7

bent-N

1

B

291

B

279

G/Q

4

B-L

3

4

2

5

1

R

1

crvd-flat-B

1

C

270

C

236

S

12

tight-C

9

B-L

3

bent-B-L

3

O

2

5-C

2

bent-M

2

full-M

1

crvd-B

254

crvd-B

202

B-L

14

flat-O

9

bent-B-L

9

A

7

10

3

5

2

S

2

B

2

crvd-5

1

X-over-thumb

1

bent-B

1

crvd-flat-B

1

L

243

L

145

L-X

22

baby-O

22

flat-G

15

alt-G

12

10

9

crvd-L

4

Y

3

G/Q

3

S

2

bent-1

2

1

1

5

1

A

1

X-over-thumb

1

Handshapes

  →     2-hands End HS
X

222

X

222

P/K

211

P/K

206

I

2

cocked-F

2

F/9

1

25

208

25

197

5

5

8

5

B-L

1

Y

205

Y

205

X-over-thumb

202

X-over-thumb

188

10

10

5

2

1

1

A

1

I

173

I

171

D

2

crvd-V

163

crvd-V

159

V/2

4

B-xd

120

B-xd

116

B-L

2

crvd-flat-B

1

tight-C

1

Handshapes

  →     2-hands End HS
4

115

4

114

5

1

bent-1

114

bent-1

111

1

1

X

1

cocked-S

1

Table 9.4: Table of start/end handshape co-occurrences computed from handshapes on the dominant hand in one-handed and
two-handed : different handshapes signs, and, from handshapes on the dominant and non-dominant hands in two-handed : same
handshapes signs. Monomorphemic signs contained in the ASLLVD were used in preparing this table.



1
4
3

 

Handshapes

Handshapes produced in variation with the

handshape shown in the first column among

multiple productions of the same lexical item
B-L

1157

B

240 / 160

flat-B

235 / 98

bent-B-L

218 / 146

5

178 / 201

crvd-B

151 / 95

B-xd

68 / 50

bent-B

65 / 34

crvd-flat-B

28 / 18

crvd-5

24 / 19

crvd-sprd-B

21 / 13

S

10 / 2

C

6 / 6

tight-C

3 / 3

1

975

bent-1

190 / 105

D

78 / 15

L

31 / 13

X

31 / 37

cocked-S

11 / 4

alt-P

8 / 4

5

6 / 22

G/Q

6 / 6

alt-G

4 / 2

L-X

2 / 2

A

1 / 1

X-over-thumb

1 / 1

5

891

crvd-5

300 / 227

B-L

201 / 178

crvd-sprd-B

79 / 28

4

47 / 53

5-C

23 / 10

1

22 / 6

crvd-B

21 / 27

25

21 / 19

5-C-L

10 / 9

bent-B-L

9 / 4

fanned-flat-O

9 / 6

open-8

7 / 15

A

4 / 4

B

4 / 3

open-F

4 / 7

5-C-tt

4 / 2

flat-O

3 / 12

O

3 / 6

F/9

2 / 2

loose-E

2 / 4

cocked-7

2 / 2

crvd-flat-B

1 / 1

crvd-W

1 / 1

full-M

1 / 1

S

757

A

249 / 172

10

31 / 34

X-over-thumb

12 / 32

flat-O

11 / 14

crvd-sprd-B

10 / 3

cocked-U

9 / 15

crvd-B

8 / 2

cocked-S

7 / 6

crvd-5

6 / 6

baby-O

3 / 4

B-L

2 / 10

crvd-3

2 / 3

X

1 / 8

bent-1

1 / 2

L-X

1 / 2

O

1 / 1

bent-U

1 / 1

bent-U-L

1 / 5

crvd-5

561

5

227 / 300

5-C-L

116 / 58

C

92 / 49

5-C

92 / 50

crvd-sprd-B

75 / 52

crvd-B

72 / 76

B-L

19 / 24

A

10 / 2

F/9

10 / 2

flat-O

10 / 2

bent-B-L

10 / 8

loose-E

10 / 4

S

6 / 6

5-C-tt

6 / 6

25

2 / 4

open-8

2 / 6

X-over-thumb

1 / 2

bent-B

1 / 1

baby-O

1 / 2

10

512

A

366 / 225

S

34 / 31

B-xd

10 / 2

L-X

8 / 10

Y

6 / 2

Horns

6 / 4

bent-Horns

6 / 8

crvd-B

5 / 1

X-over-thumb

5 / 4

U-L

5 / 2

bent-U

5 / 1

bent-U-L

5 / 5

bent-B-L

4 / 4

L

4 / 4

tight-C

2 / 4

A

369

10

225 / 366

S

172 / 249

X-over-thumb

43 / 82

flat-O

20 / 19

cocked-S

14 / 7

baby-O

8 / 12

crvd-B

6 / 4

5

4 / 4

L-X

3 / 2

crvd-5

2 / 10

F/9

2 / 2

Y

2 / 2

crvd-sprd-B

2 / 2

bent-B

2 / 2

5-C-L

2 / 2

Horns

2 / 4

loose-E

2 / 4

bent-U

2 / 1

bent-U-L

2 / 5

bent-Horns

2 / 8

1

1 / 1

bent-B-L

1 / 2

L

1 / 2

bent-1

1 / 2

F/9

364

8

38 / 29

cocked-F

30 / 16

open-F

15 / 13

open-8

8 / 2

25

4 / 1

5

2 / 2

crvd-5

2 / 10

A

2 / 2

flat-O

2 / 2

crvd-sprd-B

2 / 2

5-C-L

2 / 2

loose-E

2 / 4

Handshapes

Handshapes produced in variation with the

handshape shown in the first column among

multiple productions of the same lexical item
V/2

364

P/K

40 / 32

3

23 / 23

crvd-V

22 / 10

U/H

10 / 10

cocked-U

1 / 1

alt-N

1 / 1

flat-O

359

O

72 / 50

A

19 / 20

S

14 / 11

5

12 / 3

fanned-flat-O

12 / 14

8

10 / 2

crvd-sprd-B

7 / 11

B

6 / 2

crvd-5

2 / 10

F/9

2 / 2

X-over-thumb

2 / 2

5-C-L

2 / 2

baby-O

2 / 2

loose-E

2 / 4

cocked-S

2 / 1

crvd-flat-B

2 / 2

crvd-B

1 / 1

4

1 / 1

bent-B-L

313

bent-B

175 / 125

B-L

146 / 218

crvd-B

95 / 59

crvd-flat-B

28 / 20

flat-B

11 / 13

B

9 / 38

crvd-5

8 / 10

B-xd

7 / 16

bent-B-xd

6 / 16

5

4 / 9

10

4 / 4

C

3 / 1

crvd-sprd-B

3 / 3

A

2 / 1

3

2 / 2

5-C-L

2 / 2

5-C

1 / 1

U/H

292

bent-N

54 / 7

crvd-U

46 / 19

U-L

23 / 24

bent-U

22 / 15

V/2

10 / 10

bent-U-L

8 / 7

B

291

B-xd

263 / 163

B-L

160 / 240

flat-B

95 / 63

bent-B-L

38 / 9

bent-B

10 / 17

crvd-flat-B

10 / 8

bent-B-xd

10 / 5

crvd-B

7 / 5

5

3 / 4

flat-O

2 / 6

bent-M

1 / 2

C

270

crvd-5

49 / 92

crvd-B

30 / 26

5-C

25 / 21

5-C-L

24 / 10

crvd-sprd-B

13 / 21

tight-C

11 / 5

B-L

6 / 6

5-C-tt

2 / 2

bent-B-L

1 / 3

bent-B

1 / 2

crvd-B

254

B-L

95 / 151

crvd-5

76 / 72

bent-B-L

59 / 95

crvd-flat-B

43 / 19

5

27 / 21

C

26 / 30

bent-B

26 / 51

crvd-sprd-B

8 / 6

B

5 / 7

A

4 / 6

L-X

3 / 9

flat-B

3 / 7

S

2 / 8

5-C

2 / 2

5-C-L

2 / 2

10

1 / 5

flat-O

1 / 1

B-xd

1 / 1

L

243

crvd-L

28 / 16

1

13 / 31

L-X

8 / 30

G/Q

8 / 2

sml-C/3

7 / 4

10

4 / 4

baby-O

4 / 2

I-L-Y

3 / 4

A

2 / 1

X-over-thumb

2 / 1

bent-1

2 / 2

alt-G

2 / 3

Handshapes

Handshapes produced in variation with the

handshape shown in the first column among

multiple productions of the same lexical item
X

222

X-over-thumb

38 / 44

1

37 / 31

L-X

34 / 10

baby-O

10 / 14

S

8 / 1

G/Q

2 / 2

crvd-L

2 / 4

P/K

211

V/2

32 / 40

X-over-thumb

2 / 1

bent-1

2 / 1

25

208

5

19 / 21

open-8

7 / 19

crvd-5

4 / 2

open-7

2 / 4

F/9

1 / 4

8

1 / 1

Y

205

I

6 / 2

10

2 / 6

A

2 / 2

Horns

2 / 4

bent-Horns

2 / 8

X-over-thumb

202

A

82 / 43

X

44 / 38

S

32 / 12

baby-O

17 / 25

cocked-S

15 / 10

L-X

14 / 3

10

4 / 5

crvd-5

2 / 1

flat-O

2 / 2

bent-1

2 / 3

1

1 / 1

L

1 / 2

P/K

1 / 2

I

173

Y

2 / 6

crvd-V

163

V/2

10 / 22

crvd-U

5 / 1

crvd-3

4 / 4

B-xd

120

B

163 / 263

B-L

50 / 68

flat-B

21 / 38

bent-B-L

16 / 7

bent-B-xd

8 / 4

bent-B

3 / 7

10

2 / 10

crvd-B

1 / 1

Handshapes

Handshapes produced in variation with the

handshape shown in the first column among

multiple productions of the same lexical item

Table 9.5: Start/end handshape labels from different productions of lexical items in the ASLLVD are used to construct the
table of handshapes that are observed to have been produced in free variation with other handshapes. The ratios shown in
each cell of the above table are computed as follows: among the subset of lexical items in the ASLLVD where the row and
column handshape classes are produced together, the numerator counts the number of times the row shape class appears
and denominator counts the number of times the column shape class appears.
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Handshapes

Handshapes produced in variation with the

handshape shown in the first column among

multiple productions of the same lexical item:

Variants that were annotated as "primary variants"
 

B-L

1157

o

B

240 / 160

o

flat-B

235 / 98

o

bent-B-L

218 / 146

o

5

178 / 201

o

crvd-B

151 / 95

o

B-xd

68 / 50

o

bent-B

65 / 34

o

crvd-flat-B

28 / 18

o

crvd-5

24 / 19

o

crvd-sprd-B

21 / 13

o

C

6 / 6

 

1

975

o

bent-1

190 / 105

o

D

78 / 15

o

L

31 / 13

o

X

31 / 37

o

alt-P

8 / 4

o

G/Q

6 / 6

o

alt-G

4 / 2

o

L-X

2 / 2

 

5

891

o

crvd-5

300 / 227

o

B-L

201 / 178

o

crvd-sprd-B

79 / 28

o

4

47 / 53

o

5-C

23 / 10

o

crvd-B

21 / 27

o

25

21 / 19

o

5-C-L

10 / 9

o

bent-B-L

9 / 4

o

B

4 / 3

o

5-C-tt

4 / 2

o

crvd-flat-B

1 / 1

 

S

757

o

A

249 / 172

o

10

31 / 34

o

X-over-thumb

12 / 32

o

flat-O

11 / 14

o

cocked-U

9 / 15

o

cocked-S

7 / 6

o

baby-O

3 / 4

o

O

1 / 1

 

crvd-5

561

o

5

227 / 300

o

5-C-L

116 / 58

o

C

92 / 49

o

5-C

92 / 50

o

crvd-sprd-B

75 / 52

o

crvd-B

72 / 76

o

B-L

19 / 24

o

bent-B-L

10 / 8

o

loose-E

10 / 4

o

5-C-tt

6 / 6

 

10

512

o

A

366 / 225

o

S

34 / 31

o

L-X

8 / 10

o

X-over-thumb

5 / 4

 

A

369

o

10

225 / 366

o

S

172 / 249

o

X-over-thumb

43 / 82

o

flat-O

20 / 19

o

cocked-S

14 / 7

o

baby-O

8 / 12

 

F/9

364

o

8

38 / 29

o

cocked-F

30 / 16

o

open-F

15 / 13

o

open-8

8 / 2

Handshapes

Handshapes produced in variation with the

handshape shown in the first column among

multiple productions of the same lexical item
 

V/2

364

o

P/K

40 / 32

o

3

23 / 23

o

crvd-V

22 / 10

o

U/H

10 / 10

 

flat-O

359

o

O

72 / 50

o

A

19 / 20

o

S

14 / 11

o

fanned-flat-O

12 / 14

o

baby-O

2 / 2

o

cocked-S

2 / 1

 

bent-B-L

313

o

bent-B

175 / 125

o

B-L

146 / 218

o

crvd-B

95 / 59

o

crvd-flat-B

28 / 20

o

flat-B

11 / 13

o

B

9 / 38

o

crvd-5

8 / 10

o

B-xd

7 / 16

o

bent-B-xd

6 / 16

o

5

4 / 9

o

C

3 / 1

o

crvd-sprd-B

3 / 3

o

5-C-L

2 / 2

o

5-C

1 / 1

 

U/H

292

o

bent-N

54 / 7

o

crvd-U

46 / 19

o

U-L

23 / 24

o

bent-U

22 / 15

o

V/2

10 / 10

o

bent-U-L

8 / 7

 

B

291

o

B-xd

263 / 163

o

B-L

160 / 240

o

flat-B

95 / 63

o

bent-B-L

38 / 9

o

bent-B

10 / 17

o

crvd-flat-B

10 / 8

o

bent-B-xd

10 / 5

o

crvd-B

7 / 5

o

5

3 / 4

 

C

270

o

crvd-5

49 / 92

o

crvd-B

30 / 26

o

5-C

25 / 21

o

5-C-L

24 / 10

o

crvd-sprd-B

13 / 21

o

tight-C

11 / 5

o

B-L

6 / 6

o

5-C-tt

2 / 2

o

bent-B-L

1 / 3

o

bent-B

1 / 2

 

crvd-B

254

o

B-L

95 / 151

o

crvd-5

76 / 72

o

bent-B-L

59 / 95

o

crvd-flat-B

43 / 19

o

5

27 / 21

o

C

26 / 30

o

bent-B

26 / 51

o

crvd-sprd-B

8 / 6

o

B

5 / 7

o

flat-B

3 / 7

o

5-C

2 / 2

o

5-C-L

2 / 2

o

B-xd

1 / 1

 

L

243

o

crvd-L

28 / 16

o

1

13 / 31

o

L-X

8 / 30

o

G/Q

8 / 2

o

sml-C/3

7 / 4

o

I-L-Y

3 / 4

o

bent-1

2 / 2

o

alt-G

2 / 3

Handshapes

Handshapes produced in variation with the

handshape shown in the first column among

multiple productions of the same lexical item
 

X

222

o

X-over-thumb

38 / 44

o

1

37 / 31

o

L-X

34 / 10

o

G/Q

2 / 2

o

crvd-L

2 / 4

 

P/K

211

o

V/2

32 / 40

 

25

208

o

5

19 / 21

o

open-8

7 / 19

o

crvd-5

4 / 2

o

open-7

2 / 4

o

8

1 / 1

 

Y

205

o

I

6 / 2

o

10

2 / 6

o

Horns

2 / 4

o

bent-Horns

2 / 8

 

X-over-thumb

202

o

A

82 / 43

o

X

44 / 38

o

S

32 / 12

o

baby-O

17 / 25

o

cocked-S

15 / 10

o

L-X

14 / 3

o

10

4 / 5

 

I

173

o

Y

2 / 6

 

Handshapes

Handshapes produced in variation with the

handshape shown in the first column among

multiple productions of the same lexical item:

Variants that were annotated as "secondary variants"
 

B-L

1157

×

S

10 / 2

×

tight-C

3 / 3

 

1

975

×

cocked-S

11 / 4

×

5

6 / 22

×

A

1 / 1

×

X-over-thumb

1 / 1

 

5

891

×

1

22 / 6

×

fanned-flat-O

9 / 6

×

open-8

7 / 15

×

A

4 / 4

×

open-F

4 / 7

×

flat-O

3 / 12

×

O

3 / 6

×

F/9

2 / 2

×

loose-E

2 / 4

×

cocked-7

2 / 2

×

crvd-W

1 / 1

×

full-M

1 / 1

 

S

757

×

crvd-sprd-B

10 / 3

×

crvd-B

8 / 2

×

crvd-5

6 / 6

×

B-L

2 / 10

×

crvd-3

2 / 3

×

X

1 / 8

×

bent-1

1 / 2

×

L-X

1 / 2

×

bent-U

1 / 1

×

bent-U-L

1 / 5

 

crvd-5

561

×

A

10 / 2

×

F/9

10 / 2

×

flat-O

10 / 2

×

S

6 / 6

×

25

2 / 4

×

open-8

2 / 6

×

X-over-thumb

1 / 2

×

bent-B

1 / 1

×

baby-O

1 / 2

 

10

512

×

B-xd

10 / 2

×

Y

6 / 2

×

Horns

6 / 4

×

bent-Horns

6 / 8

×

crvd-B

5 / 1

×

U-L

5 / 2

×

bent-U

5 / 1

×

bent-U-L

5 / 5

×

bent-B-L

4 / 4

×

L

4 / 4

×

tight-C

2 / 4

 

A

369

×

crvd-B

6 / 4

×

5

4 / 4

×

L-X

3 / 2

×

crvd-5

2 / 10

×

F/9

2 / 2

×

Y

2 / 2

×

crvd-sprd-B

2 / 2

×

bent-B

2 / 2

×

5-C-L

2 / 2

×

Horns

2 / 4

×

loose-E

2 / 4

×

bent-U

2 / 1

×

bent-U-L

2 / 5

×

bent-Horns

2 / 8

×

1

1 / 1

×

bent-B-L

1 / 2

×

L

1 / 2

×

bent-1

1 / 2

 

F/9

364

×

25

4 / 1

×

5

2 / 2

×

crvd-5

2 / 10

×

A

2 / 2

×

flat-O

2 / 2

×

crvd-sprd-B

2 / 2

×

5-C-L

2 / 2

×

loose-E

2 / 4

Handshapes

Handshapes produced in variation with the

handshape shown in the first column among

multiple productions of the same lexical item
 

V/2

364

×

cocked-U

1 / 1

×

alt-N

1 / 1

 

flat-O

359

×

5

12 / 3

×

8

10 / 2

×

crvd-sprd-B

7 / 11

×

B

6 / 2

×

crvd-5

2 / 10

×

F/9

2 / 2

×

X-over-thumb

2 / 2

×

5-C-L

2 / 2

×

loose-E

2 / 4

×

crvd-flat-B

2 / 2

×

crvd-B

1 / 1

×

4

1 / 1

 

bent-B-L

313

×

10

4 / 4

×

A

2 / 1

×

3

2 / 2

 

U/H

292

 

B

291

×

flat-O

2 / 6

×

bent-M

1 / 2

 

C

270

 

crvd-B

254

×

A

4 / 6

×

L-X

3 / 9

×

S

2 / 8

×

10

1 / 5

×

flat-O

1 / 1

 

L

243

×

10

4 / 4

×

baby-O

4 / 2

×

A

2 / 1

×

X-over-thumb

2 / 1

Handshapes

Handshapes produced in variation with the

handshape shown in the first column among

multiple productions of the same lexical item
 

X

222

×

baby-O

10 / 14

×

S

8 / 1

 

P/K

211

×

X-over-thumb

2 / 1

×

bent-1

2 / 1

 

25

208

×

F/9

1 / 4

 

Y

205

×

A

2 / 2

 

X-over-thumb

202

×

crvd-5

2 / 1

×

flat-O

2 / 2

×

bent-1

2 / 3

×

1

1 / 1

×

L

1 / 2

×

P/K

1 / 2

 

I

173

Table 9.6: Examples of cells from the handshape variants table (Table 9.5) that were annotated by the author as ‘primary’
and ’secondary’ variants are displayed in the left and right tables respectively. Primary handshape variants are used to
specify the set of selected locations in the hyper-parameter arrays of the emission distribution priors, βs priorτ=1 , β

e prior
τ=1 ; these

hyper-parameters are displayed in Figure 9·2.
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9.2.2 State-space refinement using the HSBNStateSpaceSelection algorithm

Given the training set and the hyper-parameters for priors specified in the first epoch, the

initial estimates for the HSBN state-space, (Zsτ=1,Z
e
τ=1), and the model parameters, ω τ=1,

are obtained using the HSBN initialization algorithm (Algorithm 7.2).

The convergence tolerances in the VBEM algorithm for the VB lower bound, LVB, and

for the estimated hyper-parameters, ω, were set to 1 and 10−2 respectively. The maximum

number of EM iterations was chosen to be 50 (less than 25 EM iterations were typically

required for convergence).

In subsequent epochs, the HSBNStateSpaceSelection algorithm (Algorithm 7.3) gener-

ates state-space candidates by applying different state-space refinements to the current

model parameters, (ω τ ,ω
prior
τ ,Zτ ). The number of candidates generated by the state-space

refinement methods, merge-states, drop-state, reset-state, and add-state, are given by
(
|Zsτ ||Z

s
τ − 1|

2
+
|Zeτ ||Z

e
τ − 1|

2

)
, ( |Zsτ | + |Z

e
τ | ) , ( |Z

s
τ | + |Z

e
τ | ) , and, ( |Z

s
τ\Z

s
τ=1| + |Z

e
τ\Z

e
τ=1| )

respectively. The HSBNStateSpaceSelection algorithm retains a fixed number of candidates

(≤ 30) with the largest estimated values of the VBEM lower bound for each refinement

type. An acceptance ratio distribution for the retained candidates is computed as given

in Algorithm 7.3, step 11. The state-space for the next epoch is sampled from the

acceptance ratio distribution (Algorithm 7.3, steps 12 - 13).

The number of learning epochs for the HSBNStateSpaceEstimation algorithm was chosen

to be 200 based on the fact that 85 states were selected for the start and end hidden variable

state-spaces in the first learning epoch. This choice ensures that an adequate number of

learning epochs were provided for the state-space optimization algorithm. At the conclu-

sion of the HSBNStateSpaceEstimation optimization procedure, the estimated state-space,

Ẑ = (Ẑs, Ẑe), and the corresponding hyper-parameters, ω
Ẑ
, are obtained as outputs. A

point estimate for the model parameters, λ
Ẑ
, is obtained by computing the expected values

of the model parameter distributions with hyper-parameters, ω
Ẑ

(Equation 6.48).
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9.3 Handshape retrieval to compute observation likelihoods

The HSBN handshape inference algorithm utilizes simple nearest neighbor retrieval to com-

pute observation likelihood scores for start/end hand images obtained from input video of

a sign. The database of hand images for retrieval is constructed as described in Section 9.1.

Given the retrieved list of handshape labels, the tunable parameters for computing the ob-

servation likelihood scores are those contained in Equation 8.1. These are, K, the number

of examples retrieved during k-NN search and the exponential weighting parameter, β. The

value for β was set to 0.1 and K was set to 200. The influence of β on handshape inference

accuracy is analyzed further in the next chapter.

The following three methods for computing a similarity score for hand image pairs are

chosen here to compare their k-NN handshape retrieval performance: ‘no image alignment’,

‘affine image alignment’ and ‘non-rigid image alignment’. All three algorithms employ the

same feature representation but differ in the amounts of displacement allowed between

feature locations in the two images. The similarity score in all three methods is computed

using the data-association cost formulated in Equations 8.6 and 8.19.

9.3.1 Pre-processing of hand images

The hand images were cropped and centered with respect to the handshapes observed in

video. The bounding box annotations were restricted to a square aspect ratio. The hand

images after cropping were normalized to 90 × 90 pixels. We employ the steps described

in [Thangali and Sclaroff, 2009] to pre-process the images obtained from sign language

video sequences. The pre-processing steps include skin-color based image segmentation and

subsequent morphological operations to clean-up the foreground segmentation results. The

foreground/background classification algorithm utilizes RGB histograms trained using a

subset of video frames from the ASLLVD collection annotated with foreground/background

region information.
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9.3.2 Local feature representation

Local image descriptors for handshape images were computed using the HOG method fol-

lowing the approach described in Section 8.2.2. The local orientations θ = {θ1, · · · , θ9}

for feature extraction at a feature location, P j
x,y, in image j are sampled uniformly in the

range

[
−π

10
,
π

10

]
. The HOG feature descriptor h j, θ

x,y for a specific θ is computed as follows.

A sub-image of size 14 × 14 pixels centered at the feature location P j
x,y is partitioned into

non-overlapping 2× 2 blocks. Within each of these blocks the image gradient directions are

aggregated into a normalized 9−bin orientation histogram. The resulting 36 dimensional

feature vector normalized to a unit squared norm (to incorporate to some extent robustness

to variations in imaging conditions) yields the required HOG feature descriptor, h j, θ
x,y. Ef-

ficient online computation of the HOG features is accomplished by utilizing summed-area

tables that are pre-computed for each of the 9 local image orientations and the 9 bin direc-

tions employed in the HOG representation. The handshape image is rotated into each of the

different local orientations prior to computing the summed-area tables so as to ensure that

we have axis-aligned rectangular regions when aggregating the contributions of per-pixel

image gradients into each of the HOG orientation bins.

The ‘no image alignment’ method assumes one-to-one spatial correspondence between

the feature locations Gik,l, G
j
k,l in the two images and therefore only requires a search over the

different local orientations to compute the similarity score (as illustrated in Equation 8.5).

9.3.3 Computing the non-rigid image alignment

The parameters used in computing the bi-directional non-rigid image alignments for a hand-

shape image pair using the proposed algorithm Algorithm 8.1 are summarized here. A con-

trol lattice consisting of 12×12 equally spaced nodes is defined within the handshape image.

An additional set of fixed nodes is included on the periphery of the handshape image. The

structure of the spring mesh that connects the control lattice nodes is illustrated in Fig-

ure 8·1. Evaluating the similarity score for a pair of images, sim(i, j), involves computing

the bi-directional image alignments ai→j and a j→i. The alignment vectors ai→j map fea-
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ture locations situated at the control lattice coordinates Gik,l in image i to pixel coordinates

G j
k,l + aτ :i→j

k,l in image j (τ denotes the the iteration index). The local neighborhood grid

Wτ : j
k,l used in computing the local displacement vectors ∆aτ :i→j in Equation 8.7 are spec-

ified with a 2 pixel spacing as follows: Wτ : j
k,l = Gτ : jk,l + [−16 : 2 : 16]⊗ [−16 : 2 : 16] . The

base spring stiffness parameter in Equation 8.15 was chosen to be 75. The spring lengths

in Equation 8.9 are computed in pixel coordinates. The LSE in Equation 8.16 is solved

using the conjugate gradient algorithm [Press et al., 2007]. A line-search to determine the

optimal scaling for the alignment vectors in Equation 8.17 was performed using the golden

section minimization algorithm [Press et al., 2007]. A value of 0.2 was chosen for the αmax

parameter in Equation 8.17.

The computation of an affine alignment that serves as an initialization for the non-rigid

image alignment algorithm utilizes the same sequence of steps as above. The parameters of

the affine transformation matrix are computed using the least squares method.

9.3.4 Filter and refine handshape retrieval

Computing the non-rigid alignment for a hand image pair requires on average 2.04s while

computing an affine alignment requires 0.66s. The similarity score computed using the

latter method is therefore employed as a filtering step during handshape retrieval to shortlist

candidates for subsequent refinement using the non-rigid alignment method. In our current

implementation, the filtering step selects 1000 handshape candidates from among a total of

5226 hand images contained in the retrieval set. The MRF-LBP algorithm (Section 8.1) is

another suitable candidate for comparison that was not included in our current evaluation

due to its significantly higher computational cost (58s per image pair).

9.4 Handshape inference using the HSBN

Given the trained HSBNmodel parameters and the ranked lists of handshape labels retrieved

from the database for the start/end handshapes in the query sign, we now describe the

implementation of the algorithms to perform handshape inference.
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We implemented algorithms for handshape inference using the one-handed and two-

handed : same handshapes HSBN models. Both these algorithms use the same set of previ-

ously trained HSBNmodel parameters. The equations for handshape inference in one-handed

signs are given in Equations 5.2 and 5.3. The respective equations for two-handed : same

handshapes signs are given in Equations 5.4 and 5.5. In our current implementation the

HSBN retrieval set is a small subset of signs from the HSBN training set; the frequencies

of handshapes in these two sets therefore differ to some extent. To accommodate this

difference, we utilize the frequencies for handshapes contained in the retrieval set for nor-

malization terms in the denominators of Equations 5.2 and 5.4. The database constructed

for handshape retrieval collects together hand images for start and end positions as well

as for the dominant and non-dominant hands (the latter after flipping about the vertical

axis). Therefore, a single handshape frequency distribution was used for all the denominator

terms in the above two expressions for computing the posterior probabilities for different

combinations of start/end handshapes.

In one-handed signs, the posterior probabilities

P (Xs;D = xs;D, Xe;D = xe;D | Is;D = is;D, Ie;D = ie;D) are computed for each of

the different combinations of start/end handshape labels on the dominant hand,

(Xs;D = xs;D, Xe;D = xe;D). In two-handed : same handshapes signs, the corresponding

posterior distribution represents different combinations of start/end handshapes on both

hands, (Xs;D = xs;D, Xe;D = xe;D, Xs;N = xs;N, Xe;N = xe;N). Arranging the handshape

tuples in decreasing order of the estimated posterior probabilities produces the inferred list

of start/end handshape tuples. The computations required for handshape inference can

therefore be performed efficiently using closed form expressions in both cases.

9.5 Evaluating HSBN handshape inference performance

Ranked retrieval/inference accuracy was chosen here as the evaluation criterion. The ranked

order of handshapes for simple-NN retrieval was obtained by retaining the first occurrence

of each handshape label in the nearest neighbor list of retrieved handshapes. Simple-NN
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was chosen as the baseline method to evaluate the HSBN’s handshape inference performance

because this method does not involve tunable parameters (k, the size of the retrieved set

influences the results only for large values of retrieved ranks). Other candidate baseline

approaches such as a k-NN handshape classification method or the handshape ranking

computed using the observation likelihood scores (Equation 8.1) were not compared here

because the results produced by these methods are sensitive to the choice of the parameter

k in both methods and the parameter β in the latter method.

We first take a two-handed : same handshapes query to illustrate the method

used to compute the ranked orders of handshape labels from the HSBN hand-

shape inference results. Given handshape images (is;Dq , ie;Dq , is;Nq , ie;Nq ) in a query

sign (whose respective ground-truth handshape labels are (xs;Dq , xe;Dq , xs;Nq , xe;Nq )), the

handshape inference algorithm yields a list of start/end handshape label tuples,

(xs;Di , x
e;D
i , x

s;N
i , x

e;N
i ), 1 ≤ i ≤ |X |4, arranged in decreasing order of their estimated joint

posterior probabilities. The first occurrence of a handshape label in each of the following

lists, {xs;Di }, {x
e;D
i }, {x

s;N
i }, {x

e;N
i }, is retained in order to produce the respective handshape

label permutations, {xs;Dj }, {x
e;D
k }, {x

s;N
l }, {x

e;N
m }, 1 ≤ { j, k, l, m } ≤ |X |. The ground-

truth handshape label’s position in the corresponding permutation list yields the handshape

inference rank for the purposes of comparison with the respective simple-NN retrieved rank.

In a similar fashion, given handshape images (is;Dq , ie;Dq ) in a one-handed query sign (whose

respective ground-truth handshape labels are (xs;Dq , xe;Dq )), the handshape inference algo-

rithm yields a list of start/end handshape label pairs, (xs;Di , x
e;D
i ), 1 ≤ i ≤ |X |2, arranged

in decreasing order of their estimated joint posterior probabilities. The first occurrence of

a handshape label in each of the following lists, {xs;Di }, {x
e;D
i }, is retained in order to pro-

duce the respective handshape label permutations, {xs;Dj }, {x
e;D
k }, 1 ≤ { j, k } ≤ |X |. The

ground-truth handshape label’s position in the corresponding permutation list, again, yields

the handshape inference rank for the purposes of comparison with the respective simple-NN

retrieved rank.



Chapter 10

Experiments: Results

In this chapter we describe the results of the experiments that were conducted for learning

the HSBN, for handshape retrieval and for handshape inference using the learnt model. The

training, retrieval and test sets in these experiments were prepared as described in Chapter 9.

10.1 Learning the HSBN

We follow the implementation described in Section 9.2 to learn the HSBN. We present

the results of initializing the model in the first learning epoch and describe the results

obtained through the sequence of learning epochs for HSBN state-space refinement. To

obtain additional insights, we compare the properties of the model estimated in the final

learning epoch with those of the model prepared during initialization.

The hyper-parameters, ω⋆τ=1, produced by the VBEM algorithm in the first learning

epoch are displayed in Figure 10·1. Among the signs contained in the HSBN training set

certain handshapes were only observed to appear at either the start or the end positions,

i.e., X s, X e ⊂ X . The HSBN initialization was performed assuming a one-to-one corre-

spondence between the latent states Zsτ=1, Z
e
τ=1 and the sets of observed handshape labels,

X s, X e. Therefore, |Zsτ=1| 6= |Z
e
τ=1|, and this produces a discontinuity in the main diagonal

of the hyper-parameter array for transitions, α⋆
τ=1. (The same property also holds true for

the hyper-parameters of the state transitions prior, αprior
τ=1 . For clarity of presentation, the

hyper-parameter array shown in Figure 9·2(a) was reduced to a square matrix by leaving

out the blank rows/columns.)

The columns that correspond to the observed handshape labels, X s, X e, were re-

tained when rendering the emission distribution hyper-parameter arrays, βs ⋆τ=1, β
e ⋆
τ=1 in Fig-

151
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Figure 10·1: The normalized values for the hyper-parameters,
ν⋆τ=1, α

⋆
τ=1, β

s ⋆
τ=1, β

e ⋆
τ=1, estimated in the first learning epoch using the

VBEM algorithm are displayed above. The above arrays also corre-
spond to the estimated values for the HSBN multinomial parameters,
π⋆τ=1, a

⋆
τ=1, b

s ⋆
τ=1, b

e ⋆
τ=1. The color bars depict values in the range [0, 1].

ure 10·1. These two arrays are therefore square with no discontinuity in the values on the

main diagonal.

The results of performing a sequence of state-space refinements using the HSBNStateS-

paceEstimation algorithm are summarized in Figure 10·2. The top plot displays the values

estimated for the VBEM lower bound, LVB
τ , in the sequence of learning epochs. Each of the

four different colors in the two plots identifies the state-space refinement method selected

by the HSBNStateSpaceSelection algorithm in a given learning epoch. For clarity, we do not
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Figure 10·2: (a)The top plot displays the values of the estimated VBEM lower bound
produced by the sequence of state-space refinements in the HSBNStateSpaceEstimation
algorithm. (b,c) The VBEM lower bound sums together the contributions from the data-
loglikelihood and the prior terms (the latter corresponds to the KL divergence between the
probability distributions specified by the priors and the current model parameters). These
two terms are shown in the second and third plots. The values from the first epoch have
been subtracted out in the top three plots. (d) The bottom plot displays the evolution of
the total number of latent states through the learning epochs.
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distinguish between whether the state-space refinement selected by the algorithm applies to

the start, or, to the end latent states. The selection of a state-space from among the gener-

ated candidates is performed in a stochastic fashion to aid in circumventing local maxima.

The estimated value of the VBEM lower bound therefore decreases in some learning epochs.

The VBEM lower bound derived in Equation 6.59 sums together the contributions from

the training data log-likelihood and the prior terms. These two components are graphed

as a function of the learning epochs in the second and third plots. The values estimated

in the first epoch have been subtracted out in the first three plots since only the relative

values have a bearing on the learning algorithm. The data log-likelihood term appears as a

sum over the normalizing constants, CQz,i
, for the variational distributions, Qz,i, associated

with each lexical item i in the training set vocabulary, Vx. The prior term appears as the

KL divergence between the probability distributions represented by hyper-parameters of

the prior, ωprior
τ , and the hyper-parameters for the current model parameters, ω τ .

The total numbers of latent states, |Zsτ | + |Z
e
τ |, estimated in the sequence of learning

epochs are displayed in the last plot. The ‘merge-states’ and ‘drop-states’ refinement meth-

ods decrease the total number of latent states by 1, the ‘reset-state’ retains the current

number of latent states and the ‘add-state’ refinement increases the number of latent states

by 1.

We surmise the following properties of the state-space estimation algorithm. Performing

the sequence of state-space refinement steps with a goal towards increasing the VB lower

bound reduces the total number of latent states employed in the HSBN model. The contri-

bution from the prior term to the VB lower bound increases steadily through the learning

epochs suggesting that the estimated model hyper-parameters are evolving towards the

prior hyper-parameters. The data log-likelihood component of the VB lower bound in-

creases up until the epoch 124, even though the latter model employs substantially fewer

latent states than the initial model. This suggests that the model initialization selected for

the first epoch in the VBEM optimization was sub-optimal (we may recall that the VBEM

algorithm is a gradient ascent based method and is therefore sensitive to initialization).
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The state-space refinement method, in order to generate state-space candidates for the

next epoch, initializes the VBEM algorithm in several different ways and therefore is able

to discover an initialization that improves both the VB lower bound as well as the training

data log-likelihood. After a certain number of learning epochs, however, the prior term be-

gins to dominate the optimization and the training data log-likelihood drops substantially.

The choice of an appropriate epoch to terminate the learning is therefore crucial to ensure

generalization performance of the estimated model.

A sequestered validation set is typically employed in learning approaches to select an

epoch for early termination to circumvent, to some extent, the problems of over-fitting to a

given training set. Since a validation set was not currently available in learning the HSBN,

the final learning epoch, τ = 180, was chosen by the author to balance the two components

of the VB lower bound. A similar behavior was also observed in the other learning trials

that we conducted.

The hyper-parameters, ω⋆τ=180, produced by the HSBNStateSpaceEstimation algo-

rithm in the final learning epoch are displayed in Figure 10·1. The number of rows

of ν⋆τ=180, α
⋆
τ=180, β

s ⋆
τ=180 corresponds to the estimated number of start latent states,

|Zsτ=180| = 34. The number of columns of α⋆
τ=180 and the number of rows of βe ⋆τ=180

corresponds to the estimated number of end latent states |Zeτ=180| = 29. The columns of

βs ⋆τ=180, β
e ⋆
τ=180 correspond to the observed handshape labels, X s, X e.

To obtain further insights into the results produced by the HSBNStateSpaceEstimation

algorithm, we visualize the hyper-parameters, βs ⋆τ=180, β
e ⋆
τ=180, of the emission distributions

for the start and end latent states estimated in the final learning epoch in Figures 10·4, 10·6.

The HSBNStateSpaceEstimation algorithm was initialized with a set of, |Zsτ=1| = 83, start

latent states and |Zeτ=1| = 81, end latent states. Through the process of maximizing the

VB lower bound the HSBN learning algorithm arrives at a set of, |Zsτ=180| = 34, start

latent states and, |Zeτ=180| = 29, end latent states. In order to convey the properties of

latent states estimated by the proposed learning algorithm, we display the list of handshape

labels, xi, that are associated with each end latent state in decreasing order of the estimated
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Figure 10·3: The normalized values for the hyper-parameters,
ν⋆τ=180, α

⋆
τ=180, β

s ⋆
τ=180, β

e ⋆
τ=180, that were estimated in the final learning

epoch of the HSBNStateSpaceEstimation algorithm are displayed above. The
above arrays also correspond to the estimated values for the HSBN multi-
nomial parameters, π⋆τ=180, a

⋆
τ=180, b

s ⋆
τ=180, b

e ⋆
τ=180. The color bars depict

values in the range [0, 1].

parameter values, βs ⋆zs, xi , β
e ⋆
ze, xi

. Each block of handshape labels is identified by the latent

state index in the first column. Only those handshape labels whose normalized parameter

value exceeds a threshold (0.01) are retained here for display. The ordering of start and

end latent states was chosen so as to display the one-to-one associations that are present

between a majority of the start and end latent states inferred by the learning algorithm.

These associations arise as a natural consequence of the property that the start and end

handshapes are the same in a significant fraction of signs contained in the HSBN training

set. The start/end latent state indices for which a one-to-one association were not obtained
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are displayed in gray (these are the last 7 start states and the last 5 end states). The

probabilities for the start latent state indices given by, P (Zs = zsi ) := πτ=180 , are displayed

above the corresponding latent state indices. The corresponding probabilities for the end

latent state indices are given by, P (Ze = zei ) := aTτ=180 πτ=180 .

We note here that the images of handshapes are displayed in the above table only for vi-

sualization purposes. The HSBN learning algorithm utilizes the start/end handshape labels

annotated for signs in the training set and therefore does not directly leverage configura-

tion/appearance information associated with the handshape labels. The latter information

is provided indirectly via the informative priors for the emission distributions, βprior
τ=1 , spec-

ified in the first epoch (Section 9.2.1 describes their construction). The priors specified in

the first epoch are propagated through the subsequent epochs as described in Section 7.3.

The estimated hyper-parameters for start→end latent state transitions, α⋆
τ=180, are now

presented to complete the visualization of the parameters learnt for the HSBN. The state

transitions matrix is of size, |Zsτ=1| = 34 × |Zeτ=1| = 29, and is displayed in, Figures 10·7 -

10·9. Start latent states correspond to the rows of this matrix and are ordered in the same

sequence as used for βs ⋆τ=180 in Figures 10·4, 10·6. Similarly, the end latent states correspond

to the columns of α⋆
τ=180 and are ordered in the same sequence as used for βe ⋆τ=180 in the

above figures. The handshape label with the highest estimated emission probability is

included for each latent state index.

From the above learning results we surmise that the collection of start/end latent states

inferred by the HSBNStateSpaceEstimation algorithm provides a relatively compact prob-

abilistic representation for the purposes of modeling the statistical patterns of start/end

handshape label pairs and their variations attested among monomorphemic lexical signs

contained in the HSBN training set.
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Figure 10·4: Normalized hyper-parameter values, βs ⋆τ=180, β
e ⋆
τ=180, for emission

distributions of start and end latent states estimated in the final epoch – part 1 of
3.
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Figure 10·5: Normalized hyper-parameter values, βs ⋆τ=180, β
e ⋆
τ=180, for emission

distributions of start and end latent states estimated in the final epoch – part 2 of
3.
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Figure 10·6: Normalized hyper-parameter values, βs ⋆τ=180, β
e ⋆
τ=180, for emission distributions of start and end latent states

estimated in the final epoch – part 3 of 3. The start/end latent state indices for which a one-to-one association were not
obtained are displayed in gray.
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Estimated START -> END latent state transition probabilities, epoch 180, part 1 of 3

Estimated END latent states (with top handshape emission for each state)
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Figure 10·7: Normalized hyper-parameter values, α⋆
τ=180, for start → end latent state transitions estimated in the final

epoch – part 1 of 3.
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Estimated START -> END latent state transition probabilities, epoch 180, part 2 of 3

Estimated END latent states (with top handshape emission for each state)
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Figure 10·8: Normalized hyper-parameter values, α⋆
τ=180, for start → end latent state transitions estimated in the final

epoch – part 2 of 3.
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Estimated START -> END latent state transition probabilities, epoch 180, part 3 of 3

Estimated END latent states (with top handshape emission for each state)
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Figure 10·9: Normalized hyper-parameter values, α⋆
τ=180, for start → end latent state transitions estimated in the final

epoch – part 3 of 3. The start/end latent state indices for which a one-to-one association were not obtained are displayed in
gray.
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10.2 Handshape retrieval using image alignment

The implementation of the algorithm for performing nearest neighbor handshape retrieval

is described in Section 9.3. Results for handshape retrieval utilizing the ‘no image align-

ment’, ‘affine image alignment’ and ‘non-rigid image alignment’ methods in computing the

similarity scores for handshape image pairs are compared here. The percentage of query

handshape images for which the groundtruth handshape label lies within a specified rank

among the list of retrieved handshapes is plotted in Figure 10·10. The first occurrence of

each handshape label in the retrieved list of handshapes is retained to produce a ranked or-

dering of handshapes (following the simple-NN ranking procedure described in Section 9.5)

for the above plots. The maximum value for the retrieval rank shown on the x-axis is there-

fore: |X | = 85. The top-left corner of this plot corresponds to the performance point for

ideal recognition, wherein the handshape labels retrieved at rank 1 in each of the queries

corresponds to the groundtruth. The handshape retrieval performance obtained using each

of the three methods for computing the similarity scores is tabulated in Table 10.1. From

the results shown here, we assess that performing image alignment aids in improving the

handshape retrieval performance. The proposed approach for performing non-rigid align-

ment further improves the ranked retrieval performance compared to an affine alignment

method for hand images contained in the HSBN test set. However, further evaluation with

different test signers and a retrieval set that spans a larger fraction of signs in the training

set is necessary to assess the generalization performance of the three approaches chosen for

handshape retrieval.

10.3 Handshape inference using the HSBN

We assess the HSBN’s performance for the handshape inference task. The algorithm to

perform handshape inference using the HSBN formulation is described in Section 9.4. The

impact of several different aspects that have a bearing on handshape inference performance

are evaluated in the following experiments. The HSBN parameters estimated in the final

learning epoch, τ = 180, are used in the first three experiments. The first experiment
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642 query signs, 1924 query handshape images

5226 database handshape images

Figure 10·10: Results of simple nearest neighbor handshape retrieval us-
ing different image alignment methods to compute the similarity scores. The
fraction of queries for which the retrieved location of the ground-truth hand-
shape label lies within a given rank is shown. Only the first occurrence of
each handshape label is retained in constructing the above plot. The maxi-
mum value of the rank displayed on the x-axis is therefore |X | = 85.

Rank of first correct retrieved handshape (max rank = # handshape labels = 85) →

% of queries ↓ (1924 query handshape images) 1 6 11 16 21

No spatial alignment (0.00s avg.) 24.7 62.4 75.4 83.3 87.5

Affine alignment (0.66s avg.) 26.6 65.1 77.9 84.3 88.3

Proposed non-rigid alignment (2.04s avg.) 30.4 69.5 79.2 85.4 89.1

Table 10.1: Nearest neighbor handshape retrieval results illustrated in the
top plot are summarized in the above table. The highest recognition scores
are highlighted in red.
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aggregates handshape retrieval/inference accuracies for the entire test set in order to assess

the performance of different similarity score computation methods for simple-NN retrieval.

The second experiment compares the retrieval/inference accuracies for each handshape class.

The third experiment evaluates the retrieval/inference accuracies for one-handed and two-

handed : same handshapes signs in order to compare the performance of the HSBN dominant

and the HSBN congruent formulations. The final experiment evaluates the handshape inference

performance using the model parameters obtained through the sequence of learning epochs

(ω⋆τ=1, · · · ,ω
⋆
180) as produced by the HSBN state-space refinement algorithm.

10.3.1 Performance summarized for all handshape classes

In this experiment we evaluate the recognition performance for all signs in the test set.

The fraction of start/end query handshapes among signs contained in the test set for which

the HSBN inferred rank of the ground-truth handshape label is within a specified rank is

displayed using solid lines in Figure 10·11. The results obtained using the simple nearest

neighbor method are displayed using dashed lines. The maximum value for the handshape

retrieval/inference ranks displayed on the x-axis is, |X | = 85. The different similarity scores

employed during retrieval are displayed in different colors.

Table 10.2 summarizes the recognition performance for a selected subset of the re-

trieval/inference ranks. Each column displays the percentage of query handshapes for which

the inferred handshape rank lies within a specified value. The first two columns correspond

to the retrieval/inference ranks 1, 6. The simple-NN retrieved accuracies are displayed in

parentheses for comparison with the corresponding handshape inference accuracies that are

shown without parentheses. The best recognition performance in each column is highlighted

in red.

From the above results we assess that the HSBN’s ability to exploit the statistical prop-

erties of different handshape combinations and their variations observed in monomorphemic

lexical signs aids in the handshape recognition task. However, we also note that handshape

inference recognition accuracy using the HSBN is hampered in handshape classes where we
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642 query signs, 1924 query handshape images
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Solid → HSBN inferred (start, end) handshapes

Dashed → Simple NN retrieved handshapes

Threshold on rank
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recognition comparison

Figure 10·11: Performance of HSBN handshape inference summarized over
all handshape classes: the ranks for ground-truth handshape labels inferred
using the HSBN (solid curves) in query signs are compared to simple nearest
neighbor retrieval results (dashed curves) for each of the three similarity
score computation methods.

Rank of first correct retrieved handshape (max rank = # handshape labels = 85) →

% of queries ↓ (1924 query handshapes) 1 6 11 16 21

No spatial alignment (0.00s avg.) 36.7 72.1 80.1 84.9 87.1

(24.7) (62.4) (75.4) (83.3) (87.5)

Affine alignment (0.66s avg.) 39.2 74.8 82.6 86.3 88.3

(26.6) (65.1) (77.9) (84.3) (88.3)

Proposed non-rigid alignment (2.04s avg.) 44.0 76.8 84.8 87.8 89.5

(30.4) (69.5) (79.2) (85.4) (89.1)

Rows (with, without) parenthesis :=

(simple NN retrieval, handshape inference using the HSBN).

Table 10.2: Simple-NN retrieval and HSBN handshape inference results for
the entire test set shown in the top plot are summarized in the above table.
The highest recognition scores are highlighted in red.
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Figure 10·12: Impact of the value of β in the observation likelihood model
on handshape inference accuracy. Handshape inference accuracies for the
test set using HSBN parameters estimated in the first epoch (left chart)
and final epoch (right chart) are displayed. The value of β selected for the
handshape inference experiments is also displayed.

have a relatively small number of examples in the retrieval set. This affects the results

obtained for values of retrieval/inference ranks greater than 20 and is investigated in more

detail in the next section.

The value of β in the observation likelihood model (Equation 8.1) impacts handshape

inference accuracy. The handshape inference accuracy for a selected subset of inferred ranks

are plotted against different values of β in Figure 10·12. The left and right charts display the

results obtained using HSBN parameters estimated in the first (τ = 1) and final (τ = 180)

epochs. The value selected, β = 0.1, for the handshape inference experiments in our current

implementation is highlighted. This value was selected based on the handshape inference

performance for the final epoch on the test set. In future work a validation set would be

used to determine this value. The same value for the size of retrieved sets K = 200 was

specified in the simple-NN and HSBN based handshape inference methods.
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Handshape classes sorted in decreasing order of their frequency of occurrence in the HSBN training set

Figure 10·13: Evaluating handshape inference performance for each of the different
handshape classes contained in the HSBN test set. In the above charts, the handshape
classes on the x-axis are sorted in decreasing order of their frequency of occurrence in the
HSBN training set. (a) The top chart displays the average nearest neighbor retrieved rank
of the ground-truth handshape labels for the start/end images in the query sign. (b) The
second chart displays the improvement (in some handshape classes, an increase) in the
average recognition rank after performing HSBN based handshape inference. (c) The third
chart displays the number of handshape images for each of the different handshape classes
in the HSBN retrieval set. The proposed non-rigid image alignment method was used
for handshape retrieval during handshape inference and also for the simple-NN method
chosen here for comparison.
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Figure 10·14: A listing of the handshape classes whose indices appear on
the x-axis in the charts displayed in Figure 10·13. Handshapes outlined in
green / gray / red correspond to the classes for which HSBN inference demon-
strates improvement / retains the same / worsens the handshape recognition
rank in relation to simple-NN retrieval.

10.3.2 Performance analyzed for each handshape class

In this experiment we evaluate the handshape inference accuracies obtained using the HSBN

formulation in each of the different handshape classes. We employ the similarity score

computed using the proposed non-rigid image alignment for handshape retrieval and the

HSBN model parameters estimated in the final learning epoch for handshape inference. The

per-class recognition results obtained are summarized in Figure 10·13. The x-axis in these

charts displays handshape classes arranged in the decreasing order of their frequency of

occurrence in the HSBN training set (only those handshape classes that occur in the HSBN

test set are retained in these charts). The first chart displays the simple-NN retrieved ranks

averaged for query images in each of the handshape classes. The second chart displays the
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average difference in the recognition ranks between the simple-NN and the HSBN based

handshape inference approaches computed using the following expression,

average xq = x( simpleNN rank(iq, xq) − HSBN inferred rank(iq, xq) ), for each x ∈ X
test set .

(10.1)

Simple-NN supersedes HSBN based handshape inference for large values of re-

trieval/inference ranks, for reasons that were discussed in the previous section and also

observed in Figure 10·11. A threshold of 20 was therefore applied to the retrieval/inference

ranks in the above equation in order that certain useful insights can be gained in comparing

the two approaches.

The third chart in Figure 10·13 displays the number of examples for each of the hand-

shape classes contained in the HSBN retrieval set.

From the above charts we surmise that the handshape classes for which HSBN based

handshape inference yields lower ranking results than simple-NN are (in most cases) classes

for which the retrieval set contains a small number of examples, e.g., the handshape in-

dices 44, 46, 49 and 57. The handshape classes whose indices are depicted on the x-axis in

these charts are enumerated in Figure 10·14. Handshapes outlined in green / gray / red

correspond to the classes for which HSBN inference demonstrates improvement / retains

the same / worsens the handshape recognition rank. These results are as expected because

in handshape classes with a small number of examples in the retrieval set, the observation

likelihood formulated in Equation 8.1 is unable to accrue the necessary statistical evidence

to boost the nearest neighbor retrieved rank for the ground-truth handshape class label.

One possible (time consuming but straightforward) means of addressing these two aspects

would be to bring the statistics of the retrieval set in concordance with that of the training

set by enlarging the number of signs where we have bounding box annotations for start/end

handshapes.
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 One−handed signs,
   #query signs = 322, #handshapes = 644

 Two−handed same handshapes signs,
  #query signs = 320, #handshapes = 1280

Solid → HSBN inferred (start, end) handshapes

Dashed → Simple NN retrieved handshapes

Figure 10·15: Handshape inference performance for one-handed query signs
are compared to the handshape inference performance for two-handed : same
handshapes signs. The corresponding simple nearest neighbor retrieval re-
sults are displayed using dashed lines.

Rank of first correct retrieved handshape (max rank = # handshape labels = 85) →

% of query handshape images ↓ 1 6 11 16 21

One-handed signs, 37.0 70.3 80.7 84.2 87.1

#query signs = 322, #handshapes = 644 (31.1) (66.8) (77.6) (83.2) (87.0)

Two-handed same handshapes signs, 47.5 80.0 86.9 89.6 90.7

#query signs = 320, #handshapes = 1280 (30.1) (70.9) (79.9) (86.5) (90.2)

Rows (with, without) parenthesis :=

(simple NN retrieval, handshape inference using the HSBN).

Table 10.3: Handshape retrieval/inference results for one-handed signs and
two-handed : same handshapes signs displayed in the top plot are summarized
in the above table. The highest recognition scores are highlighted in red.
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Handshape classes sorted in decreasing order of their frequency of occurrence in the HSBN training set

Figure 10·16: A comparison of frequencies for different handshapes ob-
served in the one-handed (top) and two-handed : same handshapes (middle)
signs that are contained in the HSBN test and retrieval sets. The difference
in handshape frequency between these two classes is displayed in the last
chart. The handshape indices on the x-axis are sorted in decreasing order
of their frequencies in the training set. A trend towards handshape classes
that are more frequent is observed in two-handed : same handshapes signs.

10.3.3 Performance analyzed for two different articulatory classes

In this experiment we compare the handshape inference accuracies obtained using the two

realizations of the HSBNmodel (the HSBN dominant and HSBN congruent models) for handshape

inference in one-handed and two-handed : same handshapes signs. For this experiment, two-

handed : different handshapes in the test set (Table 9.3) are grouped together with one-handed

signs (handshapes on the non-dominant hand in these signs are ignored). The simple-NN
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retrieval/HSBN inference results for these two classes are plotted in Figure 10·15. The

corresponding recognition accuracies are summarized in Table 10.3. Handshape inference

using the HSBN improves the recognition performance in both articulatory classes. The

improvement observed in two-handed : same handshapes signs is markedly higher than in one-

handed signs. This is as anticipated because the HSBN congruent model for two-handed : same

handshapes leverages bilateral symmetry constraints for handshapes articulated on the two

hands.

We furthermore observe an improvement in simple-NN performance for two-

handed : same handshapes signs when compared to one-handed signs. The underlying reason

for this result is the property that handshapes attested in one-handed signs in our dataset

tend to arise more often from among shapes that occur with less frequency than those in

two-handed : same handshapes signs. The retrieval set contains a relatively small number of

examples for these classes thereby hampering the corresponding simple-NN retrieval accu-

racy. The frequencies of handshapes attested in the two articulatory classes from among

signs in the HSBN test and retrieval sets are compared in Figure 10·16. The first chart

displays the frequency of different handshape classes in one-handed signs. The second chart

displays the corresponding frequencies in two-handed : same handshapes signs. The third

chart displays the difference in frequencies between one-handed and two-handed : same hand-

shapes signs. A trend towards more frequent handshape classes (i.e., handshape indices

with smaller values) is observed in two-handed : same handshapes signs.

10.3.4 Performance analyzed through the learning epochs

In this experiment we evaluate the handshape inference accuracy as a function of the learn-

ing epochs employed for state-space refinement in the HSBNStateSpaceEstimation algorithm.

The handshape inference procedure described in Section 10.3.1 is employed here with the

HSBN parameters estimated through the sequence of learning epochs. The handshape infer-

ence results for a selected subset of inferred ranks (the same as those selected in the previous

experiments) are plotted against the learning epochs in the second chart displayed in Fig-
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Figure 10·17: Evaluation of the test set handshape inference accuracy as a function of
the learning epochs employed for state-space refinement in the HSBNStateSpaceEstimation
algorithm. The top and center plots display the evolution of the estimated VBEM lower
bound and the total number of latent states through the learning epochs. The last plot
displays the fraction of query handshapes from the sequestered test set for which the
HSBN inferred rank of the ground-truth handshape label lies within a given value (the
five selected values for the inferred ranks are shown in different colors).
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ure 10·17. The top and bottom charts display the evolution of the VB lower bound and the

estimated number of start+end latent states as were described previously in Section 10.1.

From the plots shown in Figure 10·17 we surmise that the proposed algorithm for HSBN

state-space estimation is able to infer a model that uses substantially fewer latent states

than the initial model ( |Zsτ=180| + Z
e
τ=180| = 63 vis-a-vis |Zsτ=1| + Z

e
τ=1| = 164 ) without

adversely affecting the handshape inference accuracy on the sequestered test set. (The small

improvement in rank-1 recognition accuracy is due to the parameter β in the observation

likelihood having been tuned for performance in the final epoch; the impact of β on hand-

shape inference accuracy is analyzed in more detail in Section 10.3.1.) Ideally, we would

hope to see a significant improvement in the sequestered test recognition accuracy using the

more compact representation thereby demonstrating the potential for improvement in the

generalization performance as a result of state-space learning. Further efforts are needed

however for progress towards this goal. The test and retrieval sets used in our experiments

are only a small fraction of the total number of signs available. Expanding these sets to

cover a significant fraction of the dataset could yield useful insights with regard to the

generalization performance of the proposed learning formulation. Another fruitful direc-

tion for investigation would be to evaluate the handshape inference accuracy with different

test-users.

10.3.5 Examples illustrating HSBN handshape inference results

Start/end handshape inference results produced using the HSBN model for examples of

one-handed signs selected from the test set are illustrated in Figure 10·18. We recall that

given hand images (is;Dq , ie;Dq ) in a one-handed query sign (whose respective ground-truth

handshape labels are (xs;Dq , xe;Dq )), the handshape inference algorithm (Section 9.4) yields a

list of start/end handshape label pairs, (xs;Di , x
e;D
i ), 1 ≤ i ≤ |X |2, arranged in decreasing

order of their estimated joint posterior probabilities. For each query sign, the hand images in

the first column in the above figure depict the start/end handshapes on the dominant hand

in the input video. (The ground-truth start/end handshape labels for the query hand images



177

are also shown.) The columns 2 – 6 display the top-5 pairs of inferred start/end handshape

labels produced using the HSBN. The inferred handshape labels that match the ground-

truth are highlighted in green. Handshape instances retrieved using the simple-NN method

are displayed for each of the inferred handshape labels. The proposed non-rigid image

alignment method for computing hand image similarity scores and the HSBN parameters

estimated in the final epoch were used in this experiment.

Handshape inference results produced using the HSBN congruent model for examples of

two-handed : same handshapes signs selected from the test set are illustrated in Figure 10·18.

We recall that given handshape images (is;Dq , ie;Dq , is;Nq , ie;Nq ) in a query sign (whose respec-

tive ground-truth handshape labels are (xs;Dq , xe;Dq , xs;Nq , xe;Nq )), the handshape inference algo-

rithm yields a list of start/end handshape label tuples, (xs;Di , x
e;D
i , x

s;N
i , x

e;N
i ), 1 ≤ i ≤ |X |4,

arranged in decreasing order of their estimated joint posterior probabilities. For each query

sign, the hand images in the first column in the above figure depict the start/end handshapes

on the dominant and non-dominant hands in the input video. The columns 2 – 6 display

the top-5 tuples of inferred handshape labels produced using the HSBN congruent model along

with the handshape instance retrieved using the simple-NN method.
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Query sign: APPLE
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Query sign: BACKGROUND
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Query sign: SHOOT-ARROW

Figure 10·18: Examples of results for start/end handshape inference in one-handed signs using the HSBN.
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Query sign: WAKE-UP
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Query sign: ANALYZE
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Query sign: WOW/AWFUL

Figure 10·19: Examples of results for start/end handshape inference in two-handed : same handshapes signs using the
HSBN congruent model.
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10.4 Discussion

In our empirical evaluation of the HSBN conducted using the ASLLVD dataset towards facil-

itating progress towards person-independent handshape recognition in sign language video

we observe the following consistent trends. Among the different similarity score computa-

tion methods that were employed, the proposed non-rigid alignment method demonstrates

an improvement for simple nearest neighbor handshape retrieval. When averaged over all

handshape classes, HSBN based handshape inference outperforms the simple nearest neigh-

bour method for retrieval/inference ranks ≤ 20.

An improvement in ranked recognition scores was observed in both one-handed and two-

handed : same handshapes signs. The improvement seen in the latter class is noticeably higher

because an additional pair of start/end handshape observations from the non-dominant hand

are available to use within the HSBN congruent model (the HSBN congruent model exploits the

properties of bilateral symmetry in handshapes articulated in these signs). In addition, the

start/end handshapes in two-handed : same handshapes signs in our dataset tend to arise

more often from among the higher frequency handshape classes than in one-handed signs,

which in-turn boosts the recognition scores for both the retrieval and inference methods.

Comparing the ranked performance of handshape inference with simple-NN for each

handshape class also reveals certain trends. In handshape classes where either very few ex-

amples are available in the retrieval set or where the statistics for handshapes in the retrieval

set are markedly lower than those in the training set, HSBN based handshape inference on

average yields lower ranks than simple-NN. Enlarging the retrieval set to encapsulate a

larger fraction of signs in the training set provides one potential direction to address this

deficit.

To briefly summarize the impact of the different components in the proposed handshape

inference algorithm, simple-NN with no image alignment yields a rank-1 retrieval accuracy of

24.9%, simple-NN using the proposed non-rigid alignment method yields a rank-1 retrieval

accuracy of 30.5%, while HSBN handshape inference leveraging linguistic constraints yields

a rank-1 recognition accuracy of 43.4%. These are nevertheless modest numbers – person-
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independent handshape recognition in sign language video remains a challenging problem

for computer vision approaches. The resolution of hand images in our dataset are also on the

low side (90× 90 pixels) when compared to the resolutions that are available from current

imaging devices. The bounding box precision has a significant impact on the handshape

retrieval performance especially in cases where the hand is articulated close to the face

or to the other hand. In future work, we intend to investigate the handshape recognition

accuracy using results obtained from an automatic hand location detection and tracking

method. One specific approach for hand location detection in sign language video was

evaluated in [Thangali and Sclaroff, 2009].

The final evaluation we performed was to assess the impact of the proposed HSBN-

StateSpaceEstimation algorithm for learning the hidden variable state-space, Ẑ = (Ẑs, Ẑe),

in the HSBN. With careful choices for hyper-parameters of the prior distributions and the

hyper-parameters for model initialization in the first epoch, the HSBNStateSpaceEstimation

algorithm in the trial shown starts with a set of 164 start+end latent states and through the

process of maximizing the variational Bayes lower bound infers a collection of 63 start+end

latent states in the final epoch, 180. The epoch to conclude the learning was chosen based

on the observed profile for the VB lower bound to avoid over-fitting. The handshape infer-

ence performance on the sequestered test set remains constant through the learning epochs

thereby providing evidence that the state-space estimation algorithm is able to produce a

relatively concise yet accurate (in the specific sense of being able to retain sequestered test

accuracy through the learning epochs) representation for modeling the patterns of start/end

handshape sequences and their attested variations. Further evidence for potentially benefi-

cial aspects of the state-space learning formulation were obtained by a qualitative analysis of

the properties of the emission distributions associated with the inferred latent states in the

final epoch and by comparing these properties with the corresponding properties estimated

for the initial latent states.

The results presented from experiments conducted so far are limited in terms of gener-

alizability since we have restricted our attention to one specific test-user from among the
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six signers who provided signs for the ASLLVD.



Chapter 11

Discussion and Future work

In this thesis we focused on the problem of start/end handshape recognition in monomor-

phemic lexical signs. We formulated the HSBN as a Bayesian network model to represent

the properties of start/end handshape sequences and their attested variations in monomor-

phemic lexical signs. The HSBN is designed to aid in the start/end handshape inference

problem wherein given start/end hand images (on either the dominant hand in one-handed

signs or on both the dominant and non-dominant hands in two-handed signs) as input,

labels from among a predefined set of handshape configurations are desired as output. The

set of handshape labels were selected by linguists for the purposes of preparing ASL anno-

tations. A dataset that contains a reasonably large collection of signs from multiple native

sign language users annotated with linguistic properties was prepared in order to acquire

the required data for the purposes of training and evaluation of the HSBN model. Data elic-

itation, annotation, and analysis were carried out by Carol Neidle and linguistics students

at Boston University.

The HSBN employs hidden variables to encapsulate the properties of sign-independent

variation in start/end handshapes among different productions of signs in the vocabulary.

Learning the HSBN involves estimating the state-space for the hidden variables (represented

here as a collection of discrete states) and the parameters of the probability distributions

for the transitions between start and end hidden states along with the respective start and

end emission distributions associated with these hidden states. The variational Bayes lower

bound to the total training data log-likelihood [Beal, 2003] was employed as the objective

to maximize during the learning. Given the learned HSBN model parameters, different

realizations of the HSBN are constructed in order to represent the properties of start/end

183
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handshapes on the dominant hand in one-handed and on the dominant+non-dominant hands

in two-handed : same handshapes and two-handed : different handshapes articulatory classes.

The observation likelihoods required during handshape inference were obtained using a

k-nearest neighbor approach that incorporates non-rigid image alignment between hand

images. A retrieval set consisting of start/end handshape images from a subset of signs in

the training set was constructed in order to compute the observation likelihoods.

Handshape inference results obtained for a sequestered test are along the lines expected

for a statistical learning formulation. Simple nearest neighbor retrieval was chosen as the

baseline method for comparison. While HSBN based handshape inference improves the

handshape recognition accuracy in a majority of handshape classes, in handshape labels for

which the retrieval set contains relatively few examples, HSBN inference yields lower accu-

racy than simple-NN. Enlarging the retrieval set could help alleviate this deficit. Handshape

inference accuracies for two-handed : same handshapes signs show a marked improvement

over one-handed signs. This is as expected because the HSBN congruent model leverages the

properties of bilateral symmetry in handshape articulation. Furthermore, the statistics of

handshapes in signs from this class are skewed towards more frequently occurring hand-

shape configurations which in-turn boosts the performance of both simple-NN retrieval and

HSBN inference methods.

The final experiment evaluates the HSBN state-space estimation algorithm. Start/end

hidden variable states in the HSBN model are initialized to the set of all handshape labels.

An appropriate set of hyper-parameters for the prior distributions were also provided during

model initialization. Through the process of maximizing the variational Bayes lower bound,

the proposed state-space estimation algorithm is able to infer an optimized representation

that employs a substantially smaller number of total latent states than in the initial model

(less than half the total number chosen for initialization in the trial shown). Handshape

inference performance on the sequestered test set remains unaffected, however. This there-

fore provides evidence that the state-space learning method is able to retain the properties

of start/end handshape sequences and start/end handshape variations as are essential for
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handshape inference.

11.1 Limitations of the proposed formulation

We identify some of the different areas where the proposed approach for handshape inference

leaves room for further enhancements.

11.1.1 Assumptions in the HSBN representation

Two important assumptions that were made in order to simplify the HSBN model are

described below.

Localization of start and end video frames

In our current formulation, we assume that start/end frames that accurately localize

a sign in the video sequence are provided as inputs during handshape inference. Selecting

a specific pair of start and end frames for a sign can be challenging, especially in signs

where a change in handshape is observed between the start and end points of a given sign.

Allowing multiple video frames to be utilized for the start and end points of a sign provides

one possible means of addressing this issue.

Missing relationships to include between handshape variables

The HSBN representation utilizes a pair of start/end latent variables to model the prop-

erties and constraints that relate the start/end handshape variables in monomorphemic

lexical signs allowing for certain phonological variations in handshape. The tree structured

representation assumed for the HSBN does not fully encapsulate many of the linguistic

constraints among the handshape variables. Including additional links (i.e., conditional dis-

tributions) among handshape variables in the HSBN model suggests one possible means of

improving the representational power of the model.

11.1.2 Learning the HSBN model

Some of the limitations with respect to the formulation developed for learning the HSBN

are categorized below.

Annotations for handshapes
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During the HSBN learning, start/end handshape annotations prepared by linguists are

assumed as ground-truth for the start/end hand configurations. In many cases, however,

there is a degree of uncertainty in the annotated handshapes (for reasons outlined in Sec-

tion 4.3.1). Utilizing the start/end hand images from video sequences contained in the

training set in addition to the handshape annotations for learning the HSBN provides one

possible means of accommodating the uncertainty inherent in the handshape annotations.

Specification of priors during the learning

In the learning trials that were conducted, the convergence properties of the learning

algorithm were influenced by the scalar concentration parameter for the Dirichlet priors. A

cross-validation technique is necessary to determine an appropriate value for the concentra-

tion parameter. The concentration parameter was chosen empirically in our experiments

based on the properties of the evolution of the data log-likelihood and prior terms compris-

ing the variational Bayes lower bound through the learning epochs. Other families of priors

can provide a greater degree of control than the Dirichlet over the model parameters asso-

ciated with the low frequency handshape classes. An example of one such prior is discussed

in the future work section.

Optimization objective maximized when learning the HSBN

The variational Bayes lower bound objective maximized during the HSBN learning was

developed within a fully Bayesian (therefore, generative) framework. Linguistic distinctions

between different items in the vocabulary conveyed by handshapes are not explicitly lever-

aged in the proposed HSBN learning algorithm. As a consequence, certain latent states

become associated with unexpected handshape productions (these handshapes tend to to

occur with a relatively low frequency in the training set) in performing the HSBN state-

space refinement. A discriminative learning formulation for estimating the properties of

latent states while ensuring that the distinctions between certain handshape classes are

retained is one possible approach (in addition to a different choice for the prior) towards

improving the emission properties of the estimated latent states.
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start

end
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r = 1 r = 2 r = 3 r = 4 r = 5Query

Figure 11·1: An example of a query sign where HSBN handshape inference
fails to produce acceptable results because nearest neighbor retrieval for
each of the query hand images does not succeed in retrieving the correct
handshape among the top-200 results.

11.1.3 Observation likelihoods for start/end hand images

A handshape retrieval based method was employed in this research as one simple approach

for computing the observation likelihood distribution. Some of the problems pertaining to

the computation of the observation likelihoods in this fashion are described below. Fig-

ure 11·1 illustrates these difficulties using one particular query sign as an example.

Start and end hand locations

Hand location bounding box annotations were assumed as inputs for the handshape

inference experiments conducted here. The accuracy of the hand location bounding boxes

has a measurable impact on the handshape retrieval results. Assessing handshape inference

performance with hand locations obtained using an automatic hand location detection and

tracking method is one important aspect that we intend to investigate in our future work.
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Weighting term for combining handshape retrieval results

The observation likelihood distribution employs a exponential weighting term based on

the rank of the retrieved handshape matches (Equation 8.1) in order that different image

alignment methods can be compared directly. A weighting term that incorporates the

similarity score computed between the query and the retrieved handshape matches can

provide one means of improving the observation likelihood.

Robustness to clutter observed in hand images

Significant sources of clutter within the hand image bounding box include the presence

of the other hand or the face. Segmenting the hand using motion cues provides one means

of addressing the problems that arise as a consequence of clutter within the hand image.

Robustness to differences in the properties of the hand among different signers

Even with a non-rigid image alignment method to accommodate differences in the an-

thropometric properties of the hand among different signers, person-independent handshape

retrieval presents significant challenges. A method for computing the similarity score that

does not rely on computing an explicit spatial alignment between a pair of images is one

possible alternative approach that can aid with improving the handshape retrieval accuracy.

Discriminative features for handshape retrieval

The proposed approach for handshape retrieval does not utilize features specifically

learnt for distinguishing between different handshape classes. A discriminative approach

for handshape classification can aid in addressing the problem that handshapes which differ

in configuration but share very similar appearance appear frequently in the top-ranked list.

11.2 Future work

Topics for future investigation are organized into those that pertain to enhancements of the

proposed HSBN formulation and those that pertain to experiments to further assess the

HSBN performance.

11.2.1 Enhancements to the formulation

Possible enhancements to the HSBN formulation are described below.
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Patterns of variation (free vs. context dependent)

Several factors contribute to variations observed in signs. The focus of our efforts in

this thesis was on modeling the properties of phonological variation produced in handshapes

articulated within isolated signs. From a linguistics perspective, variations that arise as a

consequence of the phonological environment in which the handshape appears are particu-

larly interesting. In compound signs, for example, variations in start/end handshapes are

frequently produced as result of co-articulatory influences from the preceding/succeeding

sign segments. Extending the HSBN to model co-articulatory phenomena in compound

signs is an intriguing direction that we intend to pursue in future work. The ASLLVD

includes a modest number of compound signs along with start/end handshape annotations

for morphemes contained in these signs and can therefore provide the data that facilitates

in modeling co-articulatory phenomena.

Enhancements to the model structure

Incorporating frames that are adjacent to the start and end frames of a sign within the

HSBN representation can provide one possible means of enhancing the robustness of the

representation to errors in localizing the sign temporally within a given video sequence.

Furthermore, the hands in start/end frames can be more strongly occluded than in the

intermediate frames (as is the case for the example shown in Figure 11·1). Observations

from adjacent frames can therefore be leveraged towards improving the handshape inference

accuracy.

We employed a tree structured representation for the HSBN that was motivated by lin-

guistic considerations. Including a different set of dependencies, for instance, between pairs

of start/end handshape variables (Xs;D, Xe;D), (Xs;N, Xe;N) as illustrated in Figure 11·2,

can enable the model to more accurately reflect the linguistic relationships among hand-

shapes articulated on the dominant and non-dominant hands.

Priors for the model parameter distributions

The choice of an appropriate prior has a significant impact on the properties of the HSBN

model parameters estimated by the proposed learning algorithm. The current formulation
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START END

D: dominant hand,     N: Non-dominant hand

Figure 11·2: An alternate formulation of the HSBN to more directly rep-
resent the dependencies between the handshapes articulated on the non-
dominant hand and that of the dominant hand in two-handed : same hand-
shapes signs.

relies on Dirichlet priors for the model parameters. Other families of priors, such as the

Pitman – Yor process [Teh, 2006] can be a more appropriate choice to accommodate the

properties of handshape classes that occur relatively infrequently in the dataset (the author

wishes to thank Erik Sudderth for this suggestion).

Generative vs. discriminative learning formulations

Discriminative learning approaches for structured representations (e.g., Deformable Part

Models [Felzenszwalb et al., 2010], Structured Prediction Cascades [Weiss et al., 2010], Con-

ditional Random Fields [Morency et al., 2007]) have been demonstrated to yield substantial

gains in performance over purely generative approaches and therefore offer an interesting

future direction to leverage discriminative information within the HSBN learning formula-

tion.

Enhancements to the observation likelihood model

To further improve the nearest neighbor based retrieval approach, a more flexible feature

representation, in terms of relaxing the lattice constraint for the feature locations, is needed
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for the observation likelihood model to incorporate robustness to bounding box inaccuracies

obtained from a hand location detection and tracking method. The need for computing an

explicit image alignment may also be reduced when a sufficiently large database of hand

images is available, or, in a discriminative approach for handshape classification that utilizes

a different feature representation. Incorporating depth input produced by RGB+D cameras

is another venue for investigation.

Another area where a discriminative approach can prove beneficial is in formulating the

observation likelihood model. An efficient method for handshape classification (such as, for

example, the decision forest algorithm [Shotton et al., 2011]) can help circumvent the com-

putational expense required to perform nearest neighbor handshape retrieval incorporating

hand image alignment.

11.2.2 Empirical assessment

An empirical evaluation employing different signers in the lexicon dataset as test users is

needed to more carefully assess the generalization performance of the HSBN formulation.

This is relatively straightforward to implement given the hand location bounding boxes for

video sequences from different signers.

An implementation of the HSBN for handshapes articulated on the non-dominant hand

in two-handed : different handshapes signs is needed to complete the different components of

the proposed formulation. Since the non-dominant hand in these signs only takes a small

range of possible handshapes a relatively compact model can be learnt.

Using handshapes inferred by the HSBN for performing sign retrieval from the lexicon

dataset will give us with a baseline for the extent to which handshape inference alone is

beneficial for sign retrieval. Handshape inference using the HSBN produces a ranked list of

different handshape tuples with the highest posterior probability, whereas only one specific

tuple of handshapes is available for a sign on the database side. Therefore an extension to

the handshape inference approach is necessary to accommodate this difference.

The HSBN representation can also be used to infer the articulatory class of an input sign.
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Handshape inference likelihoods computed using the two different HSBN representations for

the input sign can provide a method for distinguishing two-handed : same handshapes signs

from two-handed : different handshapes signs.

We now summarize some of the experiments necessary to evaluate the HSBN perfor-

mance in more general environments.

Automatic hand location detection and tracking is essential in order to evaluate the

feasibility of the proposed handshape inference approach under more realistic conditions.

In earlier work [Thangali and Sclaroff, 2009] we described a method for hand location

detection in sign language video. This approach, however, was computationally expensive.

A decision forest based approach [Shotton et al., 2011] provides one appropriate framework

to train computationally efficient hand location detectors.

Given the trajectory of hand locations, sign retrieval from the lexicon dataset can be

performed by matching both the inferred handshapes as well as the hand movement tra-

jectory. [Dreuw et al., 2006, Alon et al., 2009] are two among many approaches that have

employed dynamic time warping for sign retrieval.

Depth input from RGB+D sensors can facilitate in segmenting hands from the back-

ground as well as assist with tracking hand locations in the input signing sequence. Fur-

thermore upper body pose estimation facilitated by using depth inputs and can provide

additional features for sign retrieval.

An approach for handshape classification trained in a discriminative fashion can yield

benefits both in terms of improved accuracy as well as reduction in the computation required

during handshape inference. In order to train a handshape classifier, however, the different

3D hand orientations need to be either explicitly or implicitly accommodated.

Handshape inference in compound signs, and, in continuous signing video sequences

presents an interesting avenue to demonstrate handshape inference results. This, however,

requires an extension of the HSBN representation to explicitly model the co-articulatory

effects.
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11.3 Summary

In this thesis we aimed to demonstrate the benefits of leveraging linguistic properties of

handshape articulation in monomorphemic lexical signs within a probabilistic representa-

tion for the handshape inference problem. Estimating the HSBN parameters in a data-driven

formulation presents many interesting questions especially those that pertain to modeling

the properties of handshape variations that are produced as result of general language pro-

cesses. Some of these questions were addressed in this research by employing the variational

Bayes lower bound as the objective to maximize during model estimation. The HSBN yields

a measurable improvement over the baseline simple nearest neighbor method in a person-

independent large vocabulary handshape recognition task. We envision that some aspects

of the proposed formulation for handshape inference can be leveraged for modeling other

articulatory parameters in a sign language recognition system, for example, in modeling

the properties of start/end hand locations and hand orientations within monomorphemic

lexical signs.

The collection and preparation of the ASL lexicon video dataset played an instrumental

role in enabling the implementation of the proposed approaches for learning and evaluation

of the HSBN model. We anticipate that because of the extensive linguistic annotations

that are available for signs contained in this dataset, the ASLLVD can provide a valuable

resource for furthering research into data-driven methods for sign language recognition.
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