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ABSTRACT
Advancements in additive manufacturing have enabled design and
fabrication of materials and structures not previously realizable. In
particular, the design space of composite materials and structures
has vastly expanded, and the resulting size and complexity has
challenged traditional design methodologies, such as brute force
exploration and one factor at a time (OFAT) exploration, to find
optimum or tailored designs. To address this challenge, supervised
machine learning approaches have emerged to model the design
space using curated training data; however, the selection of the
training data is often determined by the user. In this work, we de-
velop and utilize a Reinforcement learning (RL)-based framework
for the design of composite structures which avoids the need for
user-selected training data. For a 5 × 5 composite design space
comprised of soft and compliant blocks of constituent material,
we find that using this approach, the model can be trained using
2.78% of the total design space consists of 225 design possibilities.
Additionally, the developed RL-based framework is capable of find-
ing designs at a success rate exceeding 90%. The success of this
approach motivates future learning frameworks to utilize RL for
the design of composites and other material systems.

1 INTRODUCTION
Engineered composite materials and structures are able to achieve
superior mechanical performance in comparison to their individ-
ual constituents [Dimas et al. 2013; Ghiasi et al. 2010, 2009; Lakes
1993; Wegst et al. 2015]. The ability to tailor their design to meet
performance requirements has resulted in their widespread applica-
tion in the aerospace, automotive, and maritime industries [Fratzl
and Weinkamer 2007; Gu et al. 2016b; Guoxing and Tongxi 2004].
While the design process has previously relied on domain expertise,
bio-mimicry, brute force exhaustive search, or iterative trial and
error [Yeo et al. 2018], recent advancements in additive manufactur-
ing (AM) have tremendously enhanced the realizable design space
and challenged the conventional approaches to exploring design
spaces [Gu et al. 2017a,b; Libonati et al. 2016]. The design freedom
afforded by AM has significantly expanded the design space by
enabling the fabrication of composites with arbitrary geometry and
∗Authors contributed equally to this research.

material distributions spanning various length scales. With this
expansion comes challenges such as how to rapidly and efficiently
exploring the vast and complex design space for optimal or targeted
mechanical performance. While more traditional optimization tech-
niques have been proposed, their robustness is often limited by the
complexity of the design problems.

In order to overcome some of these design challenges, specifi-
cally those pertaining to exploring and modeling the design space,
we propose using reinforcement learning (RL). RL algorithms learn
to model the problem space through interaction and can be opti-
mized to solve specific controls problems. We present a design
framework that utilizes RL to design and find composite designs
that meet a specified performance target (Figure 1 A). While the
models learned do not provide a general solution for arbitrary com-
posite design problems, our work offers a guideline on successfully
framing design problems as RL problems. While learning-based
frameworks can be more data and computationally intensive than
any one optimization run using more traditional techniques, they
offer potential benefits at scale, where inference after training can
be significantly less expensive.

In this work, we mainly consider a 2-material composite design
problem where we attempt to optimize the composite design in
order to achieve specific material properties. The RL-based design
framework, takes an initial composite design and user-specified
desired material properties, comprising of target elastic properties
and material composition, and iteratively modifies the design until
the desired properties are satisfied. The design is parameterized as
a 2D grid of constituent materials and the learned policy adjusts
the design one grid cell at a time. This naturally upper-bounds
the number of required interactions by the number of cells in the
design grid. We demonstrate that, despite only exploring less than
5% of the design space for our design problem during training, the
learned RL policies are able to successfully solve over 95% of the
design tasks in testing.

2 RELATEDWORK
To overcome the challenges of design optimization in additive man-
ufacture, techniques combining computational methods and opti-
mization algorithms, such as topology optimization, have enabled
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Figure 1: The Reinforcement Learning (RL) framework for the design of parametric composites consisting of stiff and compli-
ant building blocks of constituent material to meet a specified target modulus 𝐸𝑔𝑜𝑎𝑙 (A). The design space considered in this
work is built from a 5 by 5 arrangement of blocks of side length 𝑥 where the composite sample has side lengths 𝐿 (B). The
design space consists of parallel and series designs (C) with a volume fraction of stiff constituent material 𝜙 = 0.40. The design
space also consists of alternative designs where the majority of the compliant or stiff constituent material is concentrated at
the center, sparsely distributed along the edges, or randomly distributed (D).

the design of tailored composites with targeted structural and mate-
rial design requirements such as elastic properties, Poisson’s ratio,
and tunable stress-strain curves [Chen et al. 2018; Gu et al. 2016a;
Sigmund and Maute 2013; Sigmund and Petersson 1998; Zhu et al.
2017]. Although these approaches have achieved success in specific
classes of problems, they are often limited by the complexity of the
design space and associated computational cost.

Recently, machine learning (ML) based design frameworks have
achieved success in the design and discovery of materials and struc-
tures with optimal or targeted properties [Abueidda et al. 2019;
Chen and Gu 2019; Gongora et al. 2021, 2020; Gu et al. 2018; Mao
et al. 2020; Nikolaev et al. 2016]. Specifically in the field of compos-
ite design, ML techniques utilizing artificial neural networks and
deep learning have been used in classification applications [Chen
and Gu 2020] and in inverse design applications [Yang et al. 2020].
These applications have demonstrated the ability to train ML-based
models with a fraction of observations from the design space to suc-
cessfully assess or predict mechanical performance. A non-trivial
challenge that faces the development of accurate ML models is
the selection of appropriate training data, as inferior models can
emerge from training on insufficient or poorly selected data. In
practice, the training data is often selected using uniform random
sampling or a design of experiments approach, such as Latin hyper-
cube sampling; however, the applicability of these approaches are

limited by the size of the design space and the computational or
experimental cost [Jin et al. 2020; Silver et al. 2017].

The dependence of the success of a ML model on appropriately
selected training data motivates the development and application
of an approach that automatically selects the training data. An
approach that can address this challenge is reinforcement learning
(RL) [Andrychowicz et al. 2017; Botvinick et al. 2019; Leinen et al.
2020; Mnih et al. 2015; Popova et al. 2018]. RL models, also called RL
agents, iteratively interact with a system in order to affect the state
of the system. In lieu of curating a dataset of behaviors, a reward
function can be defined to reflect the quality of actions taken by
agents. The behavior of RL agents is conditioned to maximize the re-
ceived reward. This shifts some of the burden from dataset curation
to reward function engineering, but the latter can be significantly
more intuitive and tractable when dealing with large data-spaces.

3 DESIGN SPACE AND FINITE-ELEMENT
ANALYSIS

In order to frame composite design as a reinforcement learning
problem, we needed to establish a suitable state-space representa-
tion and build an environment for the RL algorithm with which
to interact with. Training in simulation allows for faster feedback
than fabrication and physical analysis, so we use finite element
analysis (FEA) as our primary analytical tool for estimating design
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Figure 2: Fabricated composite designs with volume fraction between 𝜙 = 0 and 𝜙 = 1 with classical parallel and series com-
posite designs with 𝜙 = 0.2, 0.4, 0.6, and 0.8 (A). Comparison of experimentally measured effective Young’s modulus 𝐸, FEA
predicted effective Young’s modulus 𝐸, and analytical predictions of effective Young’s modulus for parallel and series com-
posite designs with varying 𝜙 (B). Comparison of 𝐸 and 𝐸 for previously tested designs and five alternative designs for each
𝜙 = 0.2, 0.4, 0.6, and 0.8 (C). Example designs with 𝜙 = 0.6 and 𝜙 = 0.8 in ascending order based on 𝐸 (D).

properties. Before employing the RL algorithm, it is imperative to
validate the finite element predictions of Young’s modulus 𝐸. This
section discusses the composite design space considered and the
development and validation of FEA pipeline.

3.1 The Composite Design Space
Given that the set of all possible designs is large and intractable, we
consider here a more constrained problem amenable to experimen-
tal validation so as to establish a viable framework for RL-automated
design. We consider a composite design space built from a 5 × 5
binary arrangement of material blocks where each block can be
composed of one of two materials that differ in their elastic mod-
uli. The stiffer of these two materials we term "stiff" and the more
compliant of these materials we term "compliant". The material
blocks of the composite have a side length 𝑥 = 5mmwhile the total
composite has a side length 𝐿 = 25 mm and depth of 5 mm (Fig-
ure 1 B). Without considering any geometric symmetries, a total of
225 distinct designs exist in the composite design space. Classical
parallel and series composite designs can be found in the design
space by varying the volume fraction 𝜙 of stiff material (Figure 1 C).

Alternative designs also exist; for instance, designs where the ma-
jority of the compliant or stiff constituent material is concentrated
at the center, sparsely distributed along the edges, or randomly
distributed (Figure 1 D). With the ability to fabricate alternative
designs, a range of Young’s modulus values can be achieved for a
given volume fraction.

3.2 Development and Validation of a Predictive
Model using Finite Element Analysis

The model we developed uses 2-D explicit FEA,which was imple-
mented in C++ using the Taichi Graphics Library [Hu 2018], to
predict the effective Young’s modulus of the composite in the 5 × 5
design space. Here, we used a Neo-Hookean model for both the
compliant and stiff constituent materials and a static compressive
strain of 1e-4. The stiff and compliant constituent materials con-
sidered in this work were VeroWhitePlus (VW+) and a volume
percentage mixture of 50% VW+ and 50% TangoBlackPlus (TB+),
respectively. The effective Young’s modulus of the composite was
estimated from the predicted stress at a prescribed compressive
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strain of 1e-4, which was kept constant for all simulations in this
study. The effective Young’s modulus was calculated by dividing
the predicted stress by the compressive strain. To simulate the
uniaxial compression of the composite design, displacement bound-
ary conditions were imposed on the nodes of the top surface of
the composite. The coefficients of the Neo-Hookean model were
computed from the Young’s modulus and Poisson’s ratio of the
constituent materials. The Young’s modulus and Poisson’s ratio of
the stiff constituent material was 1818 MPa and 0.33, respectively,
while the Young’s modulus and Poisson’s ratio of the compliant con-
stituent material was 364 MPa and 0.49, respectively. Additionally,
an explicit solver was selected over an implicit solver in the FEA
pipeline to avoid potential computational bottlenecks arising from
the need to invert the stiffness matrix of the course of the applied
deformation in implicit analysis. In the explicit solver, the time step
was set to 2.3e-7, which was sufficiently small to prevent numerical
instability in forward Euler integration. A fixed 2000 iterations was
used in the solver which was determined to be sufficiently large to
guarantee convergence without compromising computational time
based on preliminary tests. Furthermore, the parameters used in
the solver were determined to be appropriate based on the reason-
able agreement observed between Young modulus predictions and
experimental measurements.

The selected composite designs in this study were fabricated
from the aforementioned stiff and compliant constituent materials
and experimental measurements were taken in triplicate for each
composite design where 𝐸 is the mean effective Young’s modulus
of the measurements. To assess the model using FEA, the predicted
effective Young’s modulus 𝐸 of selected composite designs were
compared to experimental measurements of the effective Young’s
modulus 𝐸 from quasi-static uniaxial compression tests conducted
on a universal testing machine (Instron 5984). The first set of se-
lected composites designs were designs with only compliant con-
stituent material 𝜙 = 0, only stiff constituent material 𝜙 = 1, and
classical parallel and series composite designs with 𝜙 = 0.2, 0.4, 0.6,
and 0.8 (Figure 2 A). The absolute relative error between 𝐸 and 𝐸

for composite designs with 𝜙 = 0 and 𝜙 = 1 were 6.97% and 3.35%,
respectively, while the average absolute relative error between 𝐸

and 𝐸 for the classical parallel and series composite designs with
𝜙 = 0.2, 0.4, 0.6, and 0.8 was 12.10% (Figure 2 B). Evaluating the
entire dataset with 𝜙 = 0, 0.2, 0.4, 0.6, 0.8, and 1.0, the root mean
squared error (RMSE) was 101.79 MPa with an 𝑅2 = 0.96 where
𝑅 is the Pearson correlation coefficient. For these composite de-
signs, 𝐸 can also be analytically estimated via the Voigt and Reuss
approximations for parallel and series designs, respectively. The
approximations also yielded reasonable predictions of 𝐸 with an
average absolute relative error of 9.07% when compared to experi-
mental measurements. While the Voigt and Reuss approximations
enable rapid predictive approximations of 𝐸, the models are only
expected to be accurate for parallel and series composite designs.

To further assess the predictions using FEA, the 𝐸 of five alter-
native designs for each 𝜙 = 0.2, 0.4, 0.6, and 0.8 were compared
to experimental measurements from uniaxial compression testing.
Adding these results to the classical parallel and series dataset, the
agreement between 𝐸 and 𝐸 was evaluated. The RMSE was com-
puted to be 98.69 MPa with 𝑅2 = 0.97 and the average absolute

relative error between 𝐸 and 𝐸 of all the selected designs was calcu-
lated to be 13.8% (Figure 2 C). Based on these results, we concluded
that the predictions of Young’s modulus from FEA were in good
agreement with experimental measurements. Interestingly, from
the E of alternative designs with varying volume fraction, a broad
range of achievable modulus values with non-trivial designs were
observed. Specifically, for 𝜙 = 0.6 the minimum 𝐸 was 792.3 MPa
and the maximum 𝐸 was approximately 31% larger at 1.04 GPa.
Additionally, for 𝜙 = 0.8, the minimum 𝐸 was 1.16 GPa and the
maximum 𝐸 was approximately 24% larger at 1.44 GPa (Figure 2 D).
While this range was observed for the experimental measurements
of alternative designs, brute-force evaluations of all the designs
suggest that for a given𝜙 there is a range of achievable 𝐸 via alterna-
tive designs. The overlap in ranges for varying 𝜙 demonstrates the
ability to vary performance for a given 𝜙 , which is a key factor in
designing composites to meet performance requirements. Note that
𝐸 for a composite design only corresponds to quasi-static uniaxial
compression conditions. While designs such as the alternative com-
posite designs may possess 𝐸 that depend on the loading direction,
only quasi-static compression conditions as shown in Figure 1 A
are considered in this study.

4 DEVELOPING THE REINFORCEMENT
LEARNING (RL) FRAMEWORK FOR
COMPOSITE DESIGN

Reinforcement learning (RL) algorithms seek to solve a sequen-
tial decision-making problem, which are typically formulated as a
Markov decision process (MDP). There are two major components
of any RL setup – (i) the training environments, and (ii) the agent(s),
i.e., the learned behavior model. Agents take actions in response
to the current state, 𝑠𝑡 , of the environment and the state of the
environment changes in response to the action taken. The agent
decides its actions by attempting to maximize the cumulative re-
ward, received from the environment. In order to successfully train
an RL agent on a task, it is important to balance the complexities
of the agent policy as well as the task environment. While more
complex policy functions can have an increased modeling capacity
which may allow learning of more complex tasks, this comes with
increased computational costs and training data requirements. We
designed our task environment with this in mind.

Figure 3 provides an overview of the RL framework developed
to design composites with a target Young’s modulus 𝐸𝑔𝑜𝑎𝑙 and
volume fraction 𝜙𝑔𝑜𝑎𝑙 . We began by considering similar problems
already solvable by RL and found close parallels with the problem
of bit-flipping – i.e., modifying one binary string to match another
given one, one element at a time. Like in bit-flipping, our design
problem includes a current state and a desired future state, where
our 2-material design, 𝐷𝑡 , can be represented as a binary string
(where an 𝑛 ×𝑚 grid can be represented by a nm-dimensional bi-
nary vector). Unlike the bit-flipping problem; however, we do not
know the desired design ahead of time, only the desired proper-
ties. By including the current (at iteration 𝑡 ) and desired material
properties, 𝐸𝑡 and 𝐸𝑔𝑜𝑎𝑙 , respectively, in the state representation
we equivalently indicate necessary information about a goal state
to allow the agent to model and achieve desired material properties.
Formulating the design problem as a sequential task in this way
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enables two key advantages: (i) it maintains the Markovian prop-
erties of states being independent of their histories, thus allowing
RL to solve this problem as an MDP, and (ii) it allows for a natural
representation of termination state and computational limit and
consequently lends itself to an intuitive reward signal.

Defining the design problem as a sequential RL problem allows
us to side-step difficulties that would normally arise with procur-
ing a training set for supervised learning. In a typical supervised
learning approach for a design problem such as this, or indeed
any search problem, one of the key issues would be in determin-
ing the ‘quality’ of arbitrary states with respect to a desired goal
state. Computing the scalar difference between the desired and
current material properties does not directly translate to a strategy
on traversing the design space towards a viable design that satisfies
the design goals, prohibiting direct optimization. Without a clear
notion of distance, or first knowing what an ideal search trajectory
is, it would be difficult to quantify the quality of any given state,
thus making it difficult to define loss signals to facilitate training. In
contrast, RL allows the use of a significantly more intuitive binary
reward signal to guide training: if the properties of the current
design are within a tolerance of the desired properties, the agent
gets a zero-reward, and it gets a negative reward (−1) in all other
cases. It is then left to the RL algorithm to learn to evaluate how to
best traverse the manifold of the design space in order to satisfy
design requirements.

Our agents are represented by Q-networks, which gained promi-
nence when [Mnih et al. 2015] demonstrated the viability of deep
RL in learning to play a diverse set of video-games. Video-games
require agents to achieve and maintain desirable states, and this is
typically achieved through sequential interaction, much like the de-
sign problem we consider here. The Q-network learning framework
is developed as an extension of the tabular Q-learning problem [Sut-
ton and Barto 2018; Watkins and Dayan 1992], where the RL model

learns a Q-value function mapping states and actions to expected
rewards. If an agent is able to accurately model the Q-value, it can
optimize its actions at every state to maximize rewards. Deep Q-
networks extend tabular Q-learning by representing the Q-function
not as a table enumerating all states and actions but rather a neural
network that predicts the Q-value for any possible action given an
input state. The agent is also given a strict limit of 𝑛𝑚 iterations
to solve the problem for an 𝑛 ×𝑚 grid – as the maximum design
distance between a desired design and the current one (or any arbi-
trary two designs) cannot exceed the number of material cells. It
naturally follows from the Q-lerning optimization that the best way
for the agents to learn to maximize rewards is to solve the problem
as quickly as possible.

While suitable training environment and RL agent design en-
able effective learning, they still may not be efficient enough to
be practical as deep RL can be highly data intensive [Leinen et al.
2020]. Given the vast number of variations in the configuration
space and the not insignificant time that it takes to analyze a com-
posite with FEA, it was important to improve data efficiency during
training. To that end, we utilize Hindsight Experience Replay (HER)
[Andrychowicz et al. 2017], a technique developed for goal based
deep RL, where training data is synthetically augmented based on
data gathered while agents explore their training environments.
Briefly, HER treats the final and/or intermediate states reached in
a sequence of environment interactions as synthetic target goals.
While the true goal may not be reached, the sequence of interac-
tions still provides agents information on how to reach the states
that were visited, should they become relevant in future. In effect,
the virtual re-contextualization of prior experience allows every
interaction with the environment to be several times more useful
as a data-point, thus improving data efficiency.

For our 5 × 5 grid designs, agents are trained in cycles of experi-
ence gathering and optimization over 750 cycles with 50 episodes
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per cycle, for a total of 37500 episodes. Episodes are capped by
the total number of cells in the material design (in our case 25) as
this is the maximum number of changes that should be required
for any design. In all, agents make fewer than 1 million calls to
the finite element analysis (FEA) solver, which, while a significant
number, corresponds to sampling at most 2.8% of the 225 design
options during training. While the true unique design space is likely
smaller when accounting for design symmetries, our method still
offers relatively low data complexity for learning. Further details
on setup and training are provided in Appendix B.

5 RESULTS AND DISCUSSION
To evaluate the performance of RL framework for composite design,
we consider the previously described composite design space built
from a 5 × 5 binary arrangement of materials blocks where each
block can be either compliant or stiff material. The user specifies
a target Young’s modulus 𝐸𝑔𝑜𝑎𝑙 and volume fraction 𝜙𝑔𝑜𝑎𝑙 and the
trained agent has a maximum budget of 25 iterations to return a
final design – corresponding to the total number of cells in the grid.

For example, given 𝐸𝑔𝑜𝑎𝑙 = 500 MPa, 𝜙𝑔𝑜𝑎𝑙 = 0.20, and a ran-
domly selected initial design configuration with an initial 𝐸0 = 808
MPa and 𝜙0 = 0.52, the agent returns a design with final 𝐸 =

512 MPa and 𝜙 = 0.24 in seven sequential design changes (Fig-
ure 4 A). The absolute relative error in 𝐸 is 2.4%. Due to the discrete
nature of the 5×5 design space, the error in𝜙 was the addition of one

stiff material block which resulted in the final 𝜙 being larger than
the target𝜙 by 0.04. Due to the number of possible design variations
for volume fractions 𝜙 ∈ [0.24, 0.48], we observed that agents were
typically least performant in this region of the design space. Addi-
tionally, two examples are shown in Figure 4 B where one example,
Figure 4 B1, has a 𝜙𝑔𝑜𝑎𝑙 = 0.4 and 𝐸𝑔𝑜𝑎𝑙 = 600 MPa and another
example, Figure 4 B2, where 𝜙𝑔𝑜𝑎𝑙 = 0.80 and 𝐸𝑔𝑜𝑎𝑙 = 1300 MPa.
For the example in Figure 4 B1, the final returned configuration
exactly satisfies 𝜙𝑔𝑜𝑎𝑙 = 0.4 and slightly exceeds 𝐸𝑔𝑜𝑎𝑙 = 600MPa
by 5%. In the second case, Figure 4 B2, the returned configuration
exactly satisfies 𝜙𝑔𝑜𝑎𝑙 = 0.8 and slightly exceeds 𝐸𝑔𝑜𝑎𝑙 = 1300 MPa
by 0.08%. The agent begins with a randomly selected initial design
and it then finds designs that meet both specified goals with an ab-
solute relative error less than or equal to 5%. From these examples,
it is observed that agents have preserved aspects of the original
design while making modifications to achieve the user specified
goal. The observed behavior is indicative that the agents have not
just learned to memorize solutions but to modify designs to achieve
desired properties while under the prescribed budget, and ideally
with the fewest changes. This follows as a natural result of the RL
optimization criteria however, as the optimal strategy that maxi-
mizes learning rewards is the one that is able to satisfy the design
problem in the fewest iterations.

While the previous results are promising, they represent a sin-
gle trained agent. To further assess the performance of the RL
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framework for the design of composites, we tested our learning
framework with 20 independently trained agents over which we
achieved a consistent and median success rate 𝑃 of 95% (Figure 5 A).
The 95% median success rate reflects the average fraction of 2600
of design problems successfully solved by each agent (a total of
52,000 randomly conducted tests) within desired tolerances. This
is achieved while requiring exploration of only 3% of the design
space – aided significantly by using HER. Notably, there is a low
variance in the performance among agents reflecting the stability
of the RL framework in designing composite.

While approximately 5% of cases are categorized as “failed",
they did not fail catastrophically but rather failed to achieve a de-
sign within the desired tolerances within 25 iterations (Figure 5 B).
Specifically, the average error of 𝐸 of the agents was 61 ± 8 MPa
while the average error of 𝜙 was 8 ± 2%. In all cases, the tolerances
for success were set at 𝐸 = 50 MPa and 𝜙 = 0.04 (corresponding to
a 4% error in the volume fraction). The tolerance enabled the agents
to rapidly locate designs that met specified user requirements in
the vast design space. Additionally, considering the prescribed tol-
erances, even in cases of ‘failure’ the error in the final model’s
properties marginally outside the tolerance thresholds. While aver-
age 𝑃 , is an important metric, the variation of 𝑃 as a function of 𝜙

can also yield insight into the performance of the RL framework
(Figure 5 C). We also compare the RL approach to nearest neigh-
bor based solutions based on sampling the design space using as
many samples as the upper bound of unique configurations visited
by the RL approach (i.e. 2.78%) (details in Section B.4). For 𝜙 in
the range of 0.24 and 0.6, 𝑃 is observed to slightly fall below 0.90.
Specifically, 𝜙 = 0.48 has the lowest median 𝑃 = 0.89. The decrease
in 𝑃 reflects that this area in the design space possesses the largest
number of possible configurations. When comparing this against
the nearest neighbor approaches, we see that the RL agents do
perform marginally worse, on average, in the regions of the design
space where there are many possible design configurations. This
was to be expected, since sampling from the design space, either
uniformly at random, or randomly within the possible designs for
each possible 𝜙 , would result in a large proportion of the total sam-
ples being in the range of 𝜙 ∈ [0.4, 0.6], as this 𝜙-range represents
over 77% of the design space. Crucially though, we see that the RL
method is able to maintain relatively consistent levels of 𝑃 even in
the regions of design space that are represented by fewer possible
design configurations. Since the RL-based solver effectively builds
its own internalized model of the system, it can compensate for
the relative lack of representation in the training data. In contrast,
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highly data-dependent techniques, such as nearest neighbor search,
would fail to generalize outside of the available data, allowing the
RL approach to to achieve a higher average 𝑃 = 0.95 as compared
to 𝑃 = 0.84 and 𝑃 = 0.71 for the 𝜙-biased and naive nearest neigh-
bor searches, respectively. Furthermore, the RL approach tries to
maintain design similarity to the original input, which would be
difficult to achieve through sampling-based approaches, given their
data reliance.

6 CONCLUSION
In this work, we developed and utilized a RL-based framework for
the design of composite structures to meet user-specified target
Young’s modulus values E. The effectiveness of this approach was
evaluated using a 5 × 5 composite design space that was comprised
of stiff and compliant constituent materials. Using the RL-based ap-
proach, the models were trained using approximately 2.78% of the
225 design space. Tested on a total of 52000 test cases, 20 indepen-
dently trained RL agents successfully solved the design optimization
problem in 95% of the tests. In totality, this work demonstrated the
promise of RL in materials design since traditional design of exper-
iment approaches are limited by the size of the design space and
supervised machine learning approaches are limited by the quality
of the training data. While we recognize that there are still open
questions on the extensibility of such an approach to more complex
designs and design requirements, this work is meant to establish
a framework and the viability of RL applied to automated design.
Additionally, the results described in this work demonstrate the
viability of RL for composite design motivating future work and ap-
plications considering the distribution and arrangement of multiple
configurations of composite designs composed of material blocks.
Notably, in these cases, size and boundary effects become impera-
tive to consider in tandem with designing the RL framework for a
larger design space. An RL-based design framework circumvents
the challenges faced by traditional design of experiment approach
and supervised ML approaches by being able to automatically gen-
erate its own training set and solve subsequent design problems.
This further motivates design approaches in materials design and
discovery to focus on exploring larger design spaces.
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A MATERIALS MODELING, FABRICATION
AND ANALYSIS METHODS

A.1 Fabrication and Mechanical Testing
All composite specimens used in this study were printed using
a multi-material 3D printer (Objet260 Connex). The specimens
were printed using two constituent materials. The first constituent
material was VeroWhitePlus (VW+) and the second constituent
material was a volume percentage mixture of 50% VeroWhitePlus
and 50% TangoBlackPlus (TB+). Compression tests were conducted
using a universal testing system (Instron 5984) at a loading rate of
3 mm/min. Three samples for each selected composite design were
fabricated and tested to obtain a mean measurement of Young’s
modulus, which was measured as the slope of the linear portion of
the tested specimen’s stress-strain curve.

A.2 Analytical analysis
The achievable range of Young’s moduli 𝐸 of a composite design
comprised of two constituent materials is bounded by the Voigt and
Reuss analytical models. The Voigt model assumes that composite
designs in parallel can be modelled as springs acting in parallel and
the Reuss model assumes that the composite designs in series can be
modelled as springs in series. The models are a function of the stiff
constituent’s volume fraction𝜙𝑠 , themodulus of the stiff constituent
material 𝐸𝑠 and the modulus of the compliant constituent material
𝐸𝑐 . The Voigt model can be expressed as 𝐸 = 𝜙𝑠𝐸𝑠 + (1−𝜙𝑠 )𝐸𝑐 . The
Reuss model can be expressed as 𝐸 = (𝐸𝑐𝐸𝑠 )/(𝜙𝑠𝐸𝑐 + (1 − 𝜙𝑠 )𝐸𝑠 ).
The modulus of the constituent materials 𝐸𝑠 and 𝐸𝑐 are 1,818 MPa
and 364 MPa, respectively.

A.3 Finite-element analysis
In order to predict the 𝐸 of the composite designs, we performed
2-D finite-element analysis (FEA). The 5 × 5 composite design was
represented using a 40 × 40 grid of quad-finite elements where
each cell of the composite was represented by an 8 × 8 grid. We
adopted a Neo-Hookean material model to compute the hyper-
elastic response of each element, where the strain energy density
function is given by [Sifakis and Barbic 2012].

𝑊 =
`

2
(𝐼1 − 2 − ln 𝐽 ) + _

2
(ln 𝐽 )2 . (1)

Here, ` and _ are the Lamé parameters; 𝐼1 is the first invariant of
the right Cauchy-Green deformation tensor; 𝐽 is the determinant
of the deformation gradient. The material coefficients of the stiff
and compliant base materials (`𝑠 , `𝑐 , _𝑠 , _𝑐 ) were computed from
Young’s moduli (𝐸𝑠 , 𝐸𝑐 ) and Poisson’s ratios (𝑣𝑠 , 𝑣𝑐 ) as follows [Kelly
2013].

` =
𝐸 ′

2(1 + a ′) ,

_ =
𝐸 ′a ′

(1 + a ′) (1 − 2a ′) ,

a ′ =
a

1 + a ,

𝐸 ′ =
𝐸 (1 + 2a)
(1 + a)2

.

(2)
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We set 𝐸𝑠 , 𝐸𝑐 the same as experimental measurements with 𝑣𝑠 =

0.33 and 𝑣𝑐 = 0.49. Additionally, we applied negative exponential
damping to the nodal velocities (𝑣𝑖, 𝑗 ) to address material viscosity
in the FEM.

𝑣 ′𝑖, 𝑗 = 𝑣𝑖, 𝑗𝑒
−𝛾Δ𝑡sim . (3)

The damping constant (𝛾 ) was set to 1e5 which leads to desirable
damping effects in constituent material simulations. Based on these
settings, the deformation was solved using an explicit solver under
the Dirichlet boundary constraint of a static compressive strain
equal to 1e-4 on the displacement in the loading direction. The time
step (Δ𝑡sim) was set to 2.3e-7 which is sufficiently small to prevent
numerical instability in forward Euler integration. Above all, we
ran a fixed 2,000 iterations to guarantee convergence. The estimated
Young’s modulus was then derived from the gauge stress measured
at boundary nodes. The simulator was implemented in C++ with
Taichi Graphics Library [Hu 2018]. Furthermore, we note that the
simulator is not the bottleneck of our computational pipeline, since
each simulation takes well less than a second on a single CPU core.

B REINFORCEMENT LEARNING
FRAMEWORK

B.1 Task Environment Design
At design-step 𝑡 , the task environment state is represented numer-
ically by a 29-dimensional 𝑠𝑡 ∈ 𝑆 where 𝑠𝑖𝑡 ∈ [0, 1] and 𝑆 ⊂ 𝑅29.
The first 25 components capture the 5 × 5 material design grid,
𝐷𝑡 . The 26th and 27th components capture the current Young’s
modulus and volume fraction of material composition, while the
28th and 29th components capture the desired modulus and volume
fractions respectively. Neural networks are known to be sensitive
to the scale of the inputs, so we scale the Young’s moduli by di-
viding it by the maximum value of the two materials’ moduli, i.e.
𝑓 (𝐸) = 𝐸

max (𝐸1,𝐸2) . The action taken by the agent, 𝑎𝑡 , in effect,
selects a material cell in the design grid to ‘flip’ between the two
materials. The resultant design matrix is evaluated for its material
properties and this, along with the modified design is returned as
the next state, 𝑠𝑡+1, to the agent. During training, 𝑠𝑡+1 is also used
to compute the binary reward of −1 or 0 depending on whether the
state is within tolerance of the desired properties. We use a Young’s
modulus tolerance of 50 MPa and a volume fraction tolerance of
4%, i.e. being one material cell off from the desired composition.

For each episode of the training run, which is limited to 25
iterations as that is the maximum number of changes that could
theoretically be required to achieve a goal for a 5 × 5 grid, a goal
volume fraction and desired Young’s modulus is selected randomly
from the range of possible volume fractions and Young’s moduli
as defined by the Voigt and Reuss approximations (as shown in
Figure 2). A design, chosen uniformly at random, is also instantiated
and evaluated. If the design’s properties start too close to the goal
properties, the goals are reset until the desired Young’s modulus is
at least 100 MPa away from the current design’s modulus.

B.2 Network Design and Training
In order to approximate the Q-function, we use a neural network
with an input layer, 3 fully connected hidden layers and an out-
put layer. The input layer has 29 input nodes to read in the 29-
dimensional state provided by the training environment. The first
and second hidden layers have 128 and 64 neurons respectively with
Rectified Linear Unit (ReLU) activations [Fukushima 1980; Nair and
Hinton 2010]. These are passed to a 26-dimensional layer which
estimates the Q-value of 26 possible actions (one for each material
cell ‘flip’ and including a null action where the agent does nothing).
The output action is determined by an argmax over the predicted
Q-values to select action with the highest expected value. We use a
Q-value discount factor of 𝛾 = 0.99 and the networks are trained
with an Adam optimizer [Kingma and Ba 2015] with a learning rate
of 10−3, a batch size of 320 and a training buffer size of 2 × 106.
Training is run over 750 cycles with 50 episodes per cycle, with each
episode consisting of 25 environment interactions (episodes are not
terminated immediately upon success so that agents learn to not
deviate from a good design). 500 optimization steps are performed
at the end of every cycle.

To mitigate over-fitting and over-estimation in the Q network,
we employ Double Deep Q-learning. Double Q learning [Hasselt
2010; van Hasselt et al. 2015] uses two networks in training instead
of just one. The networks start with equal weights but only one is
updated consistently during training (the ‘main’ or ‘live’ network)
while the other (‘target’) network is held fixed for set intervals.
When estimating Q-values for the training loss, the target network
is used to estimate the temporal difference error [Sutton and Barto
2018] and is updated with weights from the live network only
periodically. During training, we update the target network once
per cycle with a 95% interpolation factor on the weights between
the target and live networks.

B.3 Developing an Exhaustive Dataset
In order to enable quick testing and iteration on experimental de-
sign, we developed an exhaustive dataset of all with the 225 possible
designs and their associated FEA values. While any individual agent
requires under 1 million data samples (less than 3% of the design
space), each agent may experience a different set of data, as is the
nature of RL training. Each FEA call takes time however and, in
an academic setting, this was found to limit early development
of our RL framework. To mitigate this, we parallelized the FEA
computation of every possible design to build a library of material
properties for all the designs which could be looked up by the RL
agents during training. This ensured that we were not re-computing
the FEA for any previously computed model and it also allowed
us to massively parallelize the training of multiple agents when
verifying the efficacy of our method, to demonstrate that the per-
formance was consistent and repeatable. We stress again that this
was only done to facilitate the academic pursuit of a performance
analysis of the method – any individual agent would only need to
be connected directly to the FEA solver during training and would
only need to be trained once.
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B.4 Testing against brute-force methods
The development of an exhaustive dataset also allowed us to com-
pare our RL method against brute-force methods to solve a similar
design problem. A naive brute-force algorithm which keeps with
the bit-flipping inspired problem formulation would present with
too much uncertainty in the run-time and could require a lot of
sampling from the dataset - which would, in a real application,
correspond to significant time spent on the FEM solver. Instead, we
compare our method against a nearest-neighbor approach, where
a subset of designs are sampled from the full set of possible de-
signs and given design requirements, the nearest neighbor from the
sampled subset is used to present a possible solution. The nearest-
neighbor solver is easily bounded to use a similar amount of total
data as the RL algorithm by sampling 3% of the dataset.

We employed two sampling strategies for building the nearest-
neighbor search subset: (i) Naive Nearest Neighbor: using 3% of
the data, sampled uniformly from the full dataset, and (ii) 𝜙-biased

Nearest Neighbor: using 3%, of the possible samples for each of the
26 possible volume fractions, totaling to 3% of the full design space;
both cases are rounded up to their nearest integer. The former
is an admittedly naive approach but is likely more reflective of
the sampling the RL agents might be expected to encounter, since
we make no explicit attempt to condition how the RL algorithms
explore the design space. The latter however is a minor change
which uses a little bit of our prior knowledge of the design space
to better shape the nearest-neighbor solution. Since we do not
track the number of unique states visited by the RL agents during
training, a comparison of sampling strategies on strategy alone is
more difficult to judge, but we are able to compare the performances
on the design tasks. Given that the nearest-neighbor approaches
do not attempt to model the design space, we do not compare the
similarity of the final solutions to any initial state, as that is not
something this technique can be reasonably expected to account
for in this particular design problem.
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