Structural Optimization of 3D Masonry Buildings
(Supplemental Material)

A Matrix Structure
We detail the matrix equation for static equilibrium:
Acg - f+w=0

w;: 6x1 vector containing the 3D weight and net torque for block
j. Typically the only non-zero element is the z-component of
weight. For any external loads acting on block j, the force and
torque contributions are added here.

ri: Contains the unknown force vectors f*, for vertices 4 on inter-
face k. height(ry) is 4vi, where vy is the number of vertices on
interface k and each vertex contributes a 3D force with positive and
negative parts for the axial forces.

A x: Submatrices A; . contain coefficients for net force and net
torque contributions from interface £ acting on block j. Each A; i,
has dimension 6xheight(rr). Rows 1-3 are coefficients for net
force contributions in x, y, z and rows 4-6 are coefficients for net
torque contributions about the x, y, z axes.
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Fi = [€n;, @u, &, Jand Tk = [(€n) X Vij) (&uy X Vij) (&u;, X
v;;)]. Unit vectors &, , &,, and &,, are the normal vector and
friction basis vectors for face k (see Figure 1). The subscript x
refers to the z-component of the vector.

The number of submatrices A in row j of A, is equal to the
number of neighbors incident on block j. There are two submatri-
ces in each column k, since ry represents the interaction between
surfaces of two adjacent blocks.
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Figure 1: Indexing for equations of static equilibrium. Vector &y,
is the unit normal for interface k, and &, and &,,, are the directions
of in-plane friction forces. Vector v; ; is the relative position of
vertex i w.r.t. the centroid of block j. w; is the 3D weight vector for
block j.

B Partial Derivatives

The partial derivatives of coefficients for net force equilibrium, Fy,
on face k are:
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where w is a parameter from the set {w; k., Vi i, Nk, Ok, Pr } as de-
scribed in §6. The partial derivatives of coefficients for net torque
equilibrium, Ty, on face k are:
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The derivative of the centroid position ¢; for block j is:
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where v, ; is the volume of tetrahedron 4 on block j and er, ; is
the centroid of tetrahedron <.

dvr, ; 1.
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where coordinates ag, a1, a2 are three corners of tetrahedron ¢, off-
set such that the fourth coordinate lies at the origin (0, 0, 0).

The derivative of the weight vector Ow/dw for block j is given by:
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where p is the block density and g is the direction of gravity, and v;
is the volume of block j.

B.1 Constraint Derivatives

In the closed form solution of f*, the constraint matrix C is a
concatenation of the matrix A., (static equilibrium), the active
friction-cone inequalities of the matrix Ay, and the active lower
bounds on f. The friction constraints and lower bound constraints
are not dependent on block geometry, giving 0Af,/0w = 0 and

O, /Ow = 0.
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where w is a parameterization of the structure’s geometry €2. The
derivations of Aq/0w and Ow/Ow are shown above.

B.2 Energy Derivatives

The expression for the derivative of f* is then obtained by differen-
tiating the closed form expression:
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H is the weighting matrix for the objective function and is held
constant, and E = CH™*C7. The derivative of E by application of
the chain rule is:
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The terms 9C/Ow and Ob/dw describe how the constraints change
as the geometry changes according to parameterization w. The ex-
pression for the gradient of y(£2) is given by:
Vy = avyunifo'r'm + vytorque

where the derivatives of uniform and torque tension energies are:
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with OHyorque /Ow = (I — Himin)” ODtorque /0w (I — Hipin ). Ma-
trices Huniform and H,y, are constant since it assumed minimum-
tension vertices remain the same for differential movement.

C Cables

For gradient computation, we parametrize cables using the x,y,z
coordinates of their end points. The derivative of the weight vector
Ow/0Ow for cable is given by:
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where L is the length of the cable, and p is its the mass per unit
length.
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where coordinates p,, p, are two ends of the cable.
The derivative of the cable tension direction is
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