Structural Optimization of 3D Masonry Buildings (Supplemental Material)

Matrix Structure Δ

We detail the matrix equation for static equilibrium:

$$\mathbf{A}_{eq} \cdot \mathbf{f} + \mathbf{w} = \mathbf{0}$$

 \mathbf{w}_i : 6×1 vector containing the 3D weight and net torque for block j. Typically the only non-zero element is the z-component of weight. For any external loads acting on block j, the force and torque contributions are added here.

 \mathbf{r}_k : Contains the unknown force vectors \mathbf{f}^i , for vertices *i* on interface k. $height(\mathbf{r}_k)$ is $4v_k$, where v_k is the number of vertices on interface k and each vertex contributes a 3D force with positive and negative parts for the axial forces.

 $A_{i,k}$: Submatrices $A_{i,k}$ contain coefficients for net force and net torque contributions from interface k acting on block j. Each $A_{j,k}$ has dimension $6 \times height(\mathbf{r}_k)$. Rows 1-3 are coefficients for net force contributions in x, y, z and rows 4-6 are coefficients for net torque contributions about the x, y, z axes.

$$\mathbf{A}_{j,k}\mathbf{r}_k = egin{bmatrix} \mathbf{F}_k & \mathbf{F}_k & \cdots \ \mathbf{T}_{i,j,k} & \mathbf{T}_{i+1,j,k} & \cdots \end{bmatrix} egin{bmatrix} \mathbf{f}^i \ \mathbf{f}^{i+1} \ dots \end{bmatrix}$$

 $\mathbf{F}_{k} = [\mathbf{\hat{e}}_{n_{k}} \ \mathbf{\hat{e}}_{u_{k}} \ \mathbf{\hat{e}}_{v_{k}}] \text{ and } \mathbf{T}_{i,j,k} = [(\mathbf{\hat{e}}_{n_{k}} \times \mathbf{v}_{i,j}) \ (\mathbf{\hat{e}}_{u_{k}} \times \mathbf{v}_{i,j}) \ (\mathbf{\hat{e}}_{v_{k}} \times \mathbf{v}_{i,j})$ $\mathbf{v}_{i,j}$]. Unit vectors $\hat{\mathbf{e}}_{n_k}$, $\hat{\mathbf{e}}_{u_k}$ and $\hat{\mathbf{e}}_{v_k}$ are the normal vector and friction basis vectors for face k (see Figure 1). The subscript xrefers to the x-component of the vector.

The number of submatrices $A_{j,k}$ in row j of A_{eq} is equal to the number of neighbors incident on block j. There are two submatrices in each column k, since \mathbf{r}_k represents the interaction between surfaces of two adjacent blocks.

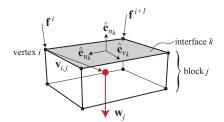


Figure 1: Indexing for equations of static equilibrium. Vector $\hat{\mathbf{e}}_{n_k}$ is the unit normal for interface k, and $\hat{\mathbf{e}}_{u_k}$ and $\hat{\mathbf{e}}_{v_k}$ are the directions of in-plane friction forces. Vector $\mathbf{v}_{i,j}$ is the relative position of vertex i w.r.t. the centroid of block j. \mathbf{w}_j is the 3D weight vector for block j.

Partial Derivatives B

The partial derivatives of coefficients for net force equilibrium, \mathbf{F}_k , on face k are:

$$\frac{\partial \mathbf{F}_k}{\partial \omega} = \frac{\partial [\hat{\mathbf{e}}_n \; \hat{\mathbf{e}}_u \; \hat{\mathbf{e}}_v]_k}{\partial \omega}$$

where ω is a parameter from the set $\{u_{i,k}, v_{i,k}, n_k, \theta_k, \phi_k\}$ as described in §6. The partial derivatives of coefficients for net torque equilibrium, \mathbf{T}_k , on face k are:

$$\frac{\partial \mathbf{T}_{i,j,k}}{\partial \omega} = \frac{\partial [(\hat{\mathbf{e}}_n \times \mathbf{v}_{i,j}) (\hat{\mathbf{e}}_u \times \mathbf{v}_{i,j}) (\hat{\mathbf{e}}_v \times \mathbf{v}_{i,j})]_k}{\partial \omega} \\
\frac{\partial (\hat{\mathbf{e}}_n \times \mathbf{v}_{i,j})_k}{\partial \omega} = \hat{\mathbf{e}}_n \times \frac{\partial \mathbf{v}_{i,j}}{\partial \omega} + \frac{\partial \hat{\mathbf{e}}_n}{\partial \omega} \times \mathbf{v}_{i,j} \\
= \hat{\mathbf{e}}_n \times \left(\frac{\partial \mathbf{p}_{i,j}}{\partial \omega} - \frac{\partial \mathbf{c}_j}{\partial \omega}\right) + \frac{\partial \hat{\mathbf{e}}_n}{\partial \omega} \times \mathbf{v}_{i,j}$$

The derivative of the centroid position \mathbf{c}_{i} for block j is:

$$\frac{\partial \mathbf{c}_{j}}{\partial \omega} = \frac{\partial}{\partial \omega} \left(\frac{\sum v_{T_{i,j}} \mathbf{c}_{T_{i,j}}}{\sum v_{T_{i,j}}} \right)$$

where $v_{T_{i,j}}$ is the volume of tetrahedron *i* on block *j* and $\mathbf{c}_{T_{i,j}}$ is the centroid of tetrahedron *i*.

$$\begin{aligned} \frac{\partial v_{T_{i,j}}}{\partial \omega} &= \frac{1}{6} sign(\mathbf{a}_0 \cdot (\mathbf{a}_1 \times \mathbf{a}_2)) \frac{\partial}{\partial \omega} (\mathbf{a}_0 \cdot (\mathbf{a}_1 \times \mathbf{a}_2)) \\ \frac{\partial \mathbf{c}_{T_{i,j}}}{\partial \omega} &= \frac{1}{4} \frac{\partial}{\partial \omega} (\mathbf{a}_0 + \mathbf{a}_1 + \mathbf{a}_2) \end{aligned}$$

where coordinates $\mathbf{a}_0, \mathbf{a}_1, \mathbf{a}_2$ are three corners of tetrahedron *i*, offset such that the fourth coordinate lies at the origin (0, 0, 0).

The derivative of the weight vector $\partial \mathbf{w} / \partial \omega$ for block j is given by:

$$\frac{\partial \mathbf{w}_j}{\partial \omega} = \rho \frac{\partial v_j}{\partial \omega} \hat{\mathbf{g}} = \rho \left(\sum_i \frac{\partial v_{T_{i,j}}}{\partial \omega} \right) \hat{\mathbf{g}}$$

where ρ is the block density and $\hat{\mathbf{g}}$ is the direction of gravity, and v_i is the volume of block j.

B.1 Constraint Derivatives

ć

In the closed form solution of f^* , the constraint matrix C is a concatenation of the matrix A_{eq} (static equilibrium), the active friction-cone inequalities of the matrix A_{fr} , and the active lower bounds on f. The friction constraints and lower bound constraints are not dependent on block geometry, giving $\partial \mathbf{A}_{fr}/\partial \omega = \mathbf{0}$ and $\partial \mathbf{I}_{lb}/\partial \omega = \mathbf{0}.$

$$\frac{\partial \mathbf{C}}{\partial \omega} = \begin{bmatrix} \partial \mathbf{A}_{eq} / \partial \omega \\ \mathbf{0} \\ \mathbf{0} \end{bmatrix}, \ \frac{\partial \mathbf{b}}{\partial \omega} = \begin{bmatrix} -\partial \mathbf{w} / \partial \omega \\ \mathbf{0} \\ \mathbf{0} \end{bmatrix}$$

where ω is a parameterization of the structure's geometry Ω . The derivations of $\partial \mathbf{A}_{eq}/\partial \omega$ and $\partial \mathbf{w}/\partial \omega$ are shown above.

B.2 Energy Derivatives

The expression for the derivative of f^* is then obtained by differentiating the closed form expression:

$$\frac{\partial \mathbf{f}_{\Omega}^{*}}{\partial \omega} = \mathbf{H}^{-1} \left(\frac{\partial \mathbf{C}^{T}}{\partial \omega} \mathbf{E}^{-1} \mathbf{b} + \mathbf{C}^{T} \mathbf{E}^{-1} \left(\frac{\partial \mathbf{b}}{\partial \omega} - \frac{\partial \mathbf{E}}{\partial \omega} \mathbf{E}^{-1} \mathbf{b} \right) \right)$$

H is the weighting matrix for the objective function and is held constant, and $\mathbf{E} = \mathbf{C}\mathbf{H}^{-1}\mathbf{C}^{T}$. The derivative of **E** by application of the chain rule is:

$$\partial \mathbf{E}/\partial \omega = \partial \mathbf{C}/\partial \omega \mathbf{H}^{-1}\mathbf{C}^{T} + \mathbf{C}\mathbf{H}^{-1}\partial \mathbf{C}^{T}/\partial \omega$$

The terms $\partial \mathbf{C}/\partial \omega$ and $\partial \mathbf{b}/\partial \omega$ describe how the constraints change as the geometry changes according to parameterization ω . The expression for the gradient of $y(\Omega)$ is given by:

$$\nabla y = \alpha \nabla y_{uniform} + \nabla y_{torque}$$

where the derivatives of uniform and torque tension energies are:

$$\frac{\partial y_{uniform}}{\partial \omega} = \mathbf{f}^{*T} \mathbf{H}_{uniform} \frac{\partial \mathbf{f}^{*}}{\partial \omega}$$
$$\frac{\partial y_{torque}}{\partial \omega} = \mathbf{f}^{*T} \mathbf{H}_{torque} \frac{\partial \mathbf{f}^{*}}{\partial \omega} + \frac{1}{2} \left(\mathbf{f}^{*T} \frac{\partial \mathbf{H}_{torque}}{\partial \omega} \mathbf{f}^{*} \right)$$

with $\partial \mathbf{H}_{torque}/\partial \omega = (\mathbf{I} - \mathbf{H}_{min})^T \partial \mathbf{D}_{torque}/\partial \omega (\mathbf{I} - \mathbf{H}_{min})$. Matrices $\mathbf{H}_{uniform}$ and \mathbf{H}_{min} are constant since it assumed minimum-tension vertices remain the same for differential movement.

C Cables

For gradient computation, we parametrize cables using the x,y,z coordinates of their end points. The derivative of the weight vector $\partial \mathbf{w} / \partial \omega$ for cable is given by:

$$\frac{\partial \mathbf{w}}{\partial \omega} = \rho \frac{\partial L}{\partial \omega} \hat{\mathbf{g}}$$

where L is the length of the cable, and ρ is its the mass per unit length.

$$\frac{\partial L}{\partial \omega} = \frac{1}{2} \frac{(\mathbf{p}_0 - \mathbf{p}_1) \cdot \frac{\partial \mathbf{P}_0}{\partial \omega}}{\|\mathbf{p}_0 - \mathbf{p}_1\|}$$

where coordinates $\mathbf{p}_0, \mathbf{p}_1$ are two ends of the cable.

The derivative of the cable tension direction is

$$\begin{aligned} \frac{\partial \hat{\mathbf{e}}_t}{\partial \omega} &= \frac{\partial}{\partial \omega} \left(\frac{\mathbf{p}_0 - \mathbf{p}_1}{\|\mathbf{p}_0 - \mathbf{p}_1\|} \right) \\ &= \frac{\|\mathbf{p}_0 - \mathbf{p}_1\| \cdot \left(\frac{\partial \mathbf{p}_0}{\partial \omega}\right) - (\mathbf{p}_0 - \mathbf{p}_1) \cdot \left(\frac{\partial \|\mathbf{p}_0 - \mathbf{p}_1\|}{\partial \omega}\right)}{\|\mathbf{p}_0 - \mathbf{p}_1\|^2} \end{aligned}$$