
Structural Optimization of 3D Masonry Buildings
(Supplemental Material)

A Matrix Structure

We detail the matrix equation for static equilibrium:

Aeq · f + w = 0

wj : 6×1 vector containing the 3D weight and net torque for block
j. Typically the only non-zero element is the z-component of
weight. For any external loads acting on block j, the force and
torque contributions are added here.

rk: Contains the unknown force vectors fi, for vertices i on inter-
face k. height(rk) is 4vk, where vk is the number of vertices on
interface k and each vertex contributes a 3D force with positive and
negative parts for the axial forces.

Aj,k: Submatrices Aj,k contain coefficients for net force and net
torque contributions from interface k acting on block j. Each Aj,k

has dimension 6×height(rk). Rows 1-3 are coefficients for net
force contributions in x, y, z and rows 4-6 are coefficients for net
torque contributions about the x, y, z axes.

Aj,krk =

[
Fk Fk . . .

Ti,j,k Ti+1,j,k . . .

] fi
fi+1

...


Fk = [ênk êuk êvk ] and Ti,j,k = [(ênk×vi,j) (êuk×vi,j) (êvk×
vi,j)]. Unit vectors ênk , êuk and êvk are the normal vector and
friction basis vectors for face k (see Figure 1). The subscript x
refers to the x-component of the vector.

The number of submatrices Aj,k in row j of Aeq is equal to the
number of neighbors incident on block j. There are two submatri-
ces in each column k, since rk represents the interaction between
surfaces of two adjacent blocks.
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Figure 1: Indexing for equations of static equilibrium. Vector ênk

is the unit normal for interface k, and êuk and êvk are the directions
of in-plane friction forces. Vector vi,j is the relative position of
vertex i w.r.t. the centroid of block j. wj is the 3D weight vector for
block j.

B Partial Derivatives

The partial derivatives of coefficients for net force equilibrium, Fk,
on face k are:

∂Fk

∂ω
=
∂[ên êu êv]k

∂ω

where ω is a parameter from the set {ui,k, vi,k, nk, θk, φk} as de-
scribed in §6. The partial derivatives of coefficients for net torque
equilibrium, Tk, on face k are:
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The derivative of the centroid position cj for block j is:
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∂
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)
where vTi,j is the volume of tetrahedron i on block j and cTi,j is
the centroid of tetrahedron i.
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where coordinates a0, a1, a2 are three corners of tetrahedron i, off-
set such that the fourth coordinate lies at the origin (0, 0, 0).

The derivative of the weight vector ∂w/∂ω for block j is given by:

∂wj
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i
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)
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where ρ is the block density and ĝ is the direction of gravity, and vj
is the volume of block j.

B.1 Constraint Derivatives

In the closed form solution of f∗, the constraint matrix C is a
concatenation of the matrix Aeq (static equilibrium), the active
friction-cone inequalities of the matrix Afr , and the active lower
bounds on f. The friction constraints and lower bound constraints
are not dependent on block geometry, giving ∂Ãfr/∂ω = 0 and
∂Ĩlb/∂ω = 0.
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0
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0
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
where ω is a parameterization of the structure’s geometry Ω. The
derivations of ∂Aeq/∂ω and ∂w/∂ω are shown above.

B.2 Energy Derivatives

The expression for the derivative of f∗ is then obtained by differen-
tiating the closed form expression:
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H is the weighting matrix for the objective function and is held
constant, and E = CH−1CT . The derivative of E by application of
the chain rule is:

∂E/∂ω = ∂C/∂ω H−1CT + C H−1∂CT /∂ω

The terms ∂C/∂ω and ∂b/∂ω describe how the constraints change
as the geometry changes according to parameterization ω. The ex-
pression for the gradient of y(Ω) is given by:

∇y = α∇yuniform +∇ytorque

where the derivatives of uniform and torque tension energies are:
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with ∂Htorque/∂ω = (I−Hmin)T ∂Dtorque/∂ω(I−Hmin). Ma-
trices Huniform and Hmin are constant since it assumed minimum-
tension vertices remain the same for differential movement.

C Cables

For gradient computation, we parametrize cables using the x,y,z
coordinates of their end points. The derivative of the weight vector
∂w/∂ω for cable is given by:
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∂ω

= ρ
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where L is the length of the cable, and ρ is its the mass per unit
length.
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where coordinates p0, p1 are two ends of the cable.

The derivative of the cable tension direction is
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