ComputerScience

Tracking with Dynamic Hidden State Shape Models

How to recognize and track hand in complex scenes?

- Non-rigid deformation of object with variable structure
- Highly cluttered background
- Illumination change and background object's motion
- Occlusion

Dynamic HSSM of Hand

- a set ={ $s_1, ..., s_M$ } of states modeling object components,
- a subset \neg of \blacklozenge that defines legal end states,
- the probability $\pi^{(t)}(s_i)$ that state s_i is the initial state at time t,
- state transition function $A^{(t)}(s_i, s_i)$ represents the probability of transiting from s_i to s_i at time t,
- state observation function $B^{(t)}(f_{ij}, s_{ij})$ represents the probability of observing f_{ij} in s_{ij} at time t,
- feature transition function $\tau^{(t)}(f_v, f_u, s_i, s_i)$ represents the probability of observing f_v in s_i given some f_{ii} was previously observed in s_i at time t,
- state duration function $D^{(t)}(I, s_i, \omega)$ represents the probability of continuously observing I features in s_i at time t, given the prior object scale ω .

Fig. 1 Recognizing hands in images using DHSSMs. (a) Hand contours with variable shape structure. (b) State transition diagram of the DHSSM "hand." (c) An edge image with segments of the hand contour and clutter. (d) Registration of hand model states to contour segments, resulting in the recognition of the hand structure. (Figure courtesy of Wang et al [1].)

Given a DHSSM and a set of features $\mathcal{P} = \{f_1, f_2, \dots, f_k\}$, we want to find the most likely model registration such that the joint probability p(Q,O) is maximized, where $Q=(q_1,q_2,...,q_n)$ is a valid path in state transition diagram, q_i is state variable assigned with some state label s_i $\mathfrak{R} \bullet$; O=(o₁,o₂,...,o₁) is an ordered sequence of object features, o_i is assigned with some feature $f_i \otimes \mathfrak{P}$; and $(o_1 \dots o_{d_1})$ matched to q_1 , $(o_{d_{1+1}} \dots o_{d_2})$ matched to q_2 , \dots $(o_{L-d_{n+1}} \dots o_L)$ matched to q_n .

 $O(M(K/G)^2)$, G is number of groups Partial matching is possible by checking segments in each group

Fig 2. Exploiting the hierarchical structure in DP

(c)

Valid path

Zheng Wu, Jingbin Wang, Vassilis Athitsos, Stan Sclaroff Advisor: Margrit Betke

Tracking System Overview

• Each input image is first processed to extract features (edges) and feature patches (image regions centered around edges). A two-class SVM determines which features are likely to belong to the object contour (foreground) and which not (background clutter).

• Hand detection is achieved by finding a globally optimal registration between DHSSM states and likely features.

• After each frame, the probability densities of each state of the DHSSM are updated by feeding back the estimated location, orientation of the hand components((finger tips, sides, palm etc.), and amount of curling of each finger (the latter via updating the state duration variable).

• From time to time, a new collection of object and clutter patches are sampled to train a new SVM classifier that better models the current imaging scenario.

Experiments

- (1) Data with large motion of the hand and fingers (260 frames)
- (2) Data with dense clutter (510 frames)
- (3) Data with illumination changes (182 frames)
- (4) Data with occlusions (167 frames)

Dataset	Large	Dense	Illumination	Pa
	Motion	Clutter	Change	Occ
Avg. # of features	1200	1800	3000	30
Hand Localization	98%	92%	83%	75
Finger Identification	89%	85%	68%	65
Avg. processing time/frame	1s	1s	1.5s	1.

Reference

[1] Wang, J., Athitsos, V., Sclaroff, S., Betke, M.: Detecting objects of variable shape structure with hidden state shape models. IEEE T PAMI 30 (2008) 477-492

[2] Rabiner, L.R.: A tutorial on Hidden Markov Models and selected applications in speech recognition. Proceedings of the IEEE 77 (1989) 257-286

[3] videos can be downloaded from http://cs-people.bu.edu/wuzheng/video.zip

