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Abstract

This paper proposes a fast online multi-target tracking method, called motion agree-
ment algorithm, which dynamically selects stable object regions to track. The appearance
of each object, here pedestrians, is represented by multiple local patches. For each patch,
the algorithm computes alocal estimate of the direction of motion. By fusion of the
agreements between aglobal estimate of the object motion and eachlocal estimate, the
algorithm identifies the object stable regions and enables robust tracking. The proposed
patch-based appearance model was integrated into an efficient online tracking system that
uses bipartite matching for data association. The experiments on recent pedestrian track-
ing benchmark sequences show that the proposed method achieves competitive results
compared to state-of-the-art methods, including several offline tracking techniques.

1 Introduction

The performance of pedestrian tracking systems has steadily increased during the past few
years. Two factors mainly contributed to the improvement: the advance of robust pedestrian
detectors [10] and various extensions of the data association technique [3, 5, 7, 15, 16, 17,
19, 21]. In contrast to previous work, this paper focuses on the importance of the appearance
model in an online setting, which is orthogonal to the approaches of previous studies on
multi-target tracking, but is a key problem insingle object tracking applications [1, 4, 13].
The proposed method uses an off-the-shelf pedestrian detector [9] and a standard Hungarian
bipartite matching procedure for data association. We introduce a new patch-based repre-
sentation of each target to be tracked along with a sequential update scheme, which we call
“motion agreement tracking” (MAT). Our multi-target MAT algorithm is able to achieve
competitive results on widely accepted benchmark sequences. It can be implemented easily
and applied efficiently.

The development of algorithms for online tracking of pedestrians has experienced a slow
progress beyond applications of the particle filter. The performance for this category of
tracking algorithms is typically limited by the accuracy ofthe pedestrian detector used, which
is often inadequate. Developing a high-performing pedestrian detector remains an unsolved
problem in computer vision. To handle the often poor qualityof detections returned by
the detector, such as false alarms and missed detections, online tracking systems have been
implemented with ad-hoc designs. The most recent works prefer to process the videos in a
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batch mode, where the data is first organized into sets of short track fragments [15, 19, 21]
or represented by a graph structure [17, 20]. Based on these data structures, the algorithms
typically compute a global objective function offline and search for the best set of tracks
to minimize this function. Various constraints such as track continuity, mutual exclusion,
and motion smoothness have been imposed in order to narrow the search space and correct
the errors produced in the detection stage. Online trackingalgorithms, however, are not
necessarily inferior to their offline counterparts. They are typically more efficient and can
easily encode and filter high-order states, such as object velocity and acceleration, or the
joint state of all objects in the scene, etc. [14]. Offline tracking algorithms usually require an
extensive tuning process for model selection, without which the numerically optimal solution
to the designed objective function is not the desired solution.

The work described here was motivated by an evaluation of thepros and cons of online
versus offline tracking algorithms. We wanted to investigate whether the performance re-
sults of a new, well-designed, online 2D tracker, like the MAT algorithm, can measure up to
those of state-of-the-art offline algorithms. Our experiments show that our proposed online
MAT algorithm indeed outperforms state-of-the-art offlinealgorithms for various benchmark
videos. Given its efficiency and ease-of-use, our MAT algorithm is even valuable for track-
ing scenarios where its performance is expected to be inferior: The tracks it produces online
may be used as valuable initializations for offline trackingalgorithms. The main reason why
our proposed online MAT algorithm performs well lies in its superior object appearance
model. The proposed representation is robust to pose variations, which helps maintain the
object identities and prevent track switch errors. Designing object appearance models for
visual tracking has been extensively explored by the research community forsingle-target
tracking applications. In addition to various online learning algorithms proposed to update
the appearance model by re-training the underlying classification model [4, 13], patch-based
appearance representation has also been shown to be more effective than the holistic mod-
el [8, 11, 18]. However, it is not straightforward to transfer these techniques to onlinemulti-
target tracking applications, given the high computational expense of maintaining a model
for each target. Our method also adopts a patch-based representation by identifying patches
whose local motion directions agree with the global motion of the object. It turns out that
the appearance of such patches remain relatively stable with low variance throughout the
tracking period. We designed the MAT algorithm so that the contributions of these stable
patches lead to a collectively agreed motion estimate of theobject, which can then be passed
on to the data association step in the multi-target trackingframework.

In summary, our contribution to online multi-target visualtracking is to provide method,
called MAT, for sequentially updating the appearance modelof each target by indirectly e-
valuating the motion consistency among its local patches. We show that a distance measure
based on appropriately re-weighted local patches will successfully reduce tracker errors es-
pecially that lead to track fragmentation and track switching. The design as an online tracker
permits a real-time implementation. Its accuracy on widely-accepted benchmarks is highly
competitive compared to the state-of-the-art techniques.

2 Method

2.1 Online Multi-target Tracking System Overview

Our Motion Agreement Tracking system is outlined below. A tracker can be in any of the
four states: initialization, stable, lost and terminated.The management of the trackers is
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determined by optimal bipartite matching of object states and detections. The motion dy-
namics are modeled by a Kalman filter. Our new component is to identify and maintain a
set of robust sub-regions (local patches) for the appearance of each object and adjust the
distance measure accordingly, which will then be used by thedata association step.

MOTION AGREEMENTTRACKING ALGORITHM

For each frame:
Given a new set of detected objects{X}, a list of current stable trackers{S}, previously lost trackers
{L} and trackers just initialized{U}. Each trackeri maintains the object’s motion model by a Kalman
filter, and an appearance model: a collection{Ai}k of local patches along with their weights{wi}k.

Step 1 Cost computation: Compute the weighted matching costc between detections
{X} and trackers{S}, {L}, {U} according to Eq.3.

Step 2 Optimal assignment: Solve the bipartite matching problem with the Hungarian
method and find the assignments between detections and trackers.

Step 3 Tracker management: Each unassigned tracker inS is declared to be lost and
added to listL. Each re-assigned tracker inL is declared to be stable again and
added to listS. A new tracker is initialized for each unassigned detection. If a new
tracker inU has not become lost for the pastτ1 frames, it is added to the stable list
S. If a tracker inL has been lost forτ2 frames, it terminates itself.

Step 4 Model update: For each trackeri that has received a new detection, update its
Kalman filter and its patch weights{wi}k according to Eq.2. Update the appear-
ance modelAik of patchk if it is not in an occlusion relationship. For every tracker,
predict the position of the object in the next frame.

2.2 Appearance Model

We designed a person-specific appearance modelA with a collection of local image patches
by dividing the bounding box of a detected person into a grid representation, as shown in
Fig. 1. Each local patchk is described by a 64-bin color histogram in HSV space. Different
ways to generate these local rectangle-shaped patches are possible in our framework. Each
patch is associated with a weightwk, which is set to be uniform when the tracker is initialized.
A high weight suggests that the local patch does not change significantly over time, and low
weight that the patch belongs to the background or represents a fast changing part of the
pedestrian.

2.3 Region Motion Agreement and Weights Update

When a detection is assigned to the tracker after solving theassignment problem (Step 2
in Tracking Algorithm), the updated Kalman filter returns a filtered estimate of the object’s
global motion vectorv for the current frame. At the same time, each patch computes its own
motion vectorvk. It is important to make this local motion estimation step independent of the
global tracking procedure, as we prefer to update the appearance model independent of the
global motion estimation. Here, for simplicity, we estimate the local displacement of each
patch based on a similarity measure. We compare two popular measures in our system: the
maximum normalized cross-correlation between the featureof the patchHT and the feature
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Figure 1: The model of a tracked pedestrian consists of a gridof local image patches (mid-
dle), its global motion vectorv and a local motion vectorvk for each patchk (right). The
angleθk betweenv andvk is used to compute the influence, represented by weightwk (left),
of patchk in data association. A high weight is shown in light brown.

of the sub-imageHI ; the minimum histogram intersection distance betweenHT andHI , since
both of them are chosen to be histogram features.

Given the local motion estimates, our method evaluates eachpatch by checking the a-
greement betweenvk and the global motionv. The intuition is that ifvk is similar tov, then
this local patch moves along with the pedestrian, so it is more likely to be a stable region that
does not undergo appearance change. Disagreement can be caused by local non-rigid de-
formation or the presence of background patches inside the bounding box. By focusing our
effort on the most stable patches, we can construct a similarity measure that can distinguish
between interacting objects. The levelg of the agreement is computed by our implementation
as follows:

θk = cos−1(
vk · v

‖vk‖‖v‖
)

gk =







2, if θk <
π
4

1, if patch is in an occlusion relationship (occluder or occluded)
0, otherwise

(1)

whereθk is the angle between the two velocity vectorsv andvk as shown in Fig.1. The
motion scoreg is defined to be symmetric on both agreement and disagreementsides; the
magnitude is not important here, as its contribution to the following weight update will be
normalized. A score ofgk = 1 suggests a random guess. Usinggk, our algorithm updates the
weightwk associated with each patchk at timet as follows:

wk(t) =
α(t−1)w(t−1)

k + gk,

α(t−1)+∑k gk

α(t) =
α(t−1)+∑k gk

2
, (2)

whereα is a self-adaptive learning rate which controls how much thecurrent estimates
influence the update. A large value ofα suggests a smooth update of the weights at the
current frame, which happens when most local motion estimates agree with the global motion
model. Bothα andw are non-negative, andw is always normalized.

Finally, the distance function between an objecti and a candidate detectionj is given as:
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⋂
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⋃
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∑
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j)), (3)
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where first term evaluates the number of non-overlapping regions comprisingi and j by
computing one minus the ratio of overlap between their two bounding boxes (this number is
relatively small, because the speed of pedestrian is typically slow in high-frame-rate video).
The second term in Eq.3 measures the difference of appearance ofi and j by computing the
intersection of the normalized HSV histogram bins, denotedashn

i ,h
n
j , for each corresponding

patch, and arriving at an agreement value by subtracting theindividual contributions from
one, weighing them bywk, and summing them over all patches. Parameterλ balances the
contributions of the motion and appearance terms and is set to be one empirically. This
distance function is used in the data association step that determines the assignment of a
detection to its corresponding tracker, as described in Sec. 2.1.

3 Experiments

We extensively tested our MAT system on recent popular datasets, which include 3 sequences
from the PETS2009 dataset1, 3 sequences from the TUD dataset2, the Towncenter dataset3,
and 2 sequences from the ETH dataset4. For the first three datasets, we used a Matlab im-
plementation of an off-the-shelf pedestrian detector [9] to provide the detection candidates,
while for the ETH dataset we used publicly-available detection results to provide a fair com-
parison5.

We used the standard CLEAR MOT metrics [6] to evaluate the 2D tracking performance.
The Multiple Object Tracking Accuracy (MOTA) combines false positive rate, miss rate, and
identity switch rate into a single number with ideal value 100%; Multiple Object Tracking
Precision (MOTP) measures the average distance between theground truth and the tracker
output according to the region overlap criterion, where we chose 0.5 as the standard hit/miss
threshold (the default aspect ratio of the bounding boxes given by the detector [9] is not
perfectly aligned with the ground truth, and as a result, it may underestimate our precision
on some of the sequences). To better assess the quality, we additionally report the numbers
of Mostly Tracked (MT, (≥ 80%) trajectories, Mostly Lost (ML,≤ 20%) trajectories, track
fragmentations (FM), and identity switches (IDS). In orderto align with the results from the
literature, the matches between the system-generated tracks and the ground truth are deter-
mined by a greedy search. Another common implementation with the bipartite matching
method will generally give slightly higher scores.

We first tested on the 7 most popular sequences from the recentliterature. Our quan-
titative results are shown in Table.1. To analyze the effect of our appearance model, we
developed a baseline method where all components are kept the same except that the model
of object appearance does not use a grid of patches but is simplified to be a single HSV
histogram of the entire bounding box. As a result, the motionagreement computation is not
triggered. Throughout this experiment, the size of the gridis 6× 3; α is initialized to be
0.1; and we choose histogram intersection as the similaritymeasure for local motion estima-
tion. The online tracking algorithm by Zhang et al. [22] also has a rich representation that
models the object holistically in multiple color spaces, which they call “template ensemble.”
The results were provided by the latest version of the tracker from the authors, given our

1http://www.cvg.rdg.ac.uk/PETS2009/
2http://www.d2.mpi-inf.mpg.de/datasets
3http://www.robots.ox.ac.uk/ActiveVision/Research/Projects/
4http://www.vision.ee.ethz.ch/~aess/dataset/
5http://iris.usc.edu/people/yangbo/downloads.html

http://www.cvg.rdg.ac.uk/PETS2009/
http://www.d2.mpi-inf.mpg.de/datasets
http://www.robots.ox.ac.uk/ActiveVision/Research/Projects/
http://www.vision.ee.ethz.ch/~aess/dataset/
http://iris.usc.edu/people/yangbo/downloads.html
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Data Method MOTA(%) MOTP(%) MT ML FM IDS

S2L1 Baseline 90.8 74.3 23 0 11 10
(cropped) Our MAT 92.8 74.3 23 0 11 8

Zhang et al. [22] 91.0 66.1 22 0 16 10
*Andriyenko et al. [2] 88.3 75.7 20 1 - -

S2L2 Baseline 67.8 72.9 51 3 149 166
(cropped) Our MAT 73.3 73.2 51 3 113 122

Zhang et al. [22] 58.9 67.3 27 6 168 173
*Andriyenko et al. [2] 60.2 60.5 25 8 - -

S2L3 Baseline 55.6 69.9 18 8 48 58
(cropped) Our MAT 58.3 69.7 21 8 39 41

Zhang et al. [22] 42.2 64.9 10 14 36 34
*Andriyenko et al. [2] 43.8 66.3 10 20 - -

Stadtmitte Baseline 75.1 70.0 9 0 2 3
Our MAT 75.4 70.0 9 0 2 3
Zhang et al. [22] 75.0 59.8 6 0 1 2
*Andriyenko et al. [2] 68.6 64.0 5 0 - -

Crossing Baseline 90.2 76.8 11 0 6 10
Our MAT 90.6 76.9 11 0 5 8
Zhang et al. [22] 71.3 67.5 7 0 15 11
*Breitenstein et al. [7] 84.3 71.0 - - - 2

Campus Baseline 68.5 71.3 4 0 5 5
Our MAT 68.5 71.3 4 0 5 5
Zhang et al. [22] 74.7 68.0 6 0 4 3
*Breitenstein et al. [7] 73.3 67.0 - - - 2

Towncenter Baseline 69.4 68.7 139 18 462 222
Our MAT 69.5 68.7 139 17 453 209
Zhang et al. [22] 73.6 71.3 163 16 161 157
*Benfold et al. [5] 64.8 80.4 - - - 259
*Pellegrini et al. [16] 63.4 70.7 - - - 183

Table 1: Quantitative results on 7 publicly available sequences. Method indicated with “∗”
used its own pedestrian detector, and we list their results directly from published literature.
Top score in each metric is highlighted in red. Note that we only track objects in a restricted
area on PETS sequences, which is defined by Andriyenko et al. [2].

detection output. We also list several recent tracking techniques that have reported superior
performance on the same sequence so that the readers can havea better view of the challenge
of the data. These state-of-the-art techniques include batch energy minimization with an oc-
clusion model by Andriyenko et al. [2], a tracker that encodes social behavior by Brendel
et al., and two variants of a particle filter [5, 7]. As expected, our new appearance model
mostly improves the tracking performance by reducing trackfragmentation and ID switches,
especially for a crowd with partial visibility (S2L2, S2L3). For “sparse situations,” where
pedestrians seldom interact, a strong appearance model cannot contribute much. The MAT
algorithm also shows only marginal improvements if the pedestrian is always in severe, even
complete occlusion (TUD dataset). Overall, our MAT algorithm achieves consistently good
results across all sequences. Since it is conceptually simple and runs at 1–2 fp with a Matlab
implementation, we plan to convert it to a real-time trackerand make it available, so it can
serve as an efficient baseline algorithm for future studies.

To remove the effect of the pedestrian detector used, we conducted two additional ex-
periments with the same detections as input. We also tested our system with different pa-
rameters. In particular, we chose two grid sizes, 6×3 and 10×5; three initial values ofα,
0.1, 1 and 10; two similarity measures, the maximum normalized correlation and the min-
imum histogram intersection. In total, we analyzed the meanperformance and its standard
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Data Method MOTA(%) MOTP(%) MT ML FM IDS

S2L1-full Baseline 88.6 74.2 19 0 17 13
Our MAT 90.1(±0.2) 74.3(±0.0) 19 0 17.5(±0.5) 10.5(±0.5)
DP [17] 82.2 72.5 17 0 102 184
DCT [3] 56.8 74.4 17 0 59 56
DCT+DP [3] 77.0 74.5 16 0 63 58

S2L2-full Baseline 69.5 72.5 31 0 188 200
Our MAT 72.1(±0.6) 72.6(±0.0) 32(±0.0) 0.5(±0.5) 165.3(±4.9) 179.3(±4.4)
DP [17] 54.9 73.1 8 2 394 501
DCT [3] 35.7 69.4 4 0 492 525
DCT+DP [3] 47.6 70.0 7 0 394 445

S2L3-full Baseline 50.7 69.5 19 7 63 69
Our MAT 52.5(±0.9) 69.5(±0.1) 16.4(±0.9) 7.5(±0.6) 60.8(±4.6) 62.9(±5.0)
DP [17] 40.0 70.7 11 18 115 156
DCT [3] 21.3 70.6 5 15 236 278
DCT+DP [3] 32.4 70.7 7 15 97 103

Table 2: Quantitative results on PETS sequences. The MAT algorithm tracked all pedestrians
in the videos. The performance of MAT with different system parameters is expressed in the
form of mean(std). The top score in each metric is highlighted in red. Competing methods
are evaluated by code from the authors’ website with defaultparameter settings.

deviation from 12 system configurations. Given the same detection results, we compared
our tracker with the batch energy minimization method (DCT)by Andriyenko et al. [3] and
the batch network-flow method (DP) by Pirsiavash et al. [17] using their publicly available
code. The DCT method requires a good initialization with tracklets. We used the tracks
produced by the DP method as suggested in their paper. The results on the PETS dataset are
shown in Table.2. Again, we witnessed the consistent reduction of number of fragments and
ID switches compared to our baseline tracker, and the performance is stable across different
configurations. Our online MAT method performs surprisingly better than batch processing
methods, which are more computationally expensive. In particular, the network-flow method
has an inherent bias on the length of tracks it produces (its objective function tends to favor
many small track fragments). It is also difficult to encode high-order state such as velocity
or acceleration to the network which results in more ID switches than from Bayesian filter-
based method. We also found the DCT energy minimization method has strong dependence
on the initialization step in order to reduce the search space and avoid many local minima.
Essentially, it is a trajectory-fitting method that focusesmore on the smoothness of tracks.
This limits its ability to handle irregular non-smooth motion patterns, which can be modeled
more easily by the Bayesian filtering method. It also suffersfrom a model selection problem
during its optimization procedure. Very often we saw that the solution that achieves high-
er tracking accuracy does not necessarily suggest a lower energy, which makes parameter
tuning difficult.

Finally, we evaluated our trackers with detections provided by Yang et al. [21] on two se-
quences (Bahnhof and Sunny Day) from the ETH dataset. We chose 3 competing algorithms
that report superior performance on these two sequences in literature: the batch network-flow
method (DP) by Pirsiavash et al. [17] and two batch tracklet stitching methods (PIRMPT and
CRF) [15, 21]. To make consistent comparisons with their reported results, we computed the
metrics suggested by the authors [15, 21] using their software, which are slightly different
from CLEAR MOT metrics. The results are shown in Table3. We again found the inherent
bias of the flow-based method to produce many track fragments. The two tracklet stitching
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methods learned a strong discriminate model with training examples extracted from a set of
reliable tracklets. Our online tracker is not expected to achieve better performance than these
complicated systems in terms of ID switches, but may providegood initialization to them.

Data Method Recall Precision MT(%) ML(%) FM IDS

BAHNHOF Our MAT 85.7 84.2 79.8 6.4 42 38
SUNNYDAY Our MAT 78.9 75.8 83.3 6.7 3 7
All Our MAT 84.5 82.6 80.6 6.5 45 45

DP [17] 67.4 91.4 50.2 9.9 143 4
PIRMPT [15] 76.8 86.6 58.4 8.0 23 11
CRF [21] 79.0 90.4 68.0 7.2 19 11

Table 3: Quantitative results on the ETH dataset. The top score in each metric is highlighted
in red. For details of the metrics, see [21].

Figure 2: Sample images from our tracking results. Colors and numbers indicate tracks
corresponding to different people.

4 Conclusion

We proposed an online multi-target tracking algorithm witha dynamic appearance model.
The local regions that remain stable in time are discovered by a novel technique called “mo-
tion agreement tracking.” When a local motion estimate agrees with the global estimate,
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the algorithm considers such local patch to be stable and increases its weight to contribute a
smaller value to the distance measure. We integrated our technique into an online tracking
system and tested it extensively on popular tracking benchmarks. Our competitive results
are particularly appealing since the technique is so efficient. They also suggest that the role
of a proper appearance model may be more important than researchers used to think for the
tracking application, where the majority of previous studies focuses on motion dynamics.
The proposed motion agreement tracking algorithm can be utilized as a new baseline to help
identify the challenges of future benchmarks and the limitsof current tracking techniques.
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