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Abstract. We propose a method that automatically tracks and seg-
ments living cells in phase-contrast image sequences, especially for cells
that deform and interact with each other or clutter. We formulate the
problem as a many-to-one elastic partial matching problem between
closed curves. We introduce Double Cyclic Dynamic Time Warping for
the scenario where a collision event yields a single boundary that en-
closes multiple touching cells and that needs to be cut into separate cell
boundaries. The resulting individual boundaries may consist of segments
to be connected to produce closed curves that match well with the indi-
vidual cell boundaries before the collision event. We show how to convert
this partial-curve matching problem into a shortest path problem that
we then solve efficiently by reusing the computed shortest path tree. We
also use our shortest path algorithm to fill the gaps between the seg-
ments of the target curves. Quantitative results demonstrate the benefit
of our method by showing maintained accurate recognition of individual
cell boundaries across 8068 images containing multiple cell interactions.

1 Introduction

Cell morphology and behavior analysis has an important role for studying bio-
logical processes, developing biomaterials, and diagnosing and fighting diseases.
Reliable automated analysis of cell morphology and behavior depends on ac-
curately finding the contours of each cell in every image. This is challenging
because many cells undergo significant appearance variation in short periods of
time. Amplifying the difficulty of maintaining shape recognition is the fact that
cells frequently approach or touch other cells and clutter for a variety of reasons,
including dense clustering of cells on the substrate, imperfect segmentation of
the cell boundaries, and insufficient image resolution. The key computer vision
challenge addressed in this paper is how to obtain cell shape information as cells
deform during interactions with multiple other cells.

General segmentation algorithms that address cell deformation were summa-
rized thoroughly by Rittscher [1]. They are limited to scenarios without apparent
cell-to-cell or cell-to-clutter contacts or collisions. When a contact event occurs,
the image of the shared boundary typically does not have a sufficiently strong
intensity gradient, as in Fig. 1. This makes it difficult to detect the boundary
where cells are touching. Segmentation methods that distinguish between cells
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Fig. 1. Matching cell boundaries through time-lapse sequences are challenging tasks
for these cases of colliding, dividing, and otherwise interacting cells

within a cluster of cells include static image-based and temporal-based methods.
Nath et al. [2] added constraints to the level set method using the assumption
that cells in the image share similar characteristics. Liu and Sclaroff [3] noted
segmentation success in the presence of small amounts of cell overlap. Heuristics
about expected intensity changes along boundaries between cells, or cells and
clutter, have also been adopted [4]. These static image-based methods limit the
generalizabilty across imaging modalities, degree of overlap, or cell type. Object
boundaries have been propagated between successive frames such that each pixel
on the merged boundary is associated to a pixel on one of the cell boundaries
in the previous frame [5]. However, to avoid the high computational cost asso-
ciated with this partial matching problem, heuristics were adopted which limit
segmentation accuracy. The heuristics also make it difficult to increase the scale
of the proposed method and apply it successfully to scenarios where multiple
cells are involved in an interaction.

In this paper, we treat the segmentation of interacting cells as a partial match-
ing problem between cell boundaries obtained from consecutive frames. Methods
addressing the issue of partial matching were either applied to rigid transforma-
tions only [6] or chose distance measures such as the edit distance [7] that are
not suitable for modeling the effects of stretching and shrinking. To the best of
our knowledge, we are not aware of any competing method that can be applied
directly to our elastic partial matching problem. Our contributions are: 1) A
general framework to address the task of many-to-one partial matching, as op-
posed to the traditional tasks of one-to-one or two-to-one matching; 2) A new
Double Cyclic Dynamic Time Warping procedure with a mechanism that reuses
shortest path trees to speed up computation; 3) A tracking system embedded
with the matching scheme that achieves high segmentation accuracy for varying
numbers of deforming cells over long durations of interactions.

2 Method

Our segmentation method is embedded in a tracking system, which performs ini-
tial segmentation, frame-by-frame data association, partial or complete bound-
ary matching, and curve gap completion. During the preprocessing step, we
followed the work by Theriault et al. [8] to obtain the initial segmentation. The
Hungarian algorithm is adopted to solve the frame-by-frame data association
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problem and identify merging and splitting events. Based on the relative posi-
tions of cells, the number and the order of cells involved in partial matching
could be determined. In the following, the main effort is to address the problems
of many-to-one partial matching and gap completion.

2.1 Partial Matching with Hierarchical Dynamic Programming

The shape of a deformable object is represented by its closed boundary curve
c of length Lc. The curve is re-parameterized as a function C: s → f, where
s ∈ [0, L] is the arc length and f is a d-dimensional local feature descriptor.
A matching or alignment between curves C and C′ is a monotonic mapping
function g : [0, L] → [0, L′], g(s) = s′. Given a set of K candidate curves {Ck}
representing individual cells and a target curve Ct extracted from a merged
cluster, where every segment of the target curve must be uniquely matched to
a segment of one of the candidate curves, our goal is to minimize the following
functional:

E(g1, g2, ..., gK , l1, l2, ..., lK+1) =

K∑

k=1

∫ lk+1

lk

‖Ck(gk(s))− Ct(s))‖2 ds (1)

Particularly, we set l1 = 0, lK+1 = L so that the target curve Ct will be com-
pletely matched, while each segment of Ct will be partially matched to the candi-
date curve Ck. The search space of this functional includes all possible matching
functions {gk} and cutting points {lk} along the target curve Ct. Note that,
when K = 1, Eq. 1 is reduced to the functional commonly used for the complete
alignment between two curves [9,10].

Fig. 2. Extended dynamic programming table for Double Cyclic Dynamic Time Warp-
ing. Left: Every M×N block has to be computed to find the optimal alignment starting
at pair (i, j) to any ending pair up to (i+N, j+M). Shortest paths computed from ad-
jacent blocks can be reused to speed up the computation. Right: After a block [1 : i, 1:j]
has been computed, all shortest paths going through (2,1) (green) remain the same in
block [2 : i+1, 1 : j]; Similarly, those going through (1,2) (blue) can be reused in block
[1 : i, 2:j+1]; those going through (2,2) (yellow) can be reused in block [2 : i+1, 2:j+1].
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We chose Dynamic Time Warping (DTW) to search for the matching function
g. DTW allows us to capture the significant stretching and shrinking effects of
the boundary of moving fibroblast cells. Given two sequences of ordered data
points, the best alignment is computed with the following subproblem structure:

d(i, j) = c(i, j) + min{d(i− 1, j) + wi, d(i, j − 1) + wj , d(i− 1, j − 1) + wij}.(2)

where c(i, j) measures the dissimilarity between data point i from one of the
sequences and data point j from the other sequence and wi, wj , wij are penalty
terms for different types of pairings. d(i, j) is the accumulated matching cost up
to pair (i, j). The whole process can be visualized by a dynamic programming
(DP) table, as in Fig. 2. If the lengths of two sequences areM andN respectively,
it takes O(MN) steps to compute the global optimal alignment for the complete
matching, which corresponds to the shortest path from entry (1, 1) to entry
(N,M) in the DP table. As a byproduct, every entry (i, j) in the DP table
encodes the alignment from the pair (1, 1) to the pair (i, j).

If a matching of closed curves is desired, as in our case, it is also required
to search for the start pair. This has been accomplished with Cyclic Dynamic
Time Warping (CDTW) [10]. For the problem of matching complete curves,
only one of the two sequences has to be cyclically shifted in order to search
for the correct start pair. A straightforward implementation of CDTW leads to
O(MN min(M,N)) computations while the fastest algorithm known for this task
can compute the optimal alignment of complete curves in O(MN logmin(M,N))
steps, which is based on the key observation that the optimally aligned curves
corresponding to different start pairs cannot intersect in the DP table [10].

Standard DTW/CDTW methods have been mostly applied to solve the com-
plete matching problem. They are essentially used to search for the alignment
function g only in Eq. 1. The complexity of the partial matching problem comes
from the need to search for “cutting points” of the target curve in the functional
in Eq. 1. Such complexity inevitably leads to the need to search for a start pair
by cyclically shifting both sequences. We call this extension “Double Cyclic Dy-
namic Time Warping” (DCDTW). Note that even if we tried every possible pair
(n, j), for n = 1, ..., N , we still do not know if point j from the second sequence
should be matched to any point from the first sequence in first place. At the
same time, we also do not know the optimal length of a subsequence we should
look for. To address all these difficulties, we here adopt a hierarchical dynamic
programming approach to solve the partial matching problem optimally.

At the first stage of our proposed algorithm, we need to compute the optimal
alignment for pairs (sk, st) and (s′k, s

′
t), where sk, s

′
k ∈ {1, 2, ...Nk} are the start

and end points from the candidate curve Ck and, similarly, st, s
′
t ∈ {1, 2, ...M}

are the start and end points from the target curve Ct. To search for the start
pair, we extend the DP table to size (2Nk − 1)× (2M − 1) as shown in Fig. 2. In
the extended table, the shortest path from cell (sk, sm) to cell (s′k, s

′
t) (such that

|sk−s′k| ≤ N, |st−s′t| ≤ M) gives the optimal alignment between curve segment

C
sk→s′k
k and C

st→s′t
t . To compute all such shortest paths, we can apply DTW

for every N ×M block from the extended DP table, which requires O(N2M2)



Hierarchical Partial Matching and Segmentation of Interacting Cells 393

steps. However, the following proposition shows that approximately at least one
third of this computation is not necessary.

Proposition 1. When applying the standard DTW N×M times for every N×
M block of the extended DP table, 1

3O(M2N2) of the computation is redundant.

The proposition uses the observation that the DP table for one block can be
reused for the adjacent blocks because of the non-intersect property of shortest
path. We find such reduction is usually much higher in practice.

We denote all shortest paths from DCDTW as the set of matching functions

G with the matching cost {csk→s′k
st→s′t

}. Given a segment of the target curve C
lk→l′k
t

such that 1 ≤ lk ≤ l′k ≤ M , the optimal partial matching with the candidate

curve Ck is chosen to be gk
′

k = argming∈G c
sk→s′k
lk→l′k

and the corresponding mini-

mum cost is denoted as c
l′k
lk
. There will be K×M×M matching functions selected,

each of which represents the best alignment if we want to match one segment
cut from the target curve to one of the candidate curves (possibly partially).

Multiple candidate curves compete for the matching points on the target
curve, because every data point on the target curve can only be matched exactly
once to one of the candidate curves. We find the best cutting points {lk} on the
target curve through the iterative steps:

γ(k,m) =

{
cm1 , if k = 1
min1≤l≤m γ(k − 1, l) + cml + wm, otherwise.

(3)

where γ(k,m) is the compositional cost for matching segment C1→m
t to k candi-

date curves and wm is the penalty for choosing point m as the cutting point. We
here assume the relative order of candidate curves is known (through tracking)
but the first curve to be matched has to be searched. The above computation
takes O(KM2) steps, and γ(K,M) is the minimum matching cost corresponding
to the global minimum of the functional in Eq. 1. After the global minimum is
found at γ(K,M), the best cutting points can be traced back and the best align-
ment with each individual cell can be recovered from its corresponding matching
function gk

′
k . We want to emphasize that there could be repetition in the K can-

didate curves in order to handle the situation where more than one segment from
the target curve is matched to the same individual curve, as shown in Fig. 3.

2.2 Gap Completion with Shortest Path

To obtain a complete segmentation of interacting cells, we need to fill in the
gaps between disconnected pieces of the boundaries of touching cells (Fig. 3).
Similar to the path tracing for actin filament segmentation [11], we close the
boundary by dynamic programming. For each gap, we create a directed graph
that connects two points, the sink and source nodes, that delineate the gap. The
pixels of the image patch between these points become nodes in the graph. Two
nodes are connected if the corresponding pixels are neighboring pixels. A cost
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Fig. 3. Left: To fill the gap between boundary pixels represented by S and T , the
shortest path through a graph, which models the image properties of the gap, is com-
puted, Right: Output result. Given the input of a single combined outline, our method
cuts it into the separate boundaries of three cells (red, green, blue) and fills boundary
gaps (yellow) where the cells touch.

is associated with each node that captures the preference of attraction/repelling
when a node is visited. In our application, we use as the node cost the minimum
Euclidean distance to the predicted location of the boundary of the cell obtained
via tracking. A transition cost is associated with each edge that penalizes moving
into the interior of the cell, which is chosen to be the intensity gradient. Once
the graph is constructed, the goal is to find the shortest path traveling from the
source node to the sink node with minimum accumulated cost. Since the cost
along a path is additive, it favors paths with short lengths and avoids crossing
high gradient regions. The shortest path can be computed efficiently, again, by
using dynamic programming.

3 Experiments and Results

We collected a dataset including phase-contrast images of fibroblast cells of the
Balb/c 3T3 mouse strain cultured at 37◦C in 5% CO2 observed with a Zeiss Ax-
iovert S100 microscope. A library of merge events was extracted, which consisted
of cell-to-cell/clutter interactions, mitosis, and apparent collisions due to over-
segmentation. We collected 41 merge subsequences with 7052 images showing
2-to-1 merging and 975 frames showing 3-1 merging as exemplified in Fig. 5.

We used the precision measure to evaluate the initial outline of a segmented
merged object. Given the ground truth A and segmentation result B, precision

calculates the average overlap between the two regions as |A∩B|
|A∪B| . As a baseline,

the average annotator agreement using this criterion is 0.58, which indicates the
challenge of obtaining a reliable ground truth due to inter-annotator disagree-
ment. The precision of the segmentation algorithm over 100 non-merged cells
was 0.408 which is close to the agreement between annotators. The error is at-
tributed in part to the algorithm incorporating the halos surrounding cells while
annotators did not include halos in the cell boundaries when annotating.

To evaluate the performance of separating merged objects, we modified the
accuracy measure [12]. Given the ground truth region A and the segmentation
region result B, accuracy calculates the fraction of the true cell region captured

by the segmented region as |A∩B|
|A| . To capture the fact that one segmentation

result may be better at the expense of another when separating merged objects,
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Fig. 4. Performance of Boundary Cutting Algorithm. Left: the accuracy is the area
of intersection between the ground truth and auto-segmented region normalized by
the area of the ground truth. The cut purity is computed as the average of accuracy
of all merged objects. Right: Each tick mark on the x-axis represents the number of
frames in a unique merge-event subsequence. The mean values shown are measured
using the scores from all cells observed across all images in the subsequence. Higher
values indicate stronger results.

Fig. 5. Qualitative result of interacting cells. Four images for each merging event are
shown, which are (from left to right) the original image, the initial segmentation, the
final output and the manual segmentation.

we report a single score we call “cut purity” to indicate the average accuracy
score for all objects involved in the merge event. The cut purity measure limits
obtaining a good score to the situation when all cells in the merge event are ac-
curately segmented. Fig. 4 shows results for all image sequences with each point
indicating an average cut purity score across all images in the merge event. As
is shown, our method remains strong for both short and long duration merge
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events as fibroblast cells regularly undergo significant amounts of deformation
during interactions. Our Matlab implementation can process each merging event
in 5 secs on a Intel Xeon(R) 3.20GHz PC.

4 Conclusions

We introduced Double Cyclic Dynamic Time Warping to solve the problem of
many-to-one partial matching of closed curves. A shortest path was chosen to
fill the gaps between the segments of the target curve. The experiments show
that our methods produce accurate cell boundaries by appropriately cutting the
combined outline of touching cells. In future work, we plan to apply our methods
to other types of cells with additional imaging modalities.
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