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Abstract—We hereby publish a new thermal infrared video
benchmark, called TIV, for various visual analysis tasks, which
include single object tracking in clutter, multi-object tr acking
in single or multiple views, analyzing motion patterns of large
groups, and censusing wild animals in flight. Our data describe
real world scenarios, such as bats emerging from their caves
in large numbers, a crowded street view during a marathon
competition, and students walking through an atrium during
class break. We also introduce baseline methods and evaluation
protocols for these tasks. Our TIV benchmark enriches and
diversifies video data sets available to the research community
with thermal infrared footage, which poses new and challenging
video analysis problems. We hope the TIV benchmark will
help the community to better understand these interesting
problems, generate new ideas, and value it as a testbed to
compare solutions.
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I. I NTRODUCTION

The fast growth in computer vision research in the last
decade has mostly been associated with visible-light sen-
sors. Non-visible spectrum sensors have not been used as
widely because, initially, low cost cameras had poor spatial
resolution and a narrow dynamic range, and cameras with
better image quality were prohibitively expensive for many
researchers. Sensor technology has now advanced to a point
that non-visible range sensors have regained researchers’
attention in both academia and industry. With our work, we
intend to answer the community’s need for a comprehensive
benchmark for a now popular non-visible range sensor, the
thermal infrared camera. This passive sensor captures the
infrared radiation emitted from the scene and its objects.
Thermal imaging was originally developed for industrial and
military use, for example, surveillance and night vision tasks.
Recent studies have gone beyond the traditional tasks and
applied thermal imaging to monitoring of wild animals, non-
invasive food inspection, and heat loss detection [1], [2].Our
goal here is to provide the research community with a di-
verse set of video sequences that addresses various common
computer vision problems. The proposed benchmark comes
with a large number of high quality annotations to facilitate
quantitative evaluations and comparisons of detection and
tracking algorithms.

A few of thermal infrared dataset have been published
in the past, e.g., the OTCBVS Benchmark1, the LITIV
Thermal-Visible Registration Dataset [3], the AIC Thermal-
Visible Night-time Dataset [4], and the ASL Thermal In-
frared Dataset [5] (Table I). Typically these datasets focus
on specific biometric applications or involve thermal-visible
multimodal systems and imply a close-up view of the objects
in the scene. For general tasks, such as object detection
and tracking, the usefulness of these datasets as benchmarks
is limited due to their low image resolution, short video
duration, and most importantly, lack of complexity of visual
events in realistic, challenging environments. In contrast, our
new thermal infrared video (TIV) dataset was collected by
high-resolution high-speed cameras (FLIR SC8000, FLIR
Systems, Inc., Wilsonville, OR), with a series of carefully
designed recording protocols and preprocessing steps. The
TIV benchmark covers five common computer vision tasks:

• Tracking a single object through clutter,
• Tracking multiple objects from a single view,
• Tracking multiple objects from multiple views,
• Visual counting,
• Group motion estimation.

In addition, background subtraction and object detection,are
generally required as part of the solution. The categories
of objects of interest, included in TIV, are pedestrians,
marathon runners, bicycles, vehicles, and flying animals
at various resolutions (see Fig. 1 for some snapshots). So
far, TIV consists of 63,782 frames, recording thousands of
objects; active updates are in progress. To the best of our
knowledge, this is the largest thermal infrared video dataset
available to the public.

II. TIV D ATASET DESCRIPTION

Our TIV dataset consists of seven different scenes, two
of them indoor scenes. Most of the data were recorded with
FLIR SC8000 cameras (FLIR Systems, Inc., Wilsonville,
OR), except sequencesDavis08-sparse, Davis08-dense,
Davis08-counting, which were previously published [8]. The
full resolution is1024×1024, but we use cropped images for
some sequences in order to focus on regions of interest. Each
pixel is described by 16 bits and has a value typically ranging

1http://www.vcipl.okstate.edu/otcbvs/bench/



Table I
SUMMARY OF THE PROPERTIES OF THETHERMAL INFRAREDV IDEO TIV B ENCHMARK

Data Resolution #Seq. #Frames Category Density Views
OTCBVS
OSU Pedestrian [6] 360× 240 10 284 Pedestrian Sparse 1 (thermal)
OSU Color-Thermal [7] 320× 240 6 17,089 Pedestrian Sparse 1 (thermal) + 1 (visible)
IRIS Face 320× 240 N/A 8,456 Face N/A 1 (thermal) + 1 (visible)
Terravic Face 320× 240 20 23,335 Face N/A 1 (thermal)
Terravic Motion 320× 240 18 25,355 Pedestrian Sparse 1 (thermal)

Divers, Plane
Terravic Weapon 320× 240 5 1,900 Weapon N/A 1 (thermal)
LITIV [3] 320× 240 9 6,236 Pedestrian Sparse 1 (thermal) + 1 (visible)
ASL-TID [5] 324× 240 9 4,381 Pedestrian, Sparse 1 (thermal)

Cat, Horse
Our TIV up to 16 63,782 Pedestrian, Runner Sparse up to 3 (thermal)

1024 × 1024 Car, Bicycle Medium
Motorcycle, Bat Dense

Figure 1. Snapshots of TIV dataset. Sequences captured fromthe same scene are grouped with the same false color.

between 3,000 to 7,000 units of uncalibrated temperature.
The frame rate was set between 5 to 131 fps depending
on the speed of the objects in the scene. The full list of
sequences is given in Table. II.

Thermal cameras typically exhibit a fixed pattern of noise
caused by the nonuniform response of the sensor across
the pixel array. For the users’ convenience, the benchmark
includes both raw data and image data after we applied a
“nonuniform two-point correction pre-process” [9], [10],in
which two uniform sources of intensity (“cold” and “hot”)
were sequentially imaged. For each pixel, the difference be-

tween the measured intensityym and the corrected intensity
yc of the image is expressed as the linear approximation

∆y = ym − yc = a · y + b. (1)

From the hot and cold measurements, the multiplicative
gain a and additive offsetb can be computed for each
pixel. The output of the nonuniform correction is obtained
by subtracting the approximated difference∆y from the
original input ym. An example image before and after
nonuniform correction is given in Fig. 2.

Four out of seven scenes in TIV have multiview support.



Table II
SUMMARY OF THE V IDEO SEQUENCES INOUR TIV B ENCHMARK

Name Resolution #Fra. Category Density Views

Atrium 512 × 512 7,964 People medium 2
Velifer 1024×1024 3,000 Bat Sparse 3
Bracken-
counting

1024×1024 150 Bat Dense 1

Bracken-
flow

1024×1024 10,000 Bat Dense 1

Davis08-
sparse

640 × 512 3,300 Bat Sparse 3

Davis08-
dense

640 × 512 600 Bat Dense 3

Davis08-
counting

640 × 512 300 Bat Dense 1

Davis13-
medium

1024×1024 1,500 Bat Medium 3

Frio10 1024 × 512 499 Bat Dense 1
Frio11 1024×1024 299 Bat Medium 1
Lab 512 × 512 26,760 People Medium 3
Marathon-1 1024 × 512 1,000 Pedestr. Medium 1
Marathon-2 2,999 Runner Medium 1
Marathon-3 1,275 Bicycle Medium 1
Marathon-4 1,282 Motorcy. Medium 1
Marathon-5 1024 × 640 6,000 Car Medium 1

(a) Raw Frame (b) Corrected Frame

Figure 2. Sample images for nonuniform correction.

When multiple cameras were used, all cameras were syn-
chronized with a signal generator that triggered the recording
at the same time. TIV includes camera calibration informa-
tion. For planar motion (Atrium and Lab), a homography-
based ground plane was estimated [11]. For free motion in
3D space (VeliferandDavis13-medium), we applied the self-
calibration procedure proposed by Theriault et al. [2].

In the following sections, we show the use of specific TIV
sequences to address five different visual analysis tasks.

A. Tracking a Single Object through Clutter

Tracking a single object through clutter is one of the
most active research topics in computer vision [12]. The
task starts typically with a manual initialization to specify
the object of interest. The object is then tracked through-
out the sequence. The object may experience appearance
changes, have interactions with distractors, or change its
motion pattern. Most of the state-of-the-art algorithms focus
on appearance modeling and the search strategy, and use

(a) Frio10 (b) Marathon-5

Figure 3. Sample frames for single object tracking.

machine learning tools. They typically cannot be directly
applied to infrared videos, because there are other, unique
challenges here. The thermal radiation helps the foreground
object to stand out in the image, but very often the object
also loses appearance details. Moreover, it is very difficult to
distinguish multiple objects having the same thermal profile.
To specifically highlight these two issues, we collected the
sequencesFrio10 andMarathon-5(Fig. 3).

For theFrio10 sequence, the task is to track 10 specified
bats during the emergence of the colony. The density of
the bats is high, while the resolution of each bat is small.
There are frequent partial or complete occlusions, but the
periodic motion pattern of each bat is relatively stable. For
the Marathon-5sequence, the task is to track 10 specified
pedestrians walking on busy sidewalks and between parked
cars. The background is noisier in this case, and there are
frequent occlusions as well. Given the small resolution of
the objects in the image, we only annotated a single point
for each object and smoothed the trajectory.
Baseline Method and Evaluation.To initialize a track, we
used either the annotation from the first or the last frame.
We call these“tracking forward” and “tracking backward”
initializations. For theFrio10 sequence, the baseline is a
detection-based method that applies an object detector and
filters the state of the object by a nearest neighbor search.
The object detector requires background subtraction and
localizes the objects by computing the pixels with local in-
tensity maxima within each binary disconnected component.
For Marathon-5, the baseline is an intensity-based method
that uses normalized correlation to find the best match in
the next frame. Both methods also apply a linear dynamic
motion model to predict the position of the object when
the detection fails or the correlation score is not sufficiently
high.

To evaluate baseline performance, we computed the Eu-
clidean distance between the tracked position and the ground
truth in each frame. If the distance was smaller than a
predefined hit/miss threshold, we claimed a good match was
found. Throughout the experiments, we chose 5 pixels as the
threshold. The key metric, “success rate,” is defined as the
total number of good matches divided by the total number of
frames, with ideal value 1. We do not encourage the usage of
the traditional metric “mean distance error” here for reasons:



(a) Frio11 (b) Marathon-2 (c) Marathon-4

Figure 5. Sample frames for multi-object tracking from a single view.

1. The error can become arbitrarily large when the tracker
drifts. 2. The resolution of the object in our experiment is
small, so the tracked pixel location within the region of the
object is not crucial. 3. The 5 pixel hit/miss threshold is
sufficiently small to guarantee that the tracked position falls
into an acceptable region of trust.

The results of the baseline methods on the two sequences
are shown in Fig. 4. The average success rate is51% for the
Frio10 sequence, and23% for the Marathon-5 sequence,
which suggests there is much room for future research in
tracking algorithms. In Fig. 4, we also observe that the
baseline method is sensitive to the initialization and is not
working robustly for a wide range of conditions. The poor
generalization of many tracking algorithms has also been
witnessed in visible-sensor tracking domain [12].
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(a) Frio10 (b) Marathon-5

Figure 4. Tracking results for single object tracking with tracking forward
and tracking backward initializations

B. Tracking Multiple Objects from a Single View

The classic pipeline for tracking multiple objects from a
single view involves object detection, temporal data associa-
tion and object state estimation. These steps can be arranged
in a sequential order, or placed in a batch processing mode.
We refer to Wu’s PhD thesis [13] for a detailed summary of
the state-of-the-art algorithms. In addition to detectingnoisy
objects, the main challenge for thermal image analysis is to
resolve the data association ambiguity in the presence of
mutual occlusion. To address these problems, we collected
five sequences:Frio11, andMarathon-1, 2, 3, and 4(Fig. 5).
For theFrio11 sequence, the task is to track all bats flying
across the scene. For theMarathon sequences, the task is
to track pedestrians, bicycles, motorcycles and cars. Two
different viewpoints are provided with cropped images to
focus on the region of interest. We annotated a single point

for each bat inFrio11 and a bounding box for each object
in Marathon.
Baseline Method and Evaluation.For the bat sequence, the
baseline method we adopted here is similar to the sequential
tracking method proposed by Betke et al. [14]. This method
detects bats by searching for the local maxima of each
disconnected component after background subtraction. Then
it sequentially associates detections to objects through bipar-
tite matching and applies Bayesian filtering to estimate the
motion of each bat. For the marathon sequences, we chose a
batch processing method (“SDD-Net”) [13] with a sparsity-
driven object detector that handles mutual occlusions in
the scene. The data association was implemented with the
network flow formulation.

We use the popular “CLEAR MOT” metrics [15] to
evaluate the tracking performance of our baseline methods.
The Multiple Object Tracking Accuracy (MOTA) combines
false positive detection rate, miss rate, and identity-switch
rate into a single number with ideal value100%; the Multiple
Object Tracking Precision (MOTP) measures the average
distance between ground truth and tracker output. For
bounding box measurements, precision is defined according
to the region overlap criterion with ideal value1. For point
measurements, it is based on the Euclidean distance with
ideal value0. To better assess the quality, we also report
the numbers of Mostly Tracked (MT,≥ 80%) trajectories,
Mostly Lost (ML, ≤ 20%) trajectories, track fragmentations
(FM, the number of times that a ground truth trajectory is
interrupted), and identity switches (IDS, the number of times
that a tracked trajectory changes its matched ground truth).
These metrics depend on a user-defined threshold parameter
that determines the hit/miss rates. A detection is a true
positive if the distance between the detection and its matched
ground truth is lower (or higher) than the threshold. We
chose 0.5 for the region overlap threshold, and 15 pixels for
the Euclidian distance threshold. The results of the baseline
methods [14], [13] on two TIV test sequences are shown
in Table III. It can be seen that the tracking algorithm
achieves a low miss rate for theFrio11 sequence because
of the high contrast between foreground and background,
but fails to handle frequent mutual occlusions and results
in a high ID switch error. The noisy background makes the
marathonsequences more challenging, as more than 10%
objects were mostly lost. Clearly, even for state-of-the-art



Table III
RESULTS FOR MULTI-OBJECT TRACKING FROM A SINGLE VIEW.

Data Method MT ML FM IDS MOTA MOTP

Frio11 Betke et al. [14] 96.9% 0.8% 410 1,222 65.0% 3.3 px
Marathon SDD-Net [13] 60.9% 12.3% 172 158 62.1% 76.1%

algorithms, there is still large room to improve performance
on these sequences.

C. Tracking Multiple Objects from Multiple Views

Occlusion, especially long-term occlusion, is one of the
most difficult challenges in multi-object tracking. Occlusion
reasoning may be improved if multiple cameras with over-
lapping fields of view can be provided. However, a new
spatial data association step to establish the correspondence
across the camera views must then be introduced [13]. We
further classify the multi-object multi-view scenario into two
categories: planar motion and free 3D motion. To address
these two scenarios, we collected two sequences,Atrium and
Lab for the planar motion; andVelifer, andDavis08-sparse,
Davis08-denseandDavis13-mediumfor the free 3D motion.
A few sample frames are shown in Fig. 6. We further provide
camera calibration files that describe the multiview geometry
of the scene, and annotations. We annotated a bounding box
for the human sequences and a single point for each bat.

In the Atrium sequence, students are entering and leaving
a building through an open area near the/exit doors. The
students who are about to leave the building and those
who just entered the building can be distinguished by their
thermal profiles. The original video takes about 15 min but
we removed all “idle” frames with no activity.

TheLab sequence captures interactions between 6 people
walking close to each other. This sequence is more difficult
to interpret because of a low camera view point and severe
occlusion. Generally, with the help of the homography, it
is easier to track objects on the ground plane than in the
image plane. For the bat sequences, triangulation can be used
to localize the animals in 3D space. The problem becomes
more difficult as their density increases.
Baseline Method and Evaluation.For free 3D motion,
we adopted the “Reconstruction-Tracking” algorithm [16],
a variant of Multiple-Hypothesis-Tracking. This baseline
method first reconstructs the 3D location of the object by
solving a multi-dimensional assignment problem, and then
sequentially tracks each object in 3D space. An enhanced
version (“SDD-MHT”), proposed by Wu [13], applies a spar-
sity constrained optimization procedure to the reconstruction
step above. The extension proves to be very effective to
reduce the number of false positives, or “ghost points,”
which are generated by the false matches across camera
views.

For the planar motion, we adopted the same sparsity driv-
en object detector [13] to detect people on the ground plane

Atrium - two views

Lab - three views

Bamberger- three views

Davis08- three views

Figure 6. Sample frames for multi-object tracking from multiple views.

from the foreground estimation, as described in Section II-B.
The data association step was based on Kalman filter and
bipartite matching. Note that this baseline (“SDD-KF”) and
the variants of MHT above are all sequential online tracking
methods.

To evaluate the tracking performance, the same “CLEAR
MOT” metrics [15] were used. We chose 0.5 m on the
ground plane as a miss/hit threshold for the localization of
people, and 0.3 m in 3D space as the miss/hit threshold
which approximates the physical size of a bat. Quantitative
results for multi-object tracking from multiple views are
listed in Table IV. As expected, the multi-camera setup
helps when the 3D localization step can be solved accurately.
Otherwise, more efforts are needed to improve the accuracy
of 3D localization before the tracking step takes place,



Table IV
RESULTS FOR MULTI-OBJECT TRACKING FROM MULTIPLE VIEWS.

Data Method MT ML FM IDS MOTA MOTP

Atrium-1-view SDD-KF [13] 75.7% 2.4% 48 55 48.6% 72.5%
Davis08-sparse MHT [16] 96.6% 0 105 97 64.1% 8.9 cm
Davis08-sparse SDD-MHT [13] 95.2% 0 145 126 78.9% 5.7 cm
Davis08-dense MHT [16] 71.9% 2.5% 274 355 -32.0% 10.0 cm
Davis08-dense SDD-MHT [13] 61.1% 3.0% 454 444 44.9% 7.7 cm

especially in dense tracking scenarios.

D. Visual Counting

The visual counting task is to count the number of objects
in the scene, a non-intrusive task for crowd analysis. One
may think a straightforward solution is to apply object
detection methods or even the multi-object tracking methods
described in previous sections. However, it still remains a
challenging problem to extend the scalability of these tradi-
tional techniques to handle very dense scenarios. Fortunate-
ly, techniques to count the objects without using an object
detector exist [17], [18], [19]. To encourage research in this
direction, we provide two sequences “Davis08-counting”
and “Bracken-counting” to count the bats in a given region-
of-interest, as shown in Fig. 7. For each frame, we only give
the total number of bats as ground truth. We also provide a
few training data that contain the location of every bat in an
image.

Figure 7. Sample frames for counting.

Baseline Method and Evaluation. Counting methods
can be broadly categorized by three classes: counting-by-
detection, counting-by-regression, and counting-by-density-
estimation. The counting-by-detection method typically
needs a visual object detector to localize the object’s position
in the image. With the localization information, the counting
is a trivial problem. The counting-by-regression method
learns a regression model that directly maps some global fea-
tures of the image to a number and for which it needs a large
amount of training data. Finally, the counting-by-density-
estimation method estimates the object density at each pixel
based on local features, and integrates the density over the
entire image. Here we report results on the two sequences
with a customized bat detector [14] and a density estimation
method [18]. The detector searches for the local maximum
points, or key points, in each disconnected component after

0 50 100 150 200 250 300
280

300

320

340

360

380

400

420

Frame number

C
o

u
n

ts

 

 

Ground Truth

Density Meth.
Detection Meth.

(a) Counting results onDavis08-Counting

0 50 100 150
160

180

200

220

240

260

280

300

320

Frame number

C
o

u
n

ts

 

 

Ground Truth

Density Meth.
Detection Meth.

(b) Counting results onBracken-Counting

Figure 8. Comparison of frame-by-frame counting results oftwo baseline
methods, the counting-by-density-estimation method (Density Meth.) and
the counting-by-detection method (Detection Meth.) with the ground truth.

background subtraction. The final count is the total number
of key points after non-maximum suppression. The density
estimation method first computes dense SIFT features for the
entire image and then approximates the density at each pixel
by a linear transformation of the quantized SIFT feature. The
final count is the integration of the density function over the
image.

Frame-by-frame counting results onDavis08-counting
andBracken-countingare shown in Fig. 8. The mean num-
bers of objects per frame for these two sequences are356

and250, respectively. Both methods tended to underestimate



0 200 400 600 800 1000

100

200

300

400

500

600

700

800

900

1000

Converge

0 200 400 600 800 1000

100

200

300

400

500

600

700

800

900

1000

Disperse

0 200 400 600 800 1000

100

200

300

400

500

600

700

800

900

1000

Split

Figure 9. Sample frames for group motion estimation and flow vector
annotations.

the number of objects in the crowds due to partial or
even complete occlusion. No temporal information was used
here. To evaluate the two methods, we computed the mean
counting error over all frames as well as the standard
deviation. The detection method achieved a7.1± 5.8 error
on Davis08-countingand a10.4± 6.5 on Bracken-counting,
while the density estimation method achieved7.4 ± 5.0

and 11.8 ± 9.7, respectively. Given the fact that occlusion
is difficult to resolve on image plane here, we believe it
is promising to incorporate temporal information into the
counting frameworks above.

E. Group Motion Estimation

Recent progress in visual event monitoring goes beyond
the analysis in individuals. Crowd motion or group behav-
ior studies have become popular in the computer vision
community [20]. Unlike previous topics, one of the main
challenges here is the actual lack of data as well as ground
truth annotations. Meanwhile, researchers are still trying
to devise interesting topics in different contexts and make
formal problem definitions for them. Here we provide a long

sequence,Bracken-flow, that shows part of the emergence
of a Brazilian free-tailed bat colony. There are different
group formations during the emergence, and we would like
to continuously identify those motion patterns throughout
the sequence using some group motion estimation method.
Some unique patterns are shown in Fig. 9.

We manually divided the sequenceBracken-flow into
multiple segments, each of which is associated with a motion
pattern label. Some motion patterns repeat multiple times
in the sequences. For each unique motion pattern, we also
annotated the instantaneous flow vector (i.e., flow between
2 frames) for 10 examples. The annotations of the flow
vector are noisy due to the high density of the objects in
the scene. For a group behavior study, we are less interested
in the accurate analysis of an individual. Instead, a high-level
global description is desired. So the annotated flow vector
here is only for reference purposes. This topic remains an
open problem, and we expect to see algorithms dedicated to
solving such problems in future.

III. SUMMARY

With this paper, we introduced a new thermal infrared
video dataset. We designed it to be extensive and diverse,
and to include scenarios not present in existing datasets.
Our intension is to provide a challenging benchmark for
addressing several visual analysis tasks. We hereby publish
the dataset, annotations, and the source code of the baseline
methods with the evaluation protocols used to obtain the
results in this paper and make them available to the public
at http://csr.bu.edu/BU-TIV/.

Our preliminary study with this dataset showed that ther-
mal infrared videos are not necessarily easier to process than
data from visible sensors. We expect to see new ideas emerge
in the future. Other researchers may design algorithms
specifically for thermal infrared videos and improve the
analysis results.

In near future, we plan to add data to the proposed
benchmark. We will provide videos of additional scenes, as
well as data from moving cameras, or camera network with
non-overlapping fields of view.
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