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Abstract

The Brazilian free-tailed bat, Tadarida
brasiliensis, roosts in very large colonies, con-
sisting of hundreds of thousands of individuals.
Each night, bats emerge from their day roosts in
dense columns in a highly coordinated manner.
We recorded short segments of an emergence
using three spatially-calibrated and temporally-
synchronized thermal infrared cameras. We
applied stereoscopic methods to reconstruct the
three-dimensional positions of these flying bats.
We applied a multiple hypothesis tracking algo-
rithm to obtain 7,016 reconstructed trajectories.
Our analysis includes estimates of the velocities of
bats in flight, the distances between animals within
the emergence column, and the angles subtended
by the bats and their nearest neighbors.

1. Introduction

Brazilian free-tailed bats (Tadarida brasilien-
sis) live in very large groups containing hundreds

∗This report appeared in the proceedings of theWorkshop
on Visual Observation and Analysis of Animal and Insect Be-
havior,held in conjunction with the 20th International Confer-
ence on Pattern Recognition, August, 2010, Istanbul, Turkey.

of thousands to millions of individuals [2, 4, 5].
We investigated the behavior of these bats, which
emerge nightly from their roosts near sunset in
large, dense columns.

We used three calibrated, synchronized thermal
infrared cameras to observe the emergence behav-
ior of these bats. We used stereoscopic methods to
reconstruct the three-dimensional (3D) positions of
individual animals within the column, and then ap-
plied a Multiple Hypothesis Tracker (MHT) to link
the 3D positions into tracks [15, 16]. In our cur-
rent work, we focus on the analysis of the resulting
tracks to explore flight characteristics, such as the
average speed, the distance between animals, and
their relative positions with respect to one another.

2. Methods

We analyzed the nightly emergence behavior
of a colony of Brazilian free-tailed bats at a cave
in Texas. We used three thermal infrared FLIR
SC6000 cameras that recorded 16 bit video at a
resolution of 640 x 512 pixels at 125 frames per
second. Example frames of video containing ap-
proximately 100 bats are shown in Figure 1.



Figure 1. Images from three thermal infrared cameras.

2.1. Camera Calibration

We constructed a calibration apparatus that was
visible to the infrared cameras by attaching cold
and hot packs to sections of PVC tubing (Fig-
ure 2). Calibration sequences were recorded si-
multaneously with the three cameras. Correspond-
ing points in each of the three views were marked
manually.

We used the Eight Point Algorithm [6] to com-
pute the pairwise fundamental matrices. We then
extracted the focal length and extrinsic parame-
ters for each camera, given an initial approxima-
tion of the principal point. We further applied a
local search procedure to refine our estimate of the
focal length and principal point. After computing
the intrinsic and extrinsic parameters, the 3D po-
sitions of the points on the calibration apparatus
were estimated using the Direct Linear Transfor-
mation (DLT) method [6].

2.2. Stereoscopic Reconstruction and Tracking

We used the “reconstruction-tracking method”
developed in previous work [16] to first reconstruct
the 3D positions of the bats and then recursively
estimate their 3D trajectories based on the recon-
structed points.

We briefly summarize this method [16] as fol-
lows: At each time step and for each view, our sys-
tem detected bats and represented them as sets of
2D points. For each point in a single view, we used

the projection matrices, obtained from the calibra-
tion process, to create epipolar lines in the other
two views. Tuples of corresponding points were
determined by finding points that were near each
other’s epipolar lines. The reconstructed 3D points
were used as input to the next step of tracking in
3D.

We applied a Multiple Hypothesis Tracking
(MHT) algorithm with a sliding-time window.
This method constructs a tree where the associ-
ations between tracks and measurements are hy-
pothesized at each time step. Each track has an as-
sociated gate, which restricts the possible number
of matches. Ambiguity in the association between
the tracks and the measurements is allowed to per-
sist for a fixed period of time before it is forced to
be resolved.

Our goal was to compute the most likely
measurement-to-track associations. We therefore
formulated the problem as a maximization of the
joint probabilities of all track-to-measurement as-
sociations, so that the relationship between tracks
and measurements was one-to-one. Because this
maximization is an NP hard problem, an iterative
approximation technique, the Greedy Randomized
Adaptive Local Search Procedure (GRASP) [12],
was applied.
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Figure 2. Thermal image of calibration apparatus (left) and camera positions and reconstructed
points on apparatus (right).

3. Analysis and Results

We focused on a 40-second segment of data that
was recorded during the early part of an emergence
that lasted over an hour. At any point in time dur-
ing this period, we typically observed between 20
and 60 bats, with a maximum of approximately
100 bats (Figure 3).
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Figure 3. The number of bats observed
during emergence.

Using the previously described 3D reconstruc-

tion and tracking techniques, we reconstructed
7,016 trajectories from 5,000 frames recorded by
each of three cameras. Each trajectory consisted of
the reconstructed 3D positions of a single animal
linked across time. The average length of a track
was approximately 37 frames, which corresponds
to approximately 0.3 s of flight time.

1 We performed three analysis tasks. For the
first two tasks, we partitioned the reconstructed 3D
positions of bats into ten sets, where 1–10, 11–20,
. . . , 91–100 bats were simultaneously present. The
number of 3D positions in each set differed, rang-
ing between 1,678 positions for the set containing
between 1 and 10 bats and 38,764 positions for the
set of frames containing between 61 and 70 bats.

Our first task was designed to estimate the ve-
locity at which each individualTadarida brasilien-
sis flew during emergence. Estimates of the mag-
nitude of the velocity of bats in laboratory [7] and
natural [5, 9, 10] environments have been made us-
ing stop watches and radar [3, 13, 14]. These es-
timates were based either on flight trajectories of

1This section differs from the corresponding section in the
ICPR workshop paper regarding the number of measurements
that support the quantities reported.
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only a few individuals, or the path of the column
as a whole, without tracking individuals [14]. In
contrast, we were able to estimate the velocity at
which individual bats fly under natural conditions
by using 7,016 reconstructed trajectories.

We computed the instantaneous velocity of each
bat at every moment in time using the recon-
structed tracks. Averaged over the 195,456 avail-
able measurements in our data set, we found that
the bats emerged at a speed of 9.38± 0.02 meters
per second (95 % confidence interval). For each
set of 3D positions containing different numbers
of bats, we computed statistics of the speed of all
bats in the set, and found that the speed at which
bats flew during early emergence varied slightly
according to the number of bats present (Figure 4).
Our results are consistent with the flight speeds re-
ported forTadarida brasiliensisby Hayward and
Davis [7] under laboratory conditions.
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Figure 4. Average speed of bats with
95% confidence intervals, computed us-
ing 7,016 flight trajectories.

Our second task was to extend our preliminary
analysis [15] and investigate the typical distance
between bats as they fly in a column. For every
time step, we calculated the distances between all
possible pairs of bats and identified each bat’s near-
est neighbor. By examining the sets of 3D posi-
tions defined above, we found that, as the num-
ber of bats present increased, the average distance
between nearest neighbors converged to approxi-
mately 0.5 m (Figure 5). This is a very tight esti-

mate because we have so many measurements; for
example, the 95% confidence interval for the set
of 3D positions containing between 81 and 90 bats
(10,840 measurements) was only 0.5 cm.

Our third task was to study the relative positions
of the bats with respect to each other. For this task,
we chose to use all 3D positions where at least
60 bats were present simultaneously, for a total of
75,369 measurements. We used the forward ve-
locity of each bat and a vertical vector to establish
an orthonormal 3D coordinate frame. We identi-
fied each bat’s nearest neighbor and computed the
bearing (θ) and elevation (φ) angles between its ve-
locity and the vector pointing to its nearest neigh-
bor (Figure 6). The distribution of these angles is
shown as a two dimensional histogram (Figure 7).
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Figure 6. Relationship, computed in
spherical coordinates θ and φ, between
the velocity of a bat and the position of
its nearest neighbor.

We found a non-uniform structure in the his-
togram with respect to the elevation angleφ. The
area near the poles of the histogram contains fewer
samples than the area near the equator (Figure 7).
This reveals that the bats typically do not fly di-
rectly above or below each other.

With respect to the bearing angleθ, no strong
pattern was observed. This result is in direct con-
trast to Partridgeet al. [11] and Ballerini et al.
[1] who reported crystalline structures in schools
of fish and flocks of starlings, respectively.
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Figure 5. Average distance between nearest neighbors. Confi dence intervals (e.g. 0.4 cm for
the set of 3D positions containing between 21 and 30 bats) fal l inside of the markers for all but
the first data point.

4. Conclusions

To effectively explore the behavior of animals
that move in three dimensions, such as bats, birds,
insects, or fish, it is essential to obtain their 3D po-
sitions and trajectories. In the present study, we
have analyzed 3D trajectories of Brazilian free-
tailed bats in flight, using automatic reconstruc-
tion and tracking algorithms based on recorded
data from three calibrated, synchronized thermal
infrared cameras. Because the methods we dis-
cussed are automatic, we were able to base our
conclusions on tens of thousands of measurements.

The novel contribution of our paper is to the
understanding of the behavior of Brazilian free-
tailed bats in their natural environment. We are the
first to report estimates of flight speed and distance
between individuals based on thousands of three-
dimensional trajectories. We are also the first to
reveal a non-uniform structure in the way emerg-
ing bats position themselves with respect to one
another.

Other contributions of this paper include the
methods of analysis, which can be applied in the
future studies of large data sets of video of other
animals or objects that move in three dimensions.

For each object, we examined the angle between
its movement direction and the vector to its near-
est neighbor. The visualization of these angles as
a two dimensional histogram has the potential to
reveal significant structure in large groups. We
have also studied how flight characteristics such as
speed and distance between neighbors change as
a function of the number of objects in the field of
view.
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