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Abstract

We developed two methods for tracking multiple ob-

jects using several camera views. The methods use the

Multiple Hypothesis Tracking (MHT) framework to solve

both the across-view data association problem (i.e., find-

ing object correspondences across several views) and the

across-time data association problem (i.e., the assignment

of current object measurements to previously established

object tracks). The “tracking-reconstruction method” es-

tablishes two-dimensional (2D) objects tracks for each view

and then reconstructs their three-dimensional (3D) motion

trajectories. The “reconstruction-tracking method” assem-

bles 2D object measurements from all views, reconstructs

3D object positions, and then matches these 3D positions

to previously established 3D object tracks to compute 3D

motion trajectories. For both methods, we propose tech-

niques for pruning the number of association hypotheses

and for gathering track fragments. We tested and com-

pared the performance of our methods on thermal infrared

video of bats using several performance measures. Our

analysis of video sequences with different levels of densi-

ties of flying bats reveals that the reconstruction-tracking

method produces fewer track fragments than the tracking-

reconstruction method but creates more false positive 3D

tracks.

1. Introduction

Multi-object tracking remains a difficult problem in

computer vision because occlusion is prevalent in typical

multi-object imaging scenarios. Ambiguity in data associ-

ation (i.e., the process of matching currently measured ob-

jects with established object tracks) must be resolved. Dis-

ambiguating measurement-to-track associations for all ob-

jects in a scene may not be possible within one time step,

∗This material is based upon work supported by the National Science
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especially if the objects have similar appearance. However,

popular “sequential tracking methods” (e.g., the Joint Prob-

abilistic Data Association (JPDA) method [1]) must, in one

time step, process the set of candidate assignments and de-

cide on the most likely measurement-to-track associations.

If the requirement for such sequential, time-step-by-time-

step decisions can be relaxed, the likelihood of candidate as-

sociations typically can be estimated more accurately. Un-

certainties in the current time step may be resolved when

evidence for or against a hypothesized association has been

collected in subsequent frames. This approach is called

“look-ahead” or “deferred-logic tracking,” and the classic

method is Multiple Hypothesis Tracking (MHT) [16].

The MHT method builds a tree of possible measurement-

to-track associations, evaluates the probability of each can-

didate association, and solves the NP-hard problem of find-

ing the association with the highest probability by explicit

enumeration or combinatorial optimization. The MHT

method becomes impractical when the number of objects in

the scene is large. Thus, techniques for pruning the number

of association hypotheses have been used [16, 4]. An im-

portant technique for pruning the hypotheses tree to a fixed

depth T is to use a sliding time-window of duration T dur-

ing which hypotheses can be resolved. In this paper, we

propose two approaches for tracking multiple objects from

several camera views that use the MHT framework with the

sliding-window pruning technique.

Tracking multiple objects in several camera views is

challenging because data association must be performed

not only across time, as in single-view tracking, but also

across views. Two strategies can be used to solve the multi-

view multi-object tracking task that differ in the order of

the association processes: (1) The “tracking-reconstruction

method” processes the across-time associations first and es-

tablishes 2D objects tracks for each view. It then recon-

structs 3D motion trajectories. (2) The “reconstruction-

tracking method” processes the across-view associations
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first by reconstructing the 3D positions of candidate mea-

surements. It then matches the 3D positions to previously

established 3D object tracks.

The tracking-reconstruction method can be interpreted

as a track-to-track fusion process that benefits from de-

ferring assignment decisions, as in Multiple Hypothesis

Tracking. When, over time, information about the 2D

track is accumulated, the ambiguity in matching tracks

across views becomes smaller. The method is suitable

when a distributed system architecture is required to pre-

vent “one-point-failures” (which may occur in a centralized

system used by the reconstruction-tracking method). The

reconstruction-tracking method can be seen as a feature-

to-feature fusion process, where the features are 3D ob-

ject positions processed from 2D image measurements. The

reconstruction-tracking method is often implemented with-

out a deferred-logic tracking approach, so that decisions are

made sequentially. This is advantageous because sequen-

tial approaches are conceptually easier and computationally

less expensive. Existing work on human tracking from mul-

tiple camera views have compared the two schemes [18,

10] and have generally favored the reconstruction-tracking

scheme [11, 7, 18]. To the best of our knowledge, the com-

puter vision literature on multi-view tracking does not in-

clude analyses that compare the two schemes for imaging

scenarios with dense groups of objects.

In this paper, we propose two tracking methods that use

the reconstruction-tracking and tracking-reconstruction ap-

proaches, respectively. We show that each method has its

advantages and disadvantages, especially in imaging sce-

narios where objects look similar and are thus difficult to

distinguish. We focus on thermal infrared video recordings

and address scenarios where dozens of objects appear si-

multaneously in the field of view of three cameras and are

imaged at low spatial resolution. In particular, we tested and

compared the performance of our two tracking methods on

a thermal infrared video of a large group of bats flying out

of a cave. Our data set is challenging because bats appear

similar, move extremely fast, and do not fly in straight lines,

but may choose any heading direction within 3D space. Be-

cause the 3D movement directions of bats are more general

than those of people, we cannot take advantage of the con-

straint, which is often used in computer vision research and

works well for tracking people’s heads [7] or feet [9], that

the image of the ground plane of the scene in each camera

view is related by a homography.

For this paper, we build upon our previous work on

multi-view tracking [19], which is based on a sequen-

tial approach. Here instead we apply deferred-logic

tracking to both the reconstruction-tracking and tracking-

reconstruction approaches. We use the MHT Multidi-

mensional Assignment Formulation by Poore [15] to pro-

cess track initiation, maintenance, and termination. For

our tracking-reconstruction method, we propose a greedy

matching procedure with a spatial-temporal constraint for

track-to-track fusion. We relax the constraint of one-to-one

correspondence across views because of potential long-term

occlusion in a single view. For our reconstruction-tracking

method we propose a heuristic approach to reduce “phan-

tom” effects caused by false positive 3D trajectories.

Existing work that aims at improving tracking perfor-

mance for single-view scenarios [14, 12] is helpful for

both reconstruction-tracking and tracking-reconstruction

approaches. However, a comparison of multi-view and

single-view tracking approaches is beyond the scope of this

paper.

2. Related Work

Research on multi-object tracking has a long history in

computer vision. The first systems analyzed video data

collected using a single camera. In recent years, imaging

systems that use several cameras have become attractive

because they can provide an analysis of 3D object trajec-

tories and stereoscopic reasoning for assessing occlusion.

Because the 3D positions of the objects cannot be mea-

sured directly but need to be inferred from 2D measure-

ments, tracking-reconstruction and reconstruction-tracking

approaches have been developed, which track the objects in

2D or 3D.

Existing systems [6, 7, 10, 11, 13, 18] use the sequential

reconstruction-tracking scheme. Tracking is performed in

3D [7, 11, 13, 18], using reconstructed 3D object features,

or in 2D [6, 10], using the 2D projections of reconstructed

3D points into the image plane of each camera. The former

approach, tracking in 3D, is a reasonable choice if the 3D

positions of objects or object features can be predicted ac-

curately. If the information about an object gathered from

several rather than only two camera views is fused and the

cameras are spatially calibrated, the 3D position estimates

can typically be made quite accurately. Obtaining accurate

position estimates, however, is not the main challenge of

multi-object video analysis; instead, the main challenge is

the correct interpretation of ambiguous position estimates,

which are caused by occlusion. Experiments reported for

existing systems involved tracking a single object [18] or

a few objects (less than 5) [6, 10], and it is not clear how

across-time ambiguity in 2D or across-view ambiguity in

3D would affect the tracking performance of these methods

in dense object scenarios.

The differences between previously published work on

3D tracking from several camera views and our two tracking

approaches are:

• Our methods are explicitly designed to track dense

groups of objects.

• We use a deferred-logic (not a sequential) tracking
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framework. Our MHT approach allows us to evaluate

the information obtained from several cameras during

a window in time.

• Our approach does not assume that object motion is

restricted to occur on a ground plane.

• Our approach fuses information about object position

only and does not attempt to fuse additional informa-

tion about object appearance.

• Our test data include imaging scenarios where many

objects appear in the scene with low resolution at the

same time (groups of 10 to 30 individuals).

Because deferred-logic approaches, by definition, have

access to more information than sequential approaches, a

comparison of the performance between our method and

any sequential approach described in the literature would

not be meaningful. Thus, the performance analysis in our

paper focuses on the comparison between the two methods

we propose and further discusses their advantages and dis-

advantages.

3. Two 3D Multiple Hypothesis Tracking

Methods

We use the Multiple-Hypothesis-Tracking (MHT)

method as the tracking framework for both tracking-

reconstruction (TR) and reconstruction-tracking (RT) ap-

proaches. The difference is TR uses 2D measurements as

input for MHT to generate 2D trajectory, while RT uses 3D

reconstructed points as input for MHT to generate 3D tra-

jectory. We first revisit the MHT method in its multidimen-

sional assignment formulation [15] with a fixed-duration,

sliding time-window (Sec. 3.1). We then describe our

reconstruction-tracking method (Sec. 3.2) and our tracking-

reconstruction method (Sec. 3.3).

3.1. Revisit of Multiple Hypothesis Tracking

The Multiple-Hypothesis-Tracking method is generally

posed as the problem of maximizing the aposteriori proba-

bility of measurement-to-track associations, where the cur-

rent time step is T , the set of measurements at time step k is

Z(k), for k = 1, ..., T , and the number of measurements at

time step k is Mk = |Z(k)|. The data association problem

can then be formulated as the problem of finding a partition

of the measurement set Z = (Z(1), ..., Z(T )) into a track

set T that maximizes the aposteriori probability p(T |Z) of

measurement-to-track associations:

T ∗ = arg max
T

p(T |Z) (1)

= arg max
{Tn}

∏

n

P (ZTn
|Tn)p(Tn), (2)

where ZTn
is the sequence of measurements assigned to

track Tn and the variable T0 represents the false positive

tracks. The explicit assumption of this partitioning formu-

lation is that the tracks do not overlap, i.e., measurements

are assigned to one and only one track. In the case of multi-

camera 3D tracking, the assumption holds because the mea-

surements are reconstructed 3D object positions which must

be disjoint. In the case of 2D tracking, 3D object trajectories

projected onto the image plane typically have overlapping

2D measurements due to occlusions. For a trajectory of an

object that is occluded at some point in time, the partition-

ing formulation would yield a pair of 2D tracks: a track that

ends when the object is occluded and a new track that starts

when the object is in view again. The challenge is then to

automatically interpret that the two tracks successively de-

scribe the movement trajectory of the same object.

The MHT formulation requires a model for the prior

probabilities of false positive and missed detections. For

the imaging scenarios we address, we can assume a per-

fect detection rate and that the false positive detections are

uniformly distributed in the field of view. We also assume

a uniform distribution of the prior probability p(Tn). The

likelihood of the nth track can then be written as

P (ZTn
|Tn) =

T∏

k=1

p(zk
ik
| x̂k

n)p(x̂k
n | x̂k−1

n ), (3)

where measurement zk
ik

∈ Z(k) for k = 1, ..., T ; x̂k
n is ob-

ject state and can be estimated using Kalman smoothing, i.e,

estimate x̂k
n given (z1

i1
, z2

i2
, ...zT

iT
) with a series of forward

and backward recursions [3].

We use binary variable bi1i2...iT
to indicate whether mea-

surement sequence (z1
i1

, z2
i2

, ...zT
iT

) forms a potential track

or not. It can be shown that the MHT problem formulation

in Eq. 1, estimating the probability of a set of measurement-

to-track assignments, can be stated as the following multi-

dimensional assignment problem:

c = min

M1∑

i1=1

M2∑

i2=1

...

MT∑

iT =1

ci1i2...iT
bi1i2...iT

(4)

s. t.

M2∑

i2=1

M3∑

i3=1

...

MT∑

iT =1

bi1i2...iT
= 1; i1 = 1, 2, ..., M1

M1∑

i1=1

M3∑

i3=1

...

MT∑

iT =1

bi1i2...iT
= 1; i2 = 1, 2, ..., M2

...
M1∑

i1=1

M2∑

i2=1

...

MT−1∑

iT−1=1

bi1i2...iT
= 1; iT = 1, 2, ..., MT .

We compute the cost of an assignment by estimating

the negative log likelihood of a measurement sequence:

ci1i2...iT
= − log P (ZTn

|Tn).
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The multidimensional assignment problem in Eq. 4 is

NP-hard for T > 2. We use the Greedy Randomized Adap-

tive Local Search Procedure (GRASP) [17] to efficiently

obtain a suboptimal solution. Before applying GRASP, we

use the following pruning techniques:

• Gating: Each established track maintains its own val-

idation region or gate so that only measurements that

fall within this gate need to be considered.

• Clustering: Tracks that do not compete for measure-

ments form a cluster (i.e., a measurement in one cluster

is not located in any validation region of a track in an-

other cluster). Combinatorial optimization is applied

within each cluster independently.

In the pseudocode below, we describe our proposed variant

of the original MHT method, which automatically considers

track initiation, maintenance and termination.

MULTIPLE HYPOTHESIS TRACKING WITH WIDTH-T SLIDING

TIME WINDOW:

Input: Set Z of measurements from time t0 to t0 + T and set T
of tracks maintained up to time t0 + T − 1

1. Remove from set Z the measurements that have been as-

signed to the tracks in set T .

2. Build the multiple hypotheses tree with gating; assign mea-

surements recorded at time T to tracks in T ; form additional

candidate tracks with the measurements that remained in Z.

3. Cluster the hypotheses into disjoint trees and formulate a

multidimensional assignment problem for each cluster.

4. Solve each problem using GRASP and return a set T ∗ of

tracks.

5. Classify the tracks in sets T ∗ and T :

• If a track Tn in T ∗ is an extension of some track in T ,

then it is interpreted as a continuing track.

• If a track Tn in T ∗ has no overlap with any track in T ,

then it is interpreted as a new track initiated at time t0.

• The remaining tracks in T are considered terminated

tracks that end at time t0 + T − 1;

Output: New, continuing, and terminated tracks up to time t0 +T

3.2. Reconstruction-Tracking Method

Our RECONSTRUCTION-TRACKING METHOD first re-

constructs the 3D positions of objects in the current scene

and then applies 3D tracking to predict the next 3D object

positions. Two approaches are used to perform the recon-

struction step and find the across-view associations (i.e., the

measurements from different views that describe the same

object). The first approach [5] minimizes a linear combi-

nation of costs for all possible associations with the one-to-

one match constraint that a measurement in one view can

only be matched with exactly one measurement in another

view. The optimization problem can be formulated as in

Eq. 4 and yields solutions that do not correctly interpret oc-

clusions and clutter when the one-to-one match constraint is

violated as in the imaging scenario shown in Fig. 1. The al-

ternative method is to perform triangulation 1 for every pos-

sible match without considering the one-to-one constraint.

In our method, we apply gating and only consider matches

whose “reconstruction residual” is below a given thresh-

old. We compute the reconstruction residual as the root

mean squared distance between the 2D measurements and

the 2D projections in all camera views of the reconstructed

3D point. The pseudo code for the reconstruction step of

our RECONSTRUCTION-TRACKING METHOD is given be-

low.

1o

o2

o4

o3

z1,1

z1,2

2,1z

z2,2

z2,4

z2,3

l

v

Figure 1. Across-view association without one-to-one matches.

The single 2D measurement z1,1 in the left view represents the

overlapping projections of three objects o1, o2, and o3 in the scene.

Line l is the epipolar line in the right view that corresponds to the

projection of all possible 3D objects that could be imaged as z1,1

in the left view. Validation region V is the projected gate of the 3D

track of object o1 in the right view. In the across-view assignment

process, z1,1 may only be matched to measurements in the right

view that are near line l and inside region V . These are z2,1 and

z2,2, but not z2,3 and z2,4.

Our RECONSTRUCTION-TRACKING METHOD gener-

ally computes 3D points that correctly correspond to 3D

object positions. Due to false across-view associations dur-

ing the reconstruction step, this method may also generate

“phantom” points that do not correspond to any real objects

in the scene. As we will demonstrate in Sec. 4, many of

these phantom points can be eliminated during the 3D track-

ing step. Phantoms reported in the multi-object tracking lit-

erature (e.g. [7]) are typically considered an accidental oc-

currence. In the analysis of our infrared video data, in which

a very large number of similar objects are imaged at low

spatial resolution, false across-view associations, however,

1We selected the Direct Linear Transformation (DLT) algorithm [8] to

perform the triangulation because of its efficiency and sufficient accuracy.

Other methods may replace DLT in our framework.
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RECONSTRUCTION-TRACKING METHOD

Reconstruction Step at Time t

Input: Set T of currently maintained 3D tracks and set

{zs,is}s∈S , is = 1, .., ns, of 2D point measurements from

S views, where ns is the number of measurements in view s.

1. For each track Ti ∈ T , compute its validation region Vs,i in

each view.

2. For each 2D point zs,is , compute its epipolar lines in the

other views.

3. Create candidate tuple (z1,i1 , z2,i2 , ..., zS,iS
), where i1 ∈

{1, .., n1}, .., iS ∈ {1, .., nS}, by selecting one 2D point

measurement zs,is from each view such that:

• Each zs,is is located within its respective gate.

• Each zs,is is located near its epipolar line.

• The reconstruction residual is below threshold ρ.

4. For the remaining unassigned 2D points, create a candidate

tuple if they are located near their respective epipolar lines

and if their reconstruction residual is below threshold ρ.

Output: Set Z of 3D points, reconstructed from candidate tuples,

that will be interpreted as the set of input measurements for the

tracking step of the reconstruction-tracking method.

are inevitable, especially if data obtained at only a single

time step are analyzed [19].

To reduce the number of candidate across-view associa-

tions that are evaluated at each time step, we make use of the

traditional gating technique, which here utilizes the epipo-

lar geometry as follows. Given a set of calibrated camera

views, the projected images of objects lie on corresponding

epipolar lines (or near these lines if there are inaccuracies

in the calibration) and they should fall in the validation re-

gions of the respective views, which are determined by the

established 3D tracks (see Fig. 1). The validation region or

gate is defined as

V t
i (γ) = {z : [z − Hiẑt]

′S−1
t [z − Hiẑt] < γ}, (5)

where ẑt is the predicted 3D position, St is the covariance

matrix at time t (both of which can be evaluated using a

standard Kalman filter), Hi is the projection matrix in the

ith view, and γ an error threshold.

3.3. Tracking-Reconstruction Method

Our TRACKING-RECONSTRUCTION METHOD applies

2D tracking in each view independently and reconstructs 3D

trajectories through track-to-track associations. It avoids

creating redundant 3D phantom points, a drawback of the

RECONSTRUCTION-TRACKING METHOD, but it has the

disadvantage that occlusion negatively affects its 2D track-

ing performance (i.e., occlusion cannot impact the tracking

performance of RECONSTRUCTION-TRACKING METHOD

to the same extent, since it tracks in 3D). When an object is

occluded in one view, the TRACKING-RECONSTRUCTION

METHOD may not correctly connect the 2D track of the ob-

ject before and after the occlusion, which then, in the re-

construction step of the method, may lead to an undesirable

fragmentation of the 3D trajectory.

To reduce the occurrence of fragmented 3D trajecto-

ries, our TRACKING-RECONSTRUCTION METHOD ana-

lyzes and fuses the 2D track information from several

views. Our method may reason that a long 2D track in

one view may correspond to several short tracks in another

view. In the most challenging case, an object may be oc-

cluded in each camera view at some point in time, lead-

ing to the occurrence of track fragments or “tracklets” in

each view. The timing of the occlusion is typically not the

same in any two views, which means that the 2D tracklets

in different views that correspond to the same object usually

have different start and end times (Fig. 2). Our TRACKING-

RECONSTRUCTION METHOD first breaks long tracks into

short tracklets so that candidate tracklets to be matched are

aligned in time (Fig. 2). Tracklets are then matched in a

greedy way where each tracklet can be matched multiple

times. The resulting matched 2D tracklets are reconstructed

into 3D trajectory pieces that are then linked into com-

plete 3D trajectories. The pseudo code and technical de-

tails of this reconstruction and data association step of our

TRACKING-RECONSTRUCTION METHOD are given below.

t0 t1 t2 t3 t4 t5 t6 t7

Track1,2

Track2,2

Track1,1

Track2,1

View 1

View 2

time

Figure 2. Preprocessing of 2D tracks before track-to-track associ-

ation and reconstruction. The 2D tracks are broken into fragments

based on the start and end points of all tracks. Here the two tracks

in each view are respectively broken into 4 and 5 (view 1) and 4

and 3 (view 2) tracklets based on time indices t0, ..., t7. The sub-

sequent association step matches the 9 tracklets in view 1 to the 7

tracklets in view 2. The red arrow shows a candidate match.

We denote Ti1i2...iS
as an association of S tracklets

T1,i1 , T2,i2 , ..., TS,iS
with the same length L from S views.

The cost of the association is defined as:

c(Ti1i2...iS
) =

1

L

L∑

l=1

S∑

s=1

||zs,l − Hsxl||, (6)

where zs,l is the lth 2D measurement along the track Ts,is
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in view s, Hs is the projection matrix of view s, and xl is

the reconstructed 3D point based on (z1,l, z2,l, ..., zS,l).

From the 2D tracklets T
(t)

s,is
, s = 1, ..., S, from S views

that are aligned in time at time instance t, our method re-

constructs the corresponding 3D trajectory T
(t)

it
if the as-

sociation cost c(T
(t)

i1i2...iS
) is below a threshold τ . We use

the same threshold τ and triangulation method as in the

RECONSTRUCTION-TRACKING METHOD.

Our method attempts to link the 3D trajectory pieces

T
(t)

it
, t = 1, ..., N , into longer 3D trajectories iteratively.

It links two consecutive pieces T
(t)

it
and T

(t+1)
it+1

if (1) the

start time of T
(t+1)

it+1
is the next time step after the end time

of T
(t)

it
; (2) the spatial distance between the end point of

T
(t)

it
and the start point of T

(t+1)
it+1

is sufficiently small; (3)

the linked trajectory is sufficiently smooth (we assume the

object does not make drastic changes in direction).

TRACKING-RECONSTRUCTION METHOD

Reconstruction Step

Input: Sets Ts, s = 1, ..., S, of 2D tracks from S views.

• Breaking Phase: Break each Ts,is ∈ Ts, is = 1, ...,Ms,

into tracklets {T
(t)

s,is
} at times {ti}, where ti is the start or

end time of some track Tr,ir in view r (r 6= s).

• Association Phase: For each T
(t)

s,is
∈ Ts,is , t = 1, ...,N ,

find its corresponding tracklets in other views with the

same start and end times and compute its association cost

c(T
(t)

i1i2...iS
) based on Eq. 6. If the cost is below threshold τ ,

reconstruct the 3D trajectory fragment T
(t)

it
.

• Linking Phase: Iteratively link trajectory fragments T
(t)

it

into long trajectories until no more fragments can be linked.

Output: 3D trajectories.

4. Experiments and Results

We compared our two methods described in Sec. 3 for

infrared video analysis of free-ranging bats. We processed

the video of the emergence of a colony of Brazilian free-

tailed bats from a natural cave in Blanco County, Texas [19].

The data was collected with three FLIR SC6000 thermal in-

frared cameras with a resolution of 640 × 512 pixels at a

frame rate of 125 Hz. Our task was to track each bat in

the emergence column of the colony and reconstruct their

3D flight trajectories (Fig. 3). Brazilian free-tailed bats can

fly as fast as 30 mph, which at our frame rate resulted in

significant displacements of the position of the same bat be-

tween two frames. In imaging scenarios where objects are

displaced significantly from frame to frame, kernel-based

trackers are not recommended [18]. The association prob-

lem is even more challenging in our case because we do

not have sufficient appearance information to distinguish

between bats, which look very similar to each other.

To detect the 2D position of each bat in each image

frame, we used a method [2] that applies adaptive back-

ground subtraction followed by labeling of connected com-

ponents. The size of the projection of a bat ranges from 10

to 40 pixels, depending on its distance to the camera. The

position of a bat is represented by the pixel with the high-

est intensity value within its connected component. Missed

detections occur due to inter-object occlusion; false posi-

tive detections occur due to misinterpretation of background

clutter. We used the same set of 2D positions measure-

ments, including false positive detections, as input to the

two tracking methods, so that we could conduct a reason-

able comparison of their performance.

To evaluate the performance of our two tracking meth-

ods, we manually established the ground-truth 3D flight

trajectories by visual inspection and compared them to the

corresponding system-generated tracks. To evaluate the ac-

curacy of a system-generated track Ti, we measured the

Euclidean distance of each object position xi on Ti to

the corresponding position xj on the ground-truth trajec-

tory Gj . We adopted the track distance definition by Perera

et al. [14],

D(Ti,Gj) =
1

|O(Ti,Gj)|

∑

t∈O(Ti,Gj)

||xi
t − xj

t ||, (7)

which measures the sum of these distances for all time in-

stances in the time-index set O(Ti,Gj) for which both tracks

include comparable object positions. The distance D can be

interpreted as an error measure for the average distance be-

tween computed positions and true object positions.

The full motion trajectory of an object may not have been

detected by our methods with a single track. In this situa-

tion, a set of consecutive tracks may collectively describe

the object motion. For a ground-truth trajectory Gj , we de-

fine the set S∗(Gj) of associated system-generated tracks to

include only those tracks that do not share a time index, i.e.

their time-index set O is empty, and that minimize the sum

of the track distances D between each system-generated

track Ti and the ground-truth trajectory Gj :

S∗(Gj) = arg min
S(Gj)

∑

Ti∈S(Gj)

D(Ti,Gj) (8)

subject to O(Ta, Tb) = Ø, for all Ta, Tb ∈ S(Gj).

Once we have identified the tracks S∗(Gj) that collec-

tively match the ground-truth trajectory Gj , we can measure

accuracy, completeness, and fragmentation of our results.

Ideally, our results yield |S∗(Gj)| = |{Ti}| = 1 (i.e., only

one track Ti is associated with the ground-truth trajectory Gj

(no fragmentation)) and |O(Ti,Gj)| = |Gj | (i.e., the number

of time-indices of the object positions of Ti and Gj match
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Figure 3. Results of tracking bats in flight in videos recorded by three infrared thermal cameras, which were placed near the entrance of a

cave. Left: A false-color visualization of three synchronized frames with the tracked bats marked by distinct colors (the background-color

differences in the thermal images are due to a lack of radiometric calibration of the cameras). Right: Visualization of the 3D trajectories of

the group of bats. We used the same color to represent a specific bat in all three views and to display its tracked trajectory.

(completeness)). We also count the number of tracks that

are not matched with any ground-truth trajectory. This num-

ber indicates how many false positive or phantom tracks our

methods produced. Our metrics to evaluate tracking perfor-

mance are then defined by:

Track completeness:

TC =

∑
j

∑
Ti∈S∗(Gj)

|O(Ti,Gj)|∑
j |Gj |

, (9)

Track accuracy:

TA =

∑
j

∑
Ti∈S∗(Gj)

D(Ti,Gj)∑
j |Gj |

, (10)

Track fragmentation:

TF =

∑
j |S

∗(Gj)|

|{Gj |S∗(Gj) 6= Ø}|
, (11)

Phantom track ratio:

PTR =
|{Ti | ∀Gj : Ti /∈ S∗(Gj)}|

|{Gj | S∗(Gj) 6= Ø}|
. (12)

To test the performance of our two tracking methods for

different levels of object density, we selected three scenar-

ios of flight activity with approximately 10, 20 and 30 bats

per video frame, respectively. For each of the scenarios,

the data set contains three 100-frame sequences recorded

from three synchronized thermal infrared cameras, respec-

tively. For each tracking method, we used the same set of

parameters, such as the width T of the sliding window, the

threshold of the reconstruction residual, etc.

A summary of the tracking performance of our two

methods is shown in Fig. 4. The track accuracy scores (Fig 4

top right) indicate that the average error in estimating the

positions of bats were lower than 8 cm for both methods

and for all three density levels of bats. We suggest that the

magnitude of the error is small enough for future studies of

bat flight behavior. A bat with fully extended wings has a

width of 28 cm on average, and thus an 8-cm error may be

small enough for reliable analysis of flight behavior. The

difference in track accuracy between the two methods (the

RECONSTRUCTION-TRACKING METHOD yielded smaller

errors) was basically governed by data association accuracy,

because we chose the same detection and triangulation pro-

cedures for both methods.

Figure 4. Comparison of our two multi-object multi-view 3D

tracking approaches: RECONSTRUCTION-TRACKING (RT) and

TRACKING-RECONSTRUCTION (TR). The three test data sets

(data 1, 2, and 3) have different levels of object density: approx-

imately 10, 20, and 30 bats per frame, respectively. The tracking

performance of both methods is evaluated by four metrics: track

completeness, track accuracy, track fragmentation, and phantom

track ratio.

The TRACKING-RECONSTRUCTION METHOD gener-

ated a lower track completeness score (Fig 4 top left) and

a higher track fragmentation score (Fig 4 bottom left) than

the RECONSTRUCTION-TRACKING METHOD (in the ideal

case both scores are one). The main reason for the differ-

ence is that false across-time data associations caused by

occlusion in its tracking step affected the across-view 2D

track associations in its subsequent reconstruction step.

While for the RECONSTRUCTION-TRACKING

METHOD, the across-time 3D data associations were
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relatively reliable, the ambiguity in across-view data

association created phantoms and thus yielded a higher

phantom track ratio (Fig 4 bottom right).

Most phantom tracks are short. One way to reduce the

phantom track ratio is to use a longer duration T for the

sliding time window. This provides additional opportuni-

ties for the method to remove short track fragments, and

thus identify phantoms. We evaluated the performance of

the RECONSTRUCTION-TRACKING METHOD with differ-

ent sliding window sizes T (Fig. 5). Our results show that

the phantom track ratio was reduced when we used a longer-

duration sliding window. The other performance measures,

however, also decreased because short true tracks were re-

moved incorrectly. Because of this trade-off, the window

size that yields desired results with regard to all four met-

rics can only be chosen through experimentation.

Figure 5. Tracking performance of the RECONSTRUCTION-

TRACKING METHOD with different sliding window sizes T .

5. Conclusion

We proposed and compared two multiple hypothe-

ses tracking methods that use the reconstruction-tracking

and tracking-reconstruction approaches respectively. Our

analysis of thermal infrared video data of flying bats

recorded by a three-camera system simultaneously re-

vealed that the RECONSTRUCTION-TRACKING METHOD

produced fewer track fragments than the TRACKING-

RECONSTRUCTION METHOD but created more false pos-

itive 3D tracks. We do not make a general recommenda-

tion of one method over the other, but instead suggest that

the TRACKING-RECONSTRUCTION METHOD may be used

to interpret imaging scenarios when linking 2D track frag-

ments is not difficult (e.g., because of a high frame rate

and infrequent occlusions), while the RECONSTRUCTION-

TRACKING METHOD may be used when additional infor-

mation can reduce the number of false positive 3D tracks.
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