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ABSTRACT

Occlusion reasoning for visual object tracking in uncontrolled environments is a challenging

problem. It becomes significantly more difficult when dense groups of indistinguishable

objects are present in the scene that cause frequent inter-object interactions and occlusions.

We present several practical solutions that tackle the inter-object occlusions for video

surveillance applications.

In particular, this thesis proposes three methods. First, we propose “reconstruction-

tracking,” an online multi-camera spatial-temporal data association method for tracking

large groups of objects imaged with low resolution. As a variant of the well-known Multiple-

Hypothesis-Tracker, our approach localizes the positions of objects in 3D space with possi-

bly occluded observations from multiple camera views and performs temporal data associa-

tion in 3D. Second, we develop “track linking,” a class of offline batch processing algorithms

for long-term occlusions, where the decision has to be made based on the observations from

the entire tracking sequence. We construct a graph representation to characterize occlusion

events and propose an efficient graph-based/combinatorial algorithm to resolve occlusions.

Third, we propose a novel Bayesian framework where detection and data association are

combined into a single module and solved jointly. Almost all traditional tracking systems

address the detection and data association tasks separately in sequential order. Such a

v



design implies that the output of the detector has to be reliable in order to make the data

association work. Our framework takes advantage of the often complementary nature of the

two subproblems, which not only avoids the error propagation issue from which traditional

“detection-tracking approaches” suffer but also eschews common heuristics such as “non-

maximum suppression” of hypotheses by modeling the likelihood of the entire image.

The thesis describes a substantial number of experiments, involving challenging, notably

distinct simulated and real data, including infrared and visible-light data sets recorded

ourselves or taken from data sets publicly available. In these videos, the number of objects

ranges from a dozen to a hundred per frame in both monocular and multiple views. The

experiments demonstrate that our approaches achieve results comparable to those of state-

of-the-art approaches.
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Chapter 1

Introduction

1.1 Motivation

A lot of efforts have been made in computer vision to interpret the motion of large groups of

individuals. Applications range from video security surveillance to behavioral studies, from

medical image analysis to monitoring of wild animals. They all rely on the performance of

a robust multiple object tracking system. The performance and accuracy of multi-object

tracking systems is still far from being satisfactory for two major reasons: finding a general

object detection method still remains an open question, and the scalability to handle dozens

or even hundreds of objects based on existing techniques is quite poor.

One cause of the difficulties is the occlusion/interaction event that breaks many as-

sumptions held by the existing systems. After all, if the objects in the scene are well

separated without interaction or occlusion, it seems not so challenging to track all of them.

A lot of difficult tracking scenarios involve occlusion, including self-occlusion, inter-object

occlusion, or static occluders in the scene. It makes tracking even more difficult if objects

do not have distinctive appearance among each other. Recently, “Occlusion” and “Confu-

sion” are categorized to be two of the most difficult cases related to multiple object visual

tracking [26]. Thus, we believe that improving occlusion reasoning is the crucial step in

attaining improved tracking performance, and therefore it is the focus of this thesis.

In general, a complete multi-object tracking system typically consists of three com-

ponents, as illustrated in Fig. 1·1: object detection, temporal data association, i.e., the

assignment of current observations to object tracks, and state estimation of each object.

Within this classic framework, previous works typically perform occlusion reasoning from
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Figure 1·1: For each time step, a typical tracking system needs to se-
quentially solve object detection, data association and object state estima-
tion. Samples images from different tracking applications (in left-to-right
top-to-bottom order: PETS2009 [64], COP2007 [1],VS-PETS2003 [84],BU-
Cell [88],BU-Bat [18] and CLIF2007[27]) are shown on the right, where
object interaction/occlusion is frequent.

two aspects: building a stronger object detector that accounts for partial visibility and

modeling the missed detection event in data association. State-of-the-art object detection

methods are usually class-specific and require sufficient image resolution in order to ex-

tract dense features [37] from the object. Even for well-studied categories of objects such as

pedestrians, current techniques are still sensitive to occlusion and their performance drops

catastrophically if the object is only partially visible in the image [33].

Our research in developing methods for occlusion reasoning that support the task of

data association aims to be independent of a particular image-understanding application.

Therefore, this thesis focuses on data association and detection methods for occlusion rea-

soning that are not dependent on the class of the object of interest. In our experiments, the

objects are typically imaged at low resolution, which excludes the possibility of building

a complicated object appearance model for tracking. Furthermore, we are interested in

accounting for inter-object occlusion and interaction. Methods that model self-occlusion

for articulated objects [78, 74] and methods that learn scene occluders [1, 70] are comple-

mentary to our approach. The analysis of the outputs from our tracking algorithms, 3D

trajectories of flying bats, birds and insects, and 2D trajectories of people and animals, is

expected to have broad impact on the understanding of group behavior [18, 51, 82, 54] and



3

trajectory-based abnormality detection in surveillance studies [3, 4, 21, 85].

1.2 Main Contributions

In order to resolve the ambiguity in maintaining tracks due to occlusion events, there are

two research approaches concerning the data association aspect: accumulating observations

from multiple views or accumulating them from additional frames in a batch-processing

way. When multiple camera views are available, we also need to consider a spatial (across-

view) data association problem: the determination of corresponding observations of the

same object from multiple views. When batch processing is possible, a proper formulation

should provide an efficient algorithm to handle the much larger or possibly overwhelm-

ing data to process, compared to the data demands of sequential processing. However,

most previous works on this topic either underestimate the spatial data association prob-

lem in general or resort to a computationally expensive algorithm to solve the underlying

optimization problem. In contrast, our work addresses the spatial and temporal data as-

sociation problem in a multi-view setting, and we propose a new framework to model

occlusion events for batch processing that leads to various efficient algorithms that address

the short-term, long-term, and multi-view occlusion scenarios, respectively.

Another novel aspect of our approach to improve occlusion reasoning is our idea to

consider both detection and data association modules at the same time . Although it

might be easier to maintain each module separately from a system point of view, we

suggest there are good reasons to combine these two modules. Indeed, how to detect

multiple objects from images still remains one of the fundamental research problems that

the computer vision community works on. First, without knowing the number of objects

in the image, the detector is typically designed to produce a sufficiently large number of

candidate detections and then heavily relies on the data association method to identify the

false alarms among them. Second, severe occlusion creates challenges as the image evidence

(pixels) from the occluded region is usually shared and explained by multiple detections.

This makes it fairly difficult to estimate the right number of objects or reason about
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the occluders and occludees. Despite the trend in the research community of attempting

to improve the accuracy of an object detector by using more powerful machine learning

tools, we argue that there are two major drawbacks in the detection approaches of current

tracking systems: 1) The detection phase is completely separated from the task of data

association. Therefore, any type of detection error is propagated and must be fixed later. 2)

The projected images of multiple objects in the scene are assumed to occur independently

so that the occlusion relationship on the image plane is not modeled properly. Instead, we

would like to couple the detection and data association into a single mathematical objective

function. Therefore, the subproblems, detection and data association, can benefit from each

other, which leads to a more robust and smoothed solution. From a theoretical point of

view, such a combination can also be derived from a Bayesian estimation framework, where

the key difference compared to previous work is how to factorize the observation likelihood

term. In particular, we choose a sparsity-driven detection formulation as our detector that

models image likelihood jointly for binary image observations, and combine it with a classic

network-flow data association technique. The coupled objective function is further solved

by a dual decomposition algorithm.

In summary, the main contributions of the thesis are:

(a) For sequential tracking in multiple views, we propose a “reconstruction-tracking” algo-

rithm that performs spatial-temporal data association [90, 89]. For the reconstruction

step, we are the first to propose adding a sparsity constraint to reduce false alarms,

known as the “ghost” effects in stereoscopy (Chapter 2).

(b) For batch processing, we develop a unified framework to perform “track linking” with

a graph representation [87], known as the “track graph” [60]. Depending on the

complexity of occlusion, we propose several different efficient algorithms by converting

the original linking problem into network flow, set-cover and joint set-cover problems,

respectively (Chapter 3).

(c) For coupling the detection and data association problems, we propose a novel Bayesian
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framework that combines a sparsity-driven detection method and network-flow data

association method into a single objective function. The sparsity-driven detector is

able to suppress hypotheses and recover occlusion relationships jointly. To handle

the scalability, we adopt a dual decomposition method that allows tracking up to

hundreds of objects in a batch process [91] (Chapter. 4).

1.3 Organization of the Thesis

The remainder of the thesis is organized as follows:

Chapter 2 describes our multi-camera, multi-object tracking algorithm. We show how

to sequentially solve the two “across-view” and “across-time” data association steps for

tracking dense groups of objects moving in free 3D space, which we call the “reconstruction-

tracking” method. The underlying combinatorial formulation is adapted from the multi-

dimensional assignment problem, and we propose a modified greedy randomized adaptive

search procedure to solve it. Despite its success for tracking objects in sparse density, we

point out some limitations of this approach when applied to more challenging tracking

scenarios at the end of this chapter.

Chapter 3 describes our track linking algorithm. We show how to construct a graph

representation that characterizes the occlusion/interaction events in video sequences and

how to resolve the occlusion relationship later using a combinatorial algorithm. Depending

on the space-time characteristics of the occlusion events, we formulate the resolving process

as a bipartite matching, minimum-cost flow, or set-cover problem. At the end, we also give

a Bayesian interpretation to justify the proposed approaches.

Chapter 4 explains our novel Bayesian coupling framework that combines detection

and data association into a single objective function. Under this framework, we first

present our sparsity-driven object detector that works with binary image input, both for

monocular and multi-view videos. It not only overcomes the limitation of our baseline

tracker described in Chapter 2, but also simultaneously infers the occlusion relationship.

We further combine the sparsity-driven detection method with a network flow association
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method for tracking. We show the strength of the coupling framework by presenting its

performance across several challenging, notably distinct datasets. Our algorithms achieve

consistent robustness and outperform state-of-the-art techniques.

Chapter 5 summarizes and discusses the key contributions of the thesis work. Some

extensions and generalization of our approaches to other computer vision problems are also

discussed.

Each chapter is more or less self-contained and has its own literature review and ex-

periment section. A reader who is interested in only one category of approaches could look

up the related chapter without extensively going through other chapters.

1.4 List of Related Papers

This thesis is based in part on the following publications with extended formulations and

expanded experiments:

• Z. Wu, A. Thangali, S. Sclaroff, and M. Betke. “Coupling Detection and Data

Association for Multiple Object Tracking,” in Proceeding of the IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), Providence, Rhode Island,

June, 2012 [91].

• Z. Wu, M. Betke and T. H. Kunz. “Efficient Track Linking Methods for Track Graphs

Using Network-flow and Set-cover Techniques,” in Proceeding of the IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), Springs, Colorado, June,

2011 [87].

• Z. Wu, N. I. Hristov, T. H. Kunz, and M. Betke. “Tracking-Reconstruction or Recon-

struction-Tracking? Comparison of Two Multiple Hypothesis Tracking Approaches

to Interpret 3D Object Motion from Several Camera Views,” in Proceeding of IEEE

Workshop on Motion and Video Computing (WMVC), Utah, December, 2009 [90].

• Z. Wu, N. I. Hristov, T. L. Hedrick, T. H. Kunz, and M. Betke. “Tracking a Large

Number of Objects from Multiple Views,” in Proceeding of the 12th International
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Conference on Computer Vision (ICCV), Kyoto, Japan, September, 2009 [89].

The material in this thesis is based upon work partially supported by the National Sci-

ence Foundation under IIS-0910908, IIS-0855065, IIS-0308213, IIS-0713229, and Office of

Naval Research under ONR 024-205-1927-5 and the Air Force Office of Scientific Research.
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Chapter 2

Tracking in Multiple Views

In this chapter, we tackle the issue of occlusion with a multi-camera setup. Cameras are

assumed to be calibrated with overlapping fields of view. Videos that capture the motion

of objects are recorded with a relatively high frame rate. We assume an appropriate

detection algorithm has been developed so that possible 2D locations of objects have been

identified in the images. We also assume, however, that inaccurate segmentations and

merged measurements due to occlusion and object interaction are not identified in the

detection stage. Our focus is to rely on the data association module to maintain the trackers

during occlusion events. We first review state-of-the-art data association techniques as

well as customized approaches in multi-camera environments in Sec. 2.1. Our detailed

multi-object multi-view approach is explained in Sec. 2.2 with supporting experiments in

Sec. 2.3. We conclude this chapter in Sec. 2.4 by discussing the strengths and limitations

of the proposed approach.

2.1 Related Work

2.1.1 Classic Data Association Approach

The purpose of data association in a tracking system is to ensure the correct correspondence

between objects and observations. Otherwise, the state estimates obtained via algorithms

such as recursive Bayesian filtering will be based on inaccurately associated observations

and the object identity will not be maintained consistently. The radar literature describes

some fundamental algorithms for tracking multiple targets within a dynamic system [10],

such as Multiple Hypothesis Tracking (MHT) and Joint Probabilistic Data Association

(JPDA). MHT [69] enumerates all possible combinations through time by building a hy-
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pothesis tree, and picks the best one, i.e., with the highest likelihood, as its solution. In

practice, it requires a lot of heuristics to prune the hypothesis tree to avoid its exponential

growth [29]. On the other hand, JPDA only looks for correspondences between two frames

and does not pursuit the best solution but computes the expectation of track states over

all the hypotheses. These Bayesian probabilistic methods need to integrate filtering tech-

niques, such as a Kalman filter [22] or a particle filter [58]. Extension of these methods

that accommodate extended object measurements also emerged recently in order to recover

object pose and reduce the uncertainty of data association at low frame rates [38].

The probabilistic association methods have their integer optimization counterparts in

linear network optimization problems [15]. The most popular formulation is the bipartite

matching problem (or 2D assignment problem) [81], where many polynomial-time algo-

rithms exist such as the Hungarian method, Auction method, and JVC method [11, 17].

The minimum-cost flow formulation proposed by Zhang et al. [96] for multiple pedestrian

tracking can also be classified into this category since the 2D assignment problem can be

considered a special case of the minimum-cost flow problem. A similar linear programming

formulation was also presented by Jiang et al. [48] but they augmented the global cost

function with a pairwise distance measure. However, because they used the Manhattan

metric, the optimization still remains linear and does not increase the complexity com-

pared to bipartite matching. In contrast, the discrete optimization version of MHT, known

as the multidimensional assignment problem [66], is NP-hard. It can be seen as finding

a weighted maximum matching on a hypergraph, where a hyperedge must connect more

than two vertices at the same time. Therefore, it is a generalization of bipartite matching

to N-partite matching. To solve this NP-hard problem, the popular semi-definite program-

ming (SDP) technique was adopted by Shafique et al. [73] who relaxed the original discrete

optimization to a rank-constrained continuous optimization. Alternatively, an iterative

Lagrange relaxation procedure was applied by Deb et al. [30] to the dual problem. The

procedure halted its iterations when the duality gap was sufficiently small.

Despite efforts to handle the underlying NP-hard combinatorial optimization, methods
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described above all inherit the enumerative nature introduced by the “hard assignment”

that explicitly assigns observations to tracks exclusively and completely. In contrast, the

novel idea of “soft assignment,” also known as Probabilistic Multiple Hypothesis Tracking

(PMHT), was originally developed by Streit et al. [77], which treated the assignments

themselves as random variables or non-observed “missing data” and converted the data

association problem to a soft clustering problem or incomplete data estimation problem.

Both the work by Gauvrit et al. [41] on passive SONAR and Yu et al. [94] on pedestrian

tracking are along this direction. The main issue with these approaches is that the inference

algorithm used typically, EM or variational EM, has relatively slow convergence and is

sensitive to the initial estimate of the model parameters. When a large number of objects

needs to be tracked, many model parameters must be estimated. As a result, the problems

of sensitivity to initial starting points and slow convergence present a challenge to applying

these EM-type algorithms.

Sampling based algorithms form another category of data association methods that

gained popularity recently, partially because of the advance of Monte Carlo theory applied

to practical image understanding problems. Oh et al. [61] first proposed a general frame-

work to sample the data association hypotheses directly with Markov Chain Monte Carlo

(MCMC) sampling. It is a batch processing method and able to handle object arrival and

departure at the same time. For sequential tracking, Kevin et al. [75] defined the dimension

of state space to be correlated with the varying number of objects in the scene and applied

Reversible Jump Markov Chain Monte Carlo (RJMCMC) sampling that allows transi-

tion between state spaces of different dimensions. Although theoretically it is difficult to

conclude whether a sampling-based method outperforms the deterministic combinatorial

optimization method or not, the sampling-based method does have the flexibility to deal

with more complicated region tracking scenarios. Khan et al. [51] introduced a probabilis-

tic model to associate merged and split measurements using a MCMC-based particle filter.

Yu and Medioni [93] also extended the general framework by Oh et al. [61] to find the best

spatial and temporal association of regions to track with Data-Driven Markov Chain Monte
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Carlo (DDMCMC) sampling. However, as for most sampling techniques, determining how

to achieve fast convergence is always a nontrivial task [56].

Finally, we want to note that all these classic probabilistic and determinatistic ap-

proaches were originally designed for temporal data association, that is, to match the

measurements obtained from different time frames. Most of them treat occlusion events

as a sign of missed detections or merged measurements. For missed detections, temporal

data association serves as an interpolation for time series data. For merged measurements

(occluded objects have extended images overlapping on the image plane), temporal data

association has to relax a common constraint that forces each tracker to be matched exclu-

sively to one measurement. Although each of these two ideas has its strength for different

object image resolutions, they all suffer from long-term occlusion events.

2.1.2 Multi-view Data Association Approach

For situations when many objects emerge at the same time in the image of the scene and

occlusion occurs frequently, single-view approaches are not so promising. An alternative

way is to use more than one camera to provide information from different views [40, 55,

89, 59, 36, 50, 62]. It involves another type of data association task, that is to find the

correspondence of objects across cameras views. We call such task spatial or “across-

view” data association as opposed to temporal or “across-time” data association. Using

multiple views is advantageous because when occlusion occurs in a certain view, it might

not happen in other views. In addition to occlusion reasoning, multi-view tracking also

assists generating 3D trajectories of an object’s motion based on epipolar geometry [46].

Two strategies can be used to solve the multi-view multi-object tracking task that

differ in the order of the association processes: (1) The “tracking-reconstruction” method

processes the across-time associations first and establishes the 2D tracks of the objects

tracks for each view. It then reconstructs 3D motion trajectories. (2) The “reconstruction-

tracking” method processes the across-view associations first by reconstructing the 3D

positions of candidate measurements. It then matches the 3D positions to previously
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established 3D object tracks.

The tracking-reconstruction method can be interpreted as a track-to-track fusion pro-

cess that benefits from deferring assignment decisions, as in Multiple Hypothesis Tracking.

When, over time, information about the 2D track is accumulated, the ambiguity in match-

ing tracks across views becomes smaller. The method is suitable when a distributed system

architecture is required to prevent “one-point-failure,” which may occur in a centralized

system used by the reconstruction-tracking method. The reconstruction-tracking method

can be seen as a feature-to-feature fusion process, where the features are 3D object po-

sitions processed from 2D image measurements. Existing works on human tracking from

multiple camera views have compared the two schemes [80, 55] and have generally favored

the reconstruction-tracking scheme.

For the reconstruction-tracking scheme, tracking is performed in 3D [36, 59, 98, 80],

using reconstructed 3D object features, or in 2D [32, 55], using the 2D projections of re-

constructed 3D points into the image plane of each camera. The former approach, tracking

in 3D, is a reasonable choice if the 3D positions of objects or object features can be pre-

dicted accurately. If the information about an object is gathered from carefully calibrated

cameras, the 3D position can typically be estimated quite accurately. Obtaining accu-

rate position estimates, however, is not the main challenge of the reconstruction-tracking

scheme; instead, the main challenge is the correct interpretation of ambiguous position

estimates, which might be caused by incorrect across-view correspondences. Such ambigu-

ity becomes significantly worse when correspondences need to be established for tracking

dense crowds of objects.

The complexity of the multi-view tracking algorithm is also determined by the motion

pattern of the objects. Most of the previous multi-view methods for pedestrians tracking

adopt a planar motion assumption and use the planar homography to simplify the across-

view correspondence problem [59, 36, 50]. Occlusion can then be resolved even if the object

is completely occluded in some views. But it cannot be applied to scenarios where the

planar motion assumption does not apply. For objects moving in 3D space, we developed
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a 3D tracking mechanism that circumvents having to intepret occlusion, and a track-to-

track scheme that combines data association information from each camera and corrects

the track lost or track switch errors [89, 90].

Another interesting approach that explicitly models the occlusion process given accurate

camera geometry information was proposed by Otsuka and Mukawa [62]. Silhouettes of

objects were extracted and visual cones were constructed to represent a measurement. A

variant of Multiple-Hypothesis-Tracking was adapted to predict when and how an occlusion

event was going to happen. Obviously, such an approach is only applicable in highly

controlled environments with sufficient coverage of overlapping fields of view from many

different viewpoints.

Finally, there also exists work that addresses tracking objects in a camera network

with non-overlapping fields of view. Establishing across-view correspondence in this con-

text, also known as the re-identification problem, focuses on how to build a discriminant

descriptor for objects and how to utilize the topology of the camera network for re-entry

prediction [76, 49, 35]. As such a camera setup is not necessary to help inter-object occlu-

sion reasoning, we refer readers to related literature and focus on cameras with overlapping

fields of view in this thesis.

Relation to existing work. The objects in our videos move in free 3D space and

are imaged with low resolution. This scenario is more general than scenarios involving

planar motion, which have been studied in the computer vision literature extensively. Our

reconstruction-tracking method follows the multidimensional assignment formulation for

both the spatial and the temporal association problem. Based on multiview geometry,

the cost function to evaluate each spatial data association hypothesis requires information

from all views. This inevitably introduces a hard combinatorial problem. The formulation

is further extended to handle merged measurements due to overlapped projections from

multiple objects, and solved iteratively.
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2.2 Reconstruction-Tracking Method

For now, we assume an appropriate detection method has been provided to return a set

of measurements from each camera at each time step. We also assume the motion of each

object in the scene can be well described by a linear dynamic system so that a Kalman filter

can be applied for to estimate the state of a track. Therefore, occlusion reasoning relies

on data association, both temporally (across-time) and spatially (across-views). Multiple

cameras are deployed to share a large overlapping field of view to maximize the visibility

of objects in all views. The basic idea is to collect observations/measurements from all

cameras, reconstruct the 3D positions of objects by triangulation, and apply recursive

Bayesian tracking in 3D space. We call such an approach “reconstruction-tracking.”

Table 2.1: Notation for reconstruction-tracking method
yts,is the (is)-th observation/measurement at time t from camera s

Yi1i2...iN N measurements y1,i1 , y2,i2 , . . . , yN,iN

xi1i2...iN a binary variable to associate measurements Yi1i2...iN to a unique object
ci1i2...iN the cost to associate measurements Yi1i2...iN to a unique object
Zi1i2...iT T 3D reconstructed measurements z1,i1 , z2,i2 , . . . , zT,iT
A state transition matrix for a linear dynamic system
Hs observation matrix in camera s
xa the state (position) vector of object a
PDs detection rate in camera s
Φs volume of field of view in camera s
us, vs measurement of image coordinates in camera s
F set of all possible across view associations
Mc set of confirmed associations without dummy measurements
Ms set of suspicious associations with dummy measurement in each tuple

2.2.1 Multidimensional Assignment Formulation

In this section, we define the stateX of an object of interest by its position x and velocity dx

in 3D space. Its evolving process follows a constant velocity. The measurement returned

by our detection method is a 2D point observation of an object on the image plane or a

false alarm. Given N calibrated and synchronized cameras that share overlapping fields of

view and ns measurements in the field of view of camera s, the state X
(t)
a of an object of
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interest a at time t and its observations can be assumed to evolve in time according to the

equations






X
(t+1)
a = AX

(t)
a + v(t),

y
(t)
s,is

= Hs x
(t)
a + w

(t)
s , for s = 1, ..., N, is = 1, ..., ns;

(2.1)

where v(t) and w
(t)
s are independent zero-mean Gaussian noise processes with respective

covariances Q(t) and Rs(t), A is the state transition matrix with a constant velocity as-

sumption, and Hs the projection matrix for camera s. Each point measurement y
(t)
s,is

is

either the projection of some object a in camera s plus additive Gaussian noise N (0, Rs(t)),

or a false-positive detection, which is assumed to occur uniformly likely within the field of

view of camera s.

In order to model missed detections, for each camera, we define the probability of an

object being detected is PDs < 1. We add “dummy” measurements y
(t)
s,0 to handle the case

of missed detections, accordingly. In particular, when object a is not detected in camera s

at time t, a dummy measurement y
(t)
s,0 from camera s is associated with object a.

We use the notation Yi1i2...iN to indicate that the measurements y1,i1 , y2,i2 , . . . , yN,iN

originate from a common object in the scene at time t. For simplicity, we omit the time

superscript for now. The likelihood that Yi1i2...iN describes object state xa is given as

p(Yi1i2...iN |xa) =

N
∏

s=1

{[1− PDs ]
1−u(is) × [PDs p(ys,is|xa)]

u(is)} (2.2)

where u(is) is an indicator function defined as 0 if is = 0 and 1 otherwise. The conditional

probability density of a measurement ys,is originating from object a, is

p(ys,is |xa) = N (ys,is ;Hs xa, Rs). (2.3)

The likelihood that Yi1i2...iN is unrelated to object a or related to dummy object ⊘ is

p(Yi1i2...iN |⊘) =
N
∏

s=1

[
1

Φs
]u(is), (2.4)

where Φs is the volume of the field of view of camera s. Since we do not know the true state
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xa, we replace it with a least-square solution as follows. state x̂a to be the reconstructed

3D position based on the corresponding measurements y1,i1 , y2,i2 , ..., yN,iN in the N views.

If we assume each measurement ys,is is expressed as image coordinates (us, vs) and the

state of the object in 3D is expressed as a homogeneous coordinate x = (x, y, z, 1)T , then

for each measurement there are two linear constraints:







us(H
(3)
s x)−H

(1)
s = 0

vs(H
(3)
s x)−H

(2)
s = 0

(2.5)

where H
(i)
s is the i-th row of matrix Hs. To find x̂a, given the measurements from N

views, the Direct Linear Transformation (DLT) method [46] solves the overdetermined

linear system in Eq.2.5 with 2N constraints.

We now can define the cost of associating N -tuple Yi1i2...iN to object a as the negative

log-likelihood ratio

ci1i2...iN = − ln
p (Yi1i2...iN | a)

p (Y t
i1i2...iN

| ⊘)

=

N
∑

s=1

{[u(is)− 1] ln(1− PDs)− u(is) ln

(

PDsΦs

|2πRs|1/2

)

+u(is)[
1

2
(ys,is −Hsx̂a)

TR−1
s (ys,is−Hsx̂a)]} (2.6)

We use the binary variable xi1i2...iN to indicate if Yi1i2...iN is associated with a candidate

object or not. Assuming that such associations are independent, our goal is to find the



17

most likely set of N -tuples that minimizes the linear cost function:

min

n1
∑

i1=0

n2
∑

i2=0

...

nN
∑

iN=0

ci1i2...iN xi1i2...iN (2.7)

s. t.

n2
∑

i2=0

n3
∑

i3=0

...

nN
∑

iN=0

xi1i2...iN = 1; i1 = 1, 2, ..., n1

n1
∑

i1=0

n3
∑

i3=0

...

nN
∑

iN=0

xi1i2...iN = 1; i2 = 1, 2, ..., n2

...
n1
∑

i1=0

n2
∑

i2=0

...

nN−1
∑

iN−1=0

xi1i2...iN = 1; iN = 1, 2, ..., nN .

The above cost function has been proposed in the radar tracking literature [67, 30]. The

equality constraints imply every detection has to be explained and the matching is one-to-

one between real measurements. Each measurement is either assigned to some object or

claimed to be a false-positive detection. However, due to occlusion, multiple objects might

share the same projection, i.e., a centroid point taken from the merged “object blobs,”

as shown in Fig. 2·1. We therefore have to allow a real but merged measurement to be

matched more than once. In another words, we need to identify possible occluded objects

and relax the one-to-one matching constraint for those objects.

Eq. 2.7 is known as a generalized multidimensional assignment problem, which is NP-

hard when the dimension N ≥ 3. The processing time for the optimal solution is unac-

ceptable in dense tracking scenarios, even if a branch-and-bound search method is used,

because such a method is inevitably enumerative in nature. The alternative is to search

for a sub-optimal solution to this combinatorial problem, using greedy approaches [71], La-

grangian relaxation [67, 30], simulated annealing or tabu search. We propose an iterative

greedy randomized adaptive search procedure (IGRASP), which randomly picks a greedy

solution as a starting point and performs local search in feasible solution space.
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(a) (b)

Figure 2·1: (a) Each detection is either matched to a real object, or de-
clared to be a false alarm. If a detection is missed for an object, a dummy
measurement is matched instead. (b) From a single view, two objects o1
and o2 occlude each other and yield a single measurement y1,1. A single-
view tracker may lose track of one of the objects. If two views are available,
the objects o1 and o2 can be matched to their respective measurements y2,1
and y2,2. Stereoscopic reasoning reveals that y1,1 is the image of both ob-
jects. Therefore, the real measurement y1,1 should be matched more than
once.

2.2.2 Iterative Greedy Randomized Adaptive Search Procedure

We first briefly outline the generic Greedy Randomized Adaptive Search Procedure (GRASP),

as we applied it to the multidimensional assignment problem of Eq. 2.7. This required ad-

justing the procedure to our multi-view scenario. GRASP is a multi-start local search

method with random initialization [71]. It consists of a randomized greedy step and a local

search step at each iteration. In the randomized greedy step, a restricted candidate list is

constructed greedily from the remaining feasible assignments, from which an assignment is

selected randomly and added to the solution set. In the local search step, we adopt the so-

called 2-assignment-exchange operation between real measurement assignments. That is,

for two tuples Zi1...ij...iN and Zi′
1
...i′

j
...i′

N
from the feasible solution, we exchange the assign-

ment to Zi1...i′j...iN
and Zi′

1
...ij...i′N

if such an operation decreases the total cost in Eq. 2.7.

The tuples and their indices to exchange are selected to be the most profitable pair at the

current iteration. The exchange takes place recursively until no exchange can be made

anymore. Details of the GRASP implementation and other possible greedy constructions
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and assignment exchange strategies can be found in the work by Robertson [71].

We adopt a technique similar to “gating” during the initialization step to reduce the

number of possible candidate tuples as follows. Given a pair of calibrated views, our

technique establishes the correspondence of the two projected images of an object using

epipolar geometry. Thus, we only need to evaluate the candidate tuples that lie within the

neighborhood of corresponding epipolar lines. Specifically, all candidate points from the

second view that can be matched to a 2D point y (expressed in homogeneous coordinates)

in the first view should be on the epipolar line computed by Fy, where F is the fundamental

matrix that captures the geometric relationship between two cameras [46]. A user-defined

threshold is adopted to prune candidate points that are far away from this line so the total

possible number of pairings can be reduced significantly. This pruning step in building

the multidimensional assignment problem, which we call epipolar-neighborhood search,

becomes crucial for the overall efficiency of our method.

Greedy Randomized Adaptive Search Procedure:

Compute the costs for all possible associations and prune the candidates by an epipolar-
neighborhood search
For i = 1, ...,maxIter

1. Randomly construct a feasible greedy solution,

2. Recursively improve the feasible solution by a local search,

3. Update the best solution by comparing the total costs,

End
Output the best solution found so far.

To relax the one-to-one matching constraint, measurements that overlap due to oc-

clusion or imperfect segmentation during the detection stage and thus are interpreted as

a single measurement (centroid of merged “object blobs”), can be assigned to multiple

objects, as shown in Fig. 2·1(b). We extend the generic GRASP algorithm to an itera-

tive process, where at each iteration, an updated multidimensional assignment problem is

solved that involves measurement previously identified as false alarms. One toy example

to demonstrate such an iterative procedure is given in Fig. 2·2.
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Figure 2·2: The greedy solution for a multi-view tracking example with 3
views, each of which receives three measurements. (a) A 3-partite graph
corresponding to Eqn. 2.7, where each hyperedge is a possible association
tuple. (b) The residual graph with two confirmed associations extracted
in (c) after the first iteration of IGRASP. (d) The suspicious associations
after solving the multidimensional assignment problem corresponding to the
residual graph (b), with (e) as a new confirmed association after the second
iteration of IGRASP. If no further confirmed association can be generated
from the residual graph with respect to (c) and (e), the final greedy solution
to the original problem (a) is the union of (c), (d) and (e).

We denote the set of all possible N -tuples as F = Z1 × ...× Zs × ...× ZN , where Zs is

the set of all the measurements in view s plus the “dummy” measurement. Solving Eq. 2.7

yields a set of possibly suboptimal assignments Z∗, where a specific assignment in this

solution can be expressed as {Zi1i2...iN |xi1i2...iN = 1}. We divide the set of assignments into

two subsets:

1. Confirmed associations:

Mc = {Zi1i2...iN |xi1i2...iN = 1; i1 6= 0; ...; iN 6= 0}.

2. Suspicious associations: Ms = Z∗ \Mc.

Suspicious associations contain dummy measurements zs,0 that indicate an object is

not detected in some view and measurements associated with the dummy measurement
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are false positive detections. Thus, associations in set Ms have at least one zero-index in

their subscripts. From set Ms, we construct another assignment problem that is described

by Eq. 2.7, except with the already confirmed assignments in Mc removed from the feasible

assignment set F . Occluded objects then get a second chance to match the measurements,

especially aiming for possible merged measurements. In addition, costs for candidate asso-

ciation tuples without a zero-index measurement are increased by a scaling factor so that

it becomes more and more difficult to generate confirmed associations as the algorithm

iterates. Now the algorithm can generate another two subsets from the result and iterate

until a maximum number of iterations is reached or Mc in the current iteration is empty.

We summarize the Iterative GRASP in the pseudocode below.

Iterative Greedy Randomized Adaptive Search Procedure (IGRASP):
Building Phase
Initialization by computing the costs for all possible associations in set F .

Solving Phase
For i = 1, ...,maxIter

1. Formulate multidimensional assignment problem on set F according to Eqn. 2.7, where cost
coefficients for tuples without a zero-index measurement are increased by a scaling factor
γ > 1.

2. Run standard GRASP to obtain a suboptimal solution.

3. Partition the computed solution into confirmed set Mc and suspicious set Ms.

4. If Set Mc is empty, terminate; else F = F \Mc

End
Output the best solution found so far.

2.2.3 Reconstruction-tracking Algorithm

Thus far we described a method to solve multi-view data association in a single time step.

The solution allows us to estimate the current 3D position of each object in the scene

using Eq. 2.5, which estimates the 3D position in a least-squares sense [46]. Once the 3D

locations of objects are reconstructed, similarly to Eqn. 2.7, the problem of temporal data

association can also be formulated as a multidimensional assignment problem, as shown
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in Fig. 2·3. The state definition of each object remains the same as described earlier,

but the measurement is taken as the reconstructed 3D point. The cost for each matching

hypothesis is taken as the negative log-likelihood evaluated by Kalman filtering. We refer

to the work by Poore [66] for the detailed derivation of the function describing the cost of

a hypothesis and the objective function, which sums these costs.

The tracking algorithm is implemented with a sliding-window scheme. At each time step

t, a new (T + 1)-dimensional assignment problem is formulated with the set of established

tracks at time t−1 and T sets of new measurements up to time t+T −1. Each established

track carries its estimated state and noise covariance at the end, which will be used to

initialize the Kalman filter that evaluates a particular matching hypothesis. Once the

assignment problem is solved, the tracks are extended to time t and their state vectors and

covariance matrices are updated with Kalman smoothing. To complete the steps of track

initiation, continuation, and termination, we outline our reconstruction-tracking algorithm,

which forms our baseline algorithm for multi-object multi-view sequential tracking, as

follows.

Reconstruction-tracking Algorithm
Tracking with deferred logic. At each time step t:

Input: A set of measurements {y
(t)
s,is
} from N cameras with T frames, and M established tracks

from time t− 1:

1. For each of T frames, reconstruct 3D positions of objects by solving a generalized N -
dimensional assignment problem according to Eqn. 2.7.

2. Combine T frames of reconstructed measurements and M active tracks to a (T + 1)-
dimensional assignment problem [66] and solve it. The solution gives a set of tracklets of
length (T + 1).

3. • If a tracklet’s head is from one of the M established tracks, extend it with the tracklet.

• If a tracklet’s head is a dummy measurement, initialize a new track with this tracklet.

• If an established track does not have its extension in tracklets, it is a lost track. Track
coasting technique is applied.
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Figure 2·3: Example of solving the multidimensional assignment problem
in the temporal domain. Current active tracks are listed in the first column
of the sliding window. Track initialization, continuation, and termination
are implemented by checking the position of the zero-index dummy mea-
surement in the solution.

2.3 Experiments

In this section, we first describe two datasets collected for understanding the behavior

of flying animals, which require both tracking and reconstruction techniques. Then we

give a quantitative analysis of our reconstruction-tracking approach applied to two fully-

annotated infrared video sequences.

2.3.1 Data Collection

Observing the flight behavior of large groups of bats or birds is fascinating – their fast,

collective movements provide some of the most impressive displays of nature. Quantitative

studies of cooperative animal behavior have typically been limited to sparse groups of only

a few individuals. The limitations of these studies are mainly due to the lack of tools

to obtain accurate 3D positions of individuals in dense formations. Although important

progress has been made recently [9], a robust solution to 3D tracking, reconstruction,

and data association still needs to be developed. Thus, our automatic multi-object multi-

view tracker is expected to have great impact in related fields by providing thousands of

trajectories for group behavior studies. In this thesis, videos of two different species of
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flying animals, barn swallows and Brazilian free-tailed Bats, were collected to test our

multi-object multi-view tracking approach.

A recording of swallows in visible-light video was provided by Prof. Ty Hedrick, Univer-

sity of North Carolina at Chapel Hill, which contains 475 frames for each of three cameras.

The average distance between swallows and cameras is around 50 meters. The sequence is

relatively easy to analyze because object density is low. Point measurements are obtained

by background subtraction and by selecting the centroid points from connected foreground

components. Our tracker can produce high-quality trajectories without difficulty in find-

ing the right data associations both across view and across time. A qualitative result with

sample frames is shown in Fig. 2·4.

Figure 2·4: Stereoscopy reconstructed 3D flight paths of swallows and the
three camera views of the sequence overlayed with the trajectories backpro-
jected onto each image plane. Corresponding paths across views are shown
in the same color. The brightness is proportional to the depth in the scene.

We also recorded the emergence of a colony of Brazilian free-tailed bats from a natural
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cave in Blanco County, Texas. We used three FLIR SC6000 thermal infrared cameras with

a resolution of 640×512 pixels at a frame rate of 125 Hz, as shown in Fig. 2·5. The cameras

were placed at a distance around 15 meters from the cave in order to capture the entire

group of flying bats from different viewpoints with overlapping fields of view. All cameras

were synchronized and spatially calibrated with a large baseline.

We do not have sufficient appearance information to distinguish between bats or swal-

lows, which look very similar to each other. The size of the projection of each target ranges

from 10 to 40 pixels, depending on the distance of the target to the camera. In addition to

qualitative evaluation of our tracking system on the swallow sequence, we also established

ground truth by manually labeling two subsets (Infrared S1, S2) of different densities from

infrared bats video, which includes about 30 and 100 bats per frame, respectively. The

first subset with low density comprises of 1,100 frames for each view, while the second one

comprises of 200 frames.
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Figure 2·5: The emergence of Brazilian free-tailed bats. Hundreds of bats
were automatically tracked and the trajectories were reconstructed.
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2.3.2 Quantitative Evaluation on Infrared Video Datasets

Two versions of our “Reconstruction-tracking” algorithm were implemented, which we de-

note as “RT-1” and “RT-2.” These two differ only in the cost function to evaluate the

likelihood of a given temporal data association hypothesis. For “RT-1,” the cost func-

tion is defined by the negative likelihood ratio through Kalman filtering [22]1, where the

measurements are 3D locations of reconstructed points after solving the spatial data asso-

ciation problem. For “RT-2,” the cost function is the same except the measurements are

2D locations of the detections on the image planes in all views. As the accuracy of 3D

reconstruction depends on the quality of camera calibration as well as the distance between

targets and cameras, it is possible that the 3D reconstruction could be off by meters in

the physical world even if the right spatial data association is found. Therefore, “RT-2”

circumvents the need to have accurate triangulation in stereoscopy. On the other hand,

as “RT-2” needs to work with 2D measurements directly, it is sensitive to the detection

quality, especially when multiple objects occlude each other and yield an overlapped mea-

surement.

Important Parameter Settings. To initialize the Kalman filter of a newly appearing

object, the initial state of an object is taken as the measurement in the current frame

(position) and the displacement between measurements from the first two frames it appears

in (velocity). The covariance matrices are initialized as identity matrices. To initialize the

tracking process of a tracked object at the first frame of a sliding window, which consists

of 5 consecutive frames, state and covariance parameters are set based on the estimates

carried at the end of its track in the previous instantiation of the sliding window.

The parameter that defines the “gate” in spatial data association is set to be 20 pix-

els. It is the maximum distance allowed from a given point to its epipolar line. Larger

threshold settings are disadvantageous because they would introduce additional candidate

1We use the toolbox by Murphy K. http://www.cs.ubc.ca/~murphyk/Software/Kalman/kalman.html

http://www.cs.ubc.ca/~murphyk/Software/Kalman/kalman.html
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association hypotheses. Note that evaluating the cost of each hypothesis is the bottleneck

of the whole system. The set of all hypotheses could also be separated into disjoint subsets

by clustering before optimization, as suggested by Cox and Hingorani [29]. The maximum

number of missed detections allowed is also a critical parameter to determine the problem

size, It is set to 1 for spatial data association in three views and 2 for temporal data asso-

ciation throughout our experiments. For the IGRASP algorithm, the maximum number of

iterations is set to 10 with a scaling factor γ = 1.05 (see Sec. 2.2.2). These two parameters

should be adjusted when the density of objects varies. Additional iterations and a lower

scaling factor would be advantageous if the object density is higher than present in our

dataset.

Quantitative Evaluation Metric.

For quantitative evaluation, we use the “USC metrics” by Wu [86] and the “CLEAR MOT”

metrics by Bernadin and Stiefelhagen [14]. Because we use these metrics throughout this

thesis, we here briefly explain how they are computed.

Given a set of system-generated tracks S and a set of ground-truth tracks G, a list

of possible matches is constructed at each time step t, where a possible match pair (s, g)

is determined if the matching cost between the two is above a hit/miss threshold. In

this chapter, we use the Euclidean distance as the matching cost. Once such a list is

constructed, an assignment problem is solved to find the optimal one-to-one matches.

The number of matched pairs in the solution is denoted as ct. The distance between

each matched pair is denoted as dit. The number of system-generated tracks that are not

matched (false positives) is fpt; the number of ground-truth tracks present in the current

frame is gt and the number of ground-truth tracks that are not matched (miss) is mt.

The number of system-generated tracks that are matched to different ground-truth tracks

compared to the matches made at previous time step (mismatch or ID switch) is mmet.

Given these quantities for all the frames, the CLEAR MOT metrics that include Multiple

Object Tracking Accuracy (MOTA) and Multiple Object Tracking Precision (MOTP) [14]
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are computed as follows:

• Miss Rate (MR):
∑

t mt∑
t gt

;

• False Positive Rate (FPR):
∑

t fpt∑
t gt

;

• Mismatch Rate (MMR):
∑

t mmet∑
t gt

;

• Multiple Object Tracking Accuracy (MOTA): MOTA takes into account false

positives, missed targets, and identity mismatches. The final score to summarize

tracking accuracy is computed as 1-MR-FPR-MMR.

• Multiple Object Tracking Precision (MOTP):
∑

t,i d
i
t∑

t ct

The USC metrics [86] are computed as:

• Mostly Tracked (MT): the number of objects for which ≥ 80% of the trajectory

is tracked, i.e., 80% of a ground-truth track has been matched to some non-empty

set of system-generated tracks;

• Mostly Lost (ML): the number of objects for which ≤ 20% of their trajectories is

tracked;

• ID Switch (IDS): the number of identity switches
∑

tmmet.

In order to compute a match between ground-truth trajectories and system-generated

trajectories, 0.3 m is chosen as the miss/hit threshold for the infrared data of bats. This

threshold is close to the physical size of this species when the wings are extended. In

addition to MOTA, we compute the average Euclidean distances in 3D between two sets

of trajectories for MOTP that measures the average precision.

Table 2.2 gives the quantitative evaluation of the proposed two versions of the reconstruction-

tracking algorithm. Both algorithms work reasonably well for the sequence of low object

density. But the performance drops catastrophically when dealing with the extremely

dense scenario. Between the two versions of the reconstruction-tracking algorithm, “RT-1”
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Data Method GT MT ML IDS MOTA MOTP

Infrared S1 RT-1 207 200 0 35 0.65 8.5 cm
(1100 frames) RT-2 207 195 0 72 0.65 9.0 cm

Infrared S2 RT-1 203 147 5 158 -0.31 10.1 cm
(200 frames) RT-2 203 152 2 609 -0.40 10.9 cm

Table 2.2: Quantitative results of our reconstruction-tracking algorithm
on Bats dataset. GT:Ground Truth; MT: Mostly Tracked; ML: Mostly
Lost; IDS: ID Switch.

clearly has superior performance, which suggests that tracking in 3D is much more reliable

than 2D as long as the reconstruction is accurate enough. As the occlusion introduces

uncertainty on 2D measurements, “RT-2” that works directly with merged measurements

in 2D is more sensitive to the frequency of occlusion, which results in a high ID switch

error rate.

The negative MOTA scores are caused by incorrect spatial data associations that oc-

curred in the first step of the reconstruction-tracking algorithm (note that the false positive

rate defined in the CLEAR metric is not bounded to be at most one). There are mainly

two issues to be addressed. First, although a point representation is good enough for the

objects in our experiment, an extended measurement should be considered when the pro-

jections of multiple objects yield a single merged blob, as shown in Fig. 2·6 (a). A better

detection method should extract the right number of points and accurate positions of these

points from the merged measurement. Second, even if the 2D measurement is accurate, a

“ghost effect” might show up during the triangulation step, i.e., multiple hypotheses in 3D

locations would generate the same 2D measurements on the image planes. Such ambiguity

cannot be resolved purely from the knowledge of camera geometry. Therefore, additional

constraints should be added in order to suppress these errors and reduce the false positive

detection rate. We will revisit this issue in Chapter 4.
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(a) (b)

Figure 2·6: Two sources of error for spatial data association. (a) Uncer-
tainty in the merged measurement. Each connected component contains
an unknown number of objects, and the optimal point to represent to each
object’s location is not clear. (b) Ghost effect created by triangulation. All
blue points in the figure perfectly match camera geometry, but they are all
false alarms.

2.4 Summary and Discussion

In this chapter, we propose a sequential spatial-temporal data association method for

multi-view multi-object tracking. Occlusion could be resolved by solving spatial (across-

view) association and occluded objects can be localized in 3D through stereoscopy. In

particular, we adapt the traditional multidimensional assignment formulation, a variant

of the Multiple-Hypothesis-Tracking (MHT) algorithm, to our spatial data association

task. In order to allow many-to-one matching for merged measurements due to inter-

object occlusion, we propose an iterative greedy algorithm (IGRASP) to identify those

potentially merged measurements and recover occluded objects. Once the 3D locations of

objects are reconstructed, a variant of MHT is applied again to perform temporal data

association as well as maintain track initialization, continuation, and termination.

We compare the proposed method with two different implementations (RT-1 and RT-2)

and test on visible-light videos of swallows and infrared videos of bats, where objects with

small resolution are moving in free 3D space. Our tracking algorithm is able to track most

objects in sparse or median densities and produce 3D trajectories for further data analysis.

However, quantitative results suggest that such algorithms work poorly on a dense sequence
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where the benefit of multi-view geometry reaches its limit. The “ghost effect” is introduced

during the reconstruction step where multiple hypotheses perfectly satisfy camera geometry

constraints and therefore cannot be distinguished from each other. Such phenomenon

could be eliminated through tracking if it only happens sporadically. Unfortunately, in our

challenging infrared video data of bats, the phenomenon exists persistently and cannot be

resolved purely through the data association step. We will revisit this problem in Chapter 4.
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Chapter 3

Track Linking on Track Graph

In this chapter, we adopt a batch processing method where we treat objects involved in the

occlusion event as a single target to track, known as “track linking.” It is a generalization

of traditional measurement-to-measurement association: here, the matching involves tra-

jectory segments (tracklets). Each tracklet typically carries much more information than

the measurements considered in the previous chapter (e.g., centroid positions). Occlusion

ambiguity is resolved by optimizing a cost function that considers the smoothness of ob-

ject motion and appearance over several frames. With this approach, tracklets may be

stitched together and full trajectories may be recovered. This idea can be applied to both

single-view and multi-view settings.

We first review classic tracklet stitching techniques in Sec. 3.1. Our detailed track

linking approach is explained in Sec. 3.2 with supporting experiments in Sec. 3.3. We

conclude this chapter in Sec. 3.4 by discussing the strength and limitation of the proposed

approach.

3.1 Related Work

Most of data association works described in the previous chapter use a instantaneous

measurement as the matching unit. Track linking, as a batch process, is a generalization

of instantaneous measurement-to-measurement association: here, the matching involves

trajectory segments or “tracklets,” which are typically generated by a low-level tracker. The

advantages of using tracklets are twofold. First, the complexity of most data association

methods usually grows quickly when many frames are processed in a batch mode. By

matching tracklets, especially long tracklets, the time span of the sequence in a batch
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that a system can handle efficiently typically significantly increases. Second, each tracklet

already carries filtered information and, therefore, the descriptor for each tracklet is much

more informative than a simple instantaneous measurement can be [68, 8].

Static scene occlusions or inter-object occlusions are the main causes that break a

complete trajectory into pieces. In order to stitch pieces that occur before and after

occlusion events, a common assumption is adopted in track linking that a complete track

should obey certain smoothness properties, either in its appearance or motion. Most

existing techniques that work with tracklets simply extend a measurement-to-measurement

association method by redesigning the similarity function under the same mathematical

framework, such as the 2D assignment problem [47, 63], MCMC sampling [43] or network-

flow optimization [25].

Instead of organizing temporal data-association hierarchically, where, at each level,

local links between track fragments are produced [47, 63, 92], Nillius et al. [60] solved the

problem globally by processing the track graph that represented all object interactions.

Their method used the “junction-tree algorithm” for loopy graph inference to maintain

track identities. Unfortunately, the size of the state space defined for each node in the graph

that models object interaction grows exponentially as the number of objects involved in

the interaction increases. Since the state space, i.e., the permutation space over the object

identities, is large, their method has to incorporate some heuristics to make it practical,

especially when objects interaction is frequent.

Track linking also plays an important role in medical applications, such as cell analysis

in time-lapse microscopy [54]. Due to frequent interactions, highly nonrigid deformations

and cluttered background, it is not easy to develop a robust low-level tracker in these ap-

plications. An additional linking procedure has to be performed using the spatial-temporal

context. An interesting problem under consideration here is how to identify mitosis events

in a low-frame-rate video where objects undergo splitting as a physical process.

Relation to existing work. Usually a track linking method needs to compare features
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Figure 3·1: Three different inter-object occlusion scenarios: (a) short-term
occlusion, (b) long-term occlusion, and (c) occlusion in two camera views.
Red nodes represent merged measurements; numbers are labels for objects.
Short-term occlusion (a) is usually easy to resolve if objects have distinctive
motion patterns. Long-term occlusion (b) is more difficult to explain since
motion information about the objects (i.e. linear dynamics) typically only
characterizes them for a short time period. If multiple views are available
(here two), a long-term occlusion in one view (c-1) may be resolved by
analyzing the status of the objects in another view where the occlusion does
not occur or only occurs for a short time (c-2). Throughout this chapter, we
do not assume objects are significantly distinctive in appearance or motion
characteristics. Such an assumption would simplify the problem of occlusion
reasoning, but cannot be made for our data.

extracted from tracklets to decide if a stitch should be made. The feature is local if it only

represents the information carried within the tracklet under consideration. The feature

can also be global if it depends on the whole trajectory formed by all the tracklets along

the path. Most previous track linking methods use local features only. We will show that a

global feature is more appropriate if the occlusion process is complicated. Previous efforts

can also be categorized according to their stitching strategy which either follows a non-

iterative or an iterative process. For a typical iterative process, tracklets are linked as a

pair at each iteration and the complete path is formed incrementally [47, 63, 92, 54]. For a

non-iterative process, a global optimization problem is formulated, whose solution provides

all the paths at the same time [60, 25]. The choice of the linking strategy depends on the

characteristics of the occlusion events, as shown in Fig 3·1.
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In this chapter, we employ both iterative and non-iterative linking strategies to handle

different types of occlusion events. All these linking processes are based on a graph rep-

resentation, and we propose a simple forward-backward algorithm to create such a graph.

Furthermore, we also introduce a new strategy for linking tracklets that involves matches

across camera views. The strategy can be seen as a “track-to-track” fusion scheme, a com-

plementary method for multi-view multi-object tracking described in the previous chapter.

Finally, we justify all these linking methods as performing maximum-likelihood estimation.

A summary of related work and our methods is given in Table 3.1.

Table 3.1: Summary of related work and proposed track linking methods
Method Feature Strategy Track Merge/Split

Huang et al [47] local iterative no

Li et al [54]
Xing et al [92] local iterative yes
Perera et al [63]

G. Castañón and L. Finn [25] local non-iterative no

Nillius et al [60] local non-iterative yes

Our local linking local iterative yes
Minimum-flow+Bipartite matching

Our network linking local non-iterative yes
Minimum-cost flow

Our global linking global non-iterative yes
Weighted set-cover

Our multiview linking global non-iterative yes
Weighted set-cover

3.2 Track Linking Methods

In this section, we present several linking strategies with the same underlying data rep-

resentation, which we call a “track graph.” We first describe the construction of such a

graph with a forward-backward tracking scheme, and then develop four linking methods

according to the characteristics of the inter-object occlusion events.



36

Table 3.2: Notation for track linking method
Z the collection of all tracklets
X the states of all objects
M the mapping matrices for edges on bipartite graph
G track graph
Ti (i)-th tracklet produced by low-level tracker
vi (i)-th vertex in track graph that corresponds to a tracklet Ti
ei,j edge in track graph that shows a link between Ti and Tj
fi,j the flow variable for ei,j to represent the number of interacting objects
ci,j the cost associated with ei,j to measure the likelihood of linking vi and vj
H hypothesis of merging or splitting event
p path in the track graph
xp the integer variable to represent path p is selected xp times

3.2.1 Track Graph Representation

A track graph G = (V,E) is defined over sets of vertices V that represent individual or

merged tracks and edges E that represent merging or splitting events. A merged track

is produced when multiple objects are treated as a single object due to either a close

interaction between objects or an overlapped projection of moving objects in 3D space.

The directed edge ei,j from vertex vi to vj represents that track vi is merged with track vj

if vj is a merged track, or that vi is split to track vj if vi is a merged track, as shown in

Fig. 3·2.

For simplicity, we assume each individual track is part of a complete trajectory corre-

sponding to a true object, but the number of objects is unknown. The flow on the edge

indicates how many objects are involved during the merging or splitting event. The vertex

that has only incoming edges is called sink ; the vertex that has only outgoing edges is

called source. The set of all source vertices is denoted by S, and the set of all sink vertices

by T . Each vertex has its track-capacity to represent single or multiple objects. For a

source vertex, its associated track-capacity is the sum of outgoing flows; for a sink vertex,

its associated track-capacity is the sum of incoming flows; for other intermediate vertices,

the sum of incoming flows is equal to the sum of outgoing flows for balance. For tracking

in a single view, an isolated vertex that has no incoming or outgoing edges has capacity
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(a)

(b)

Figure 3·2: A tracking example that consists of three interacting objects
and eight system-generated tracks (a) and the corresponding track graph
(b). The track graph represents two objects that occlude each other for a
while, then move apart, then merge again, and finally interact with a third
object. The track graph is particularly useful to visualize such frequent
track-merging and track-splitting events. Our local and global linking al-
gorithms process the track graph (b-left) and produce the resolved graph
(b-right), where each red arrow connects multiple vertices (i.e., tracks) and
maintains the identity of the tracked object.

one. We remove these isolated vertices in preprocessing, as they do not require occlusion

reasoning.

3.2.2 Algorithm to Construct Track Graph

The algorithm first processes the sequence forward in time to generate basic tracks and

merge hypotheses. It then goes backward to break some tracks when necessary, and gener-

ate split hypotheses. Finally it defines the vertices and edges of the track graph. Here we

use a Kalman filter to produce the tracklets where the state of an object is described by its

2D location and velocity. The same definition of the state vector is also used to describe
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multiple objects in a group if they are interacting with each other.

1. Tracking Forward: A new tracker is initiated when a measurement cannot be as-

sociated with an existing tracker. Each existing tracker chooses the measurement

nearest to its position estimate, which is predicted by a Kalman filter, as its current

observation. If a measurement is determined to be associated with multiple trackers,

each of these trackers terminates itself, and a new tracker is initiated for this mea-

surement. Meanwhile, a track-merge hypothesis Hm is generated and added to the

list of hypotheses. An existing tracker also terminates itself if it is not associated

with any measurement for a certain number of frames.

2. Tracking Backward: If a track is not initiated within the entrance zone of the

scene (e.g., the image boundary), then it must be a track that is split from a pre-

viously merged track. Its position is predicted backward in time to find a nearest

measurement. The track that originally occupies this measurement is denoted as a

merged track. Meanwhile, a track split hypothesis Hs is generated and added to the

list of hypotheses.

3. Building Track Graph: The list of merge/split hypotheses is sorted according to

time. A vertex of the track graph is created for each track on this list. For each merge

hypothesis Hm that merges track Ti1 ,Ti2 , ...Tim to track Tj, corresponding edges from

vertices vi1 , vi2 , ..., vim to vj are added to the track graph. For each split hypothesis

Hs that splits track Ti into track Tj1,Tj2 , ...Tjn , the corresponding edges from vertex

vi to vj1 , vj2 , ..., vjn are added.

3.2.3 Linking Strategy on Track Graph

We propose several linking strategies to process the track graph, which we call “local

linking,” “network linking,” “global linking,” and “multi-view linking.” If occlusion occurs

for a short period of time or the local feature computed from each tracklet is sufficiently

discriminant, we can use a local or network linking strategy. If occlusion occurs frequently
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for a long period of time or a global feature needs to be computed to describe the whole

trajectory, we can apply a global linking strategy. When tracklets from multiple views are

available, we can also apply a multi-view linking strategy.

Local Linking

The local linking strategy mainly consists of two steps: determining the flow on the track

graph and iteratively stitching pairs of tracklets.

Flow Computation. To determine the number of objects involved in the merging/splitting

events, we choose a path-reducing min-flow algorithm to compute the track-capacity of each

vertex and flow for each edge. The number of objects in the track graph is equivalent to

the amount of flow passing through the network. Since each track represents at least one

object, we have a lower bound on the capacity of the edges in the track graph. This is not

sufficient to uniquely determine the actual number of objects and resolve the ambiguity

caused by occlusion, i.e., an arbitrary number of objects can “hide” in any merged track.

For single-view tracking, we require our algorithm to select the smallest number of objects

that can explain the graph. We thus convert our problem into a minimum-flow problem

where the lower bound on the capacity of each edge is one. We use a polynomial-time

algorithm that iteratively searches for a “reducing path” (as opposed to the “augmenting

path” in the max-flow Ford-Fulkerson method [28]) and updates the residual network:

1. Finding a feasible flow: Starting from the source vertices, keep pushing flow

through the graph G until the lower-bound capacity c(u, v) (one in our case) of every

edge eu,v is satisfied, which returns a feasible flow f . Determine the residual graph

Gf to be the network with capacity cf (u, v) = f(u, v)− c(u, v).

2. Path-reducing step: If Gf has a path p from one source node in S to one sink node

in T , reduce the edge capacity of Gf along path p by cf (p) = min{cf (u, v)|(u, v) ∈ p},

and subtract cf (p) units along p from flow f . Repeat this step until no valid path

can be found in residual graph Gf . The result flow f is the minimum flow.



40

Stitching Process. Once the track-capacity is computed, the vertices of the graph are first

sorted according to time, which is the initiation time of its corresponding track. The local

linking algorithm processes each vertex sequentially until all vertices have been matched.

Here a bipartite matching problem is constructed to model the linking problem where

multiple tracklets merge and split later, as shown in Fig. 3·3.

Figure 3·3: Example of track linking with a bipartite matching formula-
tion. For each local graph structure that represents a merge-and-split event,
we convert the linking problem into a bipartite matching problem, where
tracklets before merging need to be matched to tracklets after splitting. A
weight/cost has to be computed between each pair of tracklets and mea-
sures the similarity between the two, and the goal is to minimize the overall
sum of assignment cost.

• For a merge hypothesis Hm : {(Ti1 ,Ti2 , ...Tim) ⊢ Tk}, we extend each individual track

with the merged track and smooth the connected trajectory. A new set of tracks is

created (Ti1Tk,Ti2Tk, ...,TimTk).

• For a split hypothesisHs : {Tk ⊢ (Tj1 ,Tj2 , ...Tjn)}, we extend each split track reversely

with the merged track and smooth the connected trajectory. The tracks are now

(TkTj1 ,TkTj2 , ...,TkTjn),

• For a merge hypothesis immediately followed by a split hypothesis, we search for

the best match between two sets of tracks Ha : {(Ti1 ,Ti2 , ...Tim) ⊢ (Tj1 ,Tj2 , ...Tjn)},

which is a bipartite matching problem shown in Fig. 3·3. The flow fi→k determines

the number of times track Ti has to be matched, and the flow fk→j determines the

number of times track Tj has to be matched. The matching cost between a pair of

tracks (Ti,Tj) depends on the specific application. Once we find the best match, we
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first link each track Ti with track Tk and then link that with Tj, which is the match

of Ti, resulting in TiTkTj .

The above procedure repeats until all the hypotheses are processed. Since each linking

operation makes a locally optimal choice based on the local feature, the result of the

algorithm is only locally optimal.

Network Linking

The main issue of the local linking procedure is that there could be multiple solutions that

all have the same amount of flow going through the graph but have different configurations,

as shown in Fig. 3·4(a). A better solution is to combine the flow determination and

matching process together, and formulate it as a minimum-cost flow problem. The idea of

such a formulation was also explored by Castañón et al. [25]. Since their linking task was

not designed for inter-object occlusion scenarios, there are no merged tracks in their graph

representation. Note we still use local features in the network linking approach, and the

cost function for the whole trajectory is additive, i.e., the total cost is the summation of

pairwise linking costs of adjacent tracklets.

(a) (b)

Figure 3·4: Network linking. (a) Two tracks merged into one and split to
three tracks. There is ambiguity in which of the two tracks before merg-
ing carries two objects (track capacity). (b) Instead of resolving the track
graph iteratively, optimizing a global cost function by the minimum-cost
flow avoids the ambiguity of track capacity determination. Flows are en-
couraged to pass edges with lower cost. Here, “S” and “T” nodes are virtual
nodes that represent track initiation and termination.
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The network linking approach creates an augmented graph, as shown in Fig. 3·4(b). In

the augmented graph, all source nodes in the original track graph are connected to a virtual

track initiation node, whereas all sink nodes are connected to a virtual track termination

node. All edge capacities still have a lower bound of one to ensure that every edge is

visited. For each edge ei,j , a cost ci,j is defined to measure how likely tracklets Ti and Tj

are on the same path. Then the objective function is to select the paths on the augmented

track graph such that all lower bounds are satisfied and the total additive cost along the

paths is minimum. This is exactly the minimum-cost flow problem

min
∑

i,j

ci,jfi,j

s. t.
∑

i

fi,v =
∑

j

fv,j, ∀v ∈ V

fi,j ≥ 1, ∀ei,j ∈ E, (3.1)

which can be solved by many polynomial-time algorithms such as the push-relabel algo-

rithm [28].

Global Linking

Global linking may connect several trajectory segments together at the same time, and the

cost along a flow path is not decomposable. Instead, a global feature is computed from all

the tracklets along the trajectory. We convert this problem to a weighted set-cover problem

as follows.

For a given track graph, we enumerate all possible paths from source set S to sink

set T , where each path consists of a sequence {vi1vi1 ...vip} of vertices visited. To connect

our formulation to the standard set-cover problem, we ignore the order between the vertices

of the sequences. The set of all paths is denoted as P . A weight wp is associated with

a path p that measures the negative log-likelihood of the path being a true trajectory, or

equivalently the “cost” of the path based on a global feature such as motion smoothness.

The objective function then is defined as selecting a subset P ′ of P such that the sum of
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the costs of all selected paths is minimum. Each vertex v ∈ V has to be on some path at

least once. Mathematically, this is equivalent to the following linear integer programming

problem, where xp is an integer variable to indicate if path p is selected xp times:

min
∑

p∈P

wpxp

s. t.
∑

p:v∈p

xp ≥ 1, ∀v ∈ V

xp ≥ 0 and xp is integer. (3.2)

To solve the set-cover problem, the deterministic greedy method achieves an approxi-

mation ratio of H(s), where s is the size of the largest set, and H(n) =
∑n

i=1 1/i ≈ log(n)

is the n-th harmonic number [57].

Linking in Multi-view

A more general scenario of track linking is to link tracklets from multiple views with a

global linking cost. For ease of notation, we here consider only two views, but the method

can be extended to an arbitrary number of views. We formulate the multi-view global

linking problem as a joint-set-cover problem. Specifically, we generate a track graph for

each view independently as G1 = (V1, E1) and G2 = (V2, E2). For each graph Gi, i = 1, 2,

we enumerate all valid paths in set Pi. We define ap and bq to measure the respective

likelihood of path p ∈ P1 and q ∈ P2 being true trajectories. Our goal is to choose a

subset P ′
i ⊆ Pi to achieve a cover on Vi for each view, subject to the additional constraint

that enforces any selected path p ∈ P ′
i has a corresponding path q ∈ P ′

j with an across-

view matching cost cp,q. We seek the solution that achieves the minimum weighted sum.

Mathematically, it can be formulated as the following linear integer programming problem,

where zp,q is a binary variable to indicate if a path pair (p, q), p ∈ P1, q ∈ P2 is selected or
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not:

min
∑

p

ap
∑

q

zp,q +
∑

q

bq
∑

p

zp,q +
∑

p

∑

q

cp,qzp,q

s. t.
∑

p:u∈p

∑

q

zp,q ≥ 1,∀u ∈ V1

∑

q:v∈q

∑

p

zp,q ≥ 1,∀v ∈ V2

zp,q ≥ 0 and zp,q is integer (3.3)

It is easy to see the joint-set-cover problem defined in Eq. 3.3 can be reduced to a

standard weighted set-cover problem.

Proof For each pair of sets p ∈ P1, q ∈ P2, we create a joint set o = p∪q with an associated

weight w = ap + bq + cp,q. The new set of o is denoted as O and the new vertex set as

V = V1 ∪ V2. Now we need to find a subset O′ ⊆ O that is a cover on V with a minimum

weighted sum, which is the weighted set-cover problem.

In case some object does not appear in the field of a particular view, e.g., set p ∈ P1 has

no matching set q ∈ P2, we add all pairs (p, q0) to the joint set O, where p ∈ P1 and q0 is a

“dummy” placeholder, and assign a large matching cost so that these elements have a low

priority of being selected.

3.2.4 A Bayesian Justification for Track Linking

Given a collection of tracklets, the linking process can be formulated as a Bayesian estima-

tion problem. To explain how tracklets can be produced given the true states of objects,

we first associate each object with a state (position) vector Xi of length T , where T is the

time span of the entire sequence. Each tracklet Tj is represented as a measurement vector

of length T , where the entries outside of the time span of this tracklet are zeroed out. The

relationship between an object to its tracklets is represented as edges in a bipartite graph,

as shown in Fig. 3·5. Note that every solution for resolving the track graph can be uniquely

represented by such a bipartite graph. For each edge in the bipartite graph, a diagonal
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matrix M is constructed to select part of the trajectory from state Xi. Then, given a

bipartite graph represented as a collection of matrices M, any tracklet measurement Zj

can be seen as generated from a combination of selected parts from all trajectories, for

example, the mean of
∑

iMi,jXi plus Gaussian noise. We define the state space of the

bipartite graph for data association M as the space of feasible solutions that can resolve

the track graph. The constraint given by the lower bound in the network-flow formulation

or by the minimum cover used in the set-cover formulation is ensured because of the graph

being bipartite.

Figure 3·5: An example of a bipartite graph to generate tracklets from
four objects whose states are X1, ...,X4. Nodes Z1, ..., Z4 are four tracklets.
Here node Z1 represents two merged tracklets shared by two objects of states
X2 and X3. We associate each edge of the graph with a diagonal mapping
matrix M that selects part of the state vector from its corresponding object.
So the final observation Zj of a tracklet can be represented concisely as
vector

∑

iMi,jXi corrupted by some random noise e. Here, Z1 = M2,1X2+
M3,1X3+e.

The linking methods described in the previous section are essentially maximizing the

likelihood of the data, i.e., maxM,X p(Z|M,X). They all simplify the object dependencies

such that each object generates its own trajectory fragments independently. Therefore, the

likelihood term is factorized into
∏

i p(Z
i|Mi,Xi), where Z

i is the set of tracklets associated

to object i through matrices Mi. For global linking with the set-cover formulation, Zi is

the subset to select, and − ln p(Zi|Mi,Xi) is the weight for the subset. For network link-

ing, p(Zi|Mi,Xi) is decomposed into p(Zi
1|M

i
1,Xi)

∏

n p(Z
i
n+1|M

i
n+1,Xi)p(M

i
n+1|M

i
n,Xi),

which only considers the pairwise similarity between adjacent tracklets. The negative log-

likelihood then can be transformed to the cost ci,j defined on the network.
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A stronger formulation could incorporate domain knowledge into the prior distribution

and maximize the posterior: p(M,X|Z) ∝ p(Z|M,X)p(M)p(X). For example, we can

choose p(M) to favor simple data associations where fewer objects merge or split in the

scene, and use p(X) to model object arrival and departure rate.

3.3 Experiments

To test the scalability and robustness of our various linking methods, we first conduct a

quantitative evaluation on synthetic data. Then we test on the infrared video sequences

introduced in the previous chapter, and compare the results with the results of other

traditional sequential tracking methods.

3.3.1 Quantitative Evaluation on Synthetic Datasets

We randomly generate colored spheres with 10-unit radii, moving at constant speed in a

5003-unit 3D space (Fig. 3·6). Each sphere carries a unique color as label, and the arrival

time of each sphere is drawn uniformly from the interval [1, Tmax] with Tmax = 250 frames.

We create two virtual cameras for viewing the spheres from directions differing by 45o.

The motion model of each sphere is X(t) = FX(t−1) +W (t) and Z(t) = HX(t) + V (t) with

6D state X (3D position and velocity), 2D observation Z (virtual view of sphere), state

transition matrix F , projection matrix H, and zero-mean Gaussian noise processes W

and V with respective covariance matrices diag(1, 1, 1, 0.1, 0.1, 0.1), and diag(1, 1). We

generate 6 datasets (D1-D6) with increasing density. Each dataset contains 5 sequences,

each with 250 frames per view, resulting in a total of 15,000 test frames. Key statistics

of the synthetic data are summarized in Table 3.3, rows 1–5. Row 5 shows the average

number of errors (missed detections, false alarms, and track switches) that correspond to

a 0.01 MOTA score. In order to compute the MOTA metric, a match between the ground

truth and the system-generated track is uniquely determined by the color of the sphere.

The track graph representation is constructed by forward-backward nearest-neighbor

filtering (Sec. 3.2.2). All linking methods use the same set of tracklets from the track graph
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Figure 3·6: Fifteen sample trajectories in 3D space (left), randomly gen-
erated by the simulator, and their images in two views (middle and right)
with numerous occlusions. We use matching colors to visualize correspond-
ing trajectories.

as input. For the local linking method, the cost of pairing two tracklets is chosen to be

the standard deviation of the linear-regression residual over the observed 2D coordinates,

assuming that the motion is along a straight line for short periods. In case a long tracklet

may present nonlinear motion pattern, we only extract at most 10 measurements right

before or after interactions. For the global linking method, the cost function that measures

how likely several tracklets can form a smooth trajectory is evaluated by Kalman filtering.

The initialization parameter setting is similar to that described in Sec. 2.3.2. For the multi-

view linking method, the across-view cost function is defined as the reconstruction error

according to the epipolar geometry, which is a least-square solution to the triangulation.

In our implementation of the dynamic Bayesian network method by Nillius et al. [60], we

follow their recommendation to restrict the dependence between two vertices (here the

number of objects involved in an occlusion event and the frequency of such events) within

20 frames. Details of the heuristics can be found in the paper by Nillius et al. [60].

We measure the performance of each linking method using the CLEAR MOTA metric

described in Sec. 2.3.2 (Table 3.3, rows 6–10), for which a small difference in a score

can reveal a significant difference in tracking accuracy (see row 5). Not surprisingly, the

performance for all methods decreases as the density of objects in the scene increases. Both

the global and multi-view linking methods outperform the other linking strategies. The
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Table 3.3: Statistics of synthetic datasets and comparison results

D1 D2 D3 D4 D5 D6

Avg. Objs / frame 8.8 17.8 27.1 36.2 45.5 54.6

Max. Objs / frame 16 27 38 51 59 73

Occlusions / frame 0.13 0.60 1.53 2.69 3.87 5.48

# errors, 0.01 MOTA 23 46 70 95 120 145

Nillius et al. [60] 0.92 0.92 0.86 0.82 NA NA

Local Linking 0.90 0.83 0.75 0.68 0.59 0.53

Network Linking 0.95 0.91 0.87 0.82 0.81 0.80

Global Linking 0.95 0.92 0.89 0.85 0.83 0.81

Multi-view Linking 0.95 0.92 0.89 0.85 0.81 0.78

Figure 3·7: Comparison of MOTA metric on simulation datasets with in-
creasing density. The MOTA score is averaged over all test sequences for
each density category. The compared methods are local linking, network
linking, global linking, multi-view linking and the dynamic Bayesian net-
work method proposed by Nillius et al. [60].

method by Nillius et al. [60], also a global approach, achieves comparable performance

but failed to handle very dense scenarios (no reports for D5, D6). It is simply too slow

because its state space is too large even with their proposed heuristics applied [60]. For

a vertex with n incoming and n outgoing edges, our global linking method enumerates n2

paths passing this vertex. In contrast, the method by Nillius et al. [60] must evaluate n!

possibilities of matching between incoming and outgoing edges.

Although the multi-view linking method shows a good performance by using additional

3D geometric information, it starts to degrade in the dense scenarios of our simulation
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(D5, D6), where the size of the proposed joint-set cover problem is much larger than each

single set-cover problem. In this case, the additional benefits that geometric information

provides are compromised by the inaccuracy of the greedy solution. An advantage of the

multi-view linking method is that, as a byproduct, it gives the trajectory correspondences

between views, which can be further used for 3D path reconstruction.

3.3.2 Quantitative Evaluation on Infrared Video Datasets

We also test our track linking algorithms on real datasets for infrared video analysis of bats,

as described in Sec. 2.3.1. Our data contains a long sequence of 1,100 frames from three

views with low density, and a short sequence of 200 frames with high density. We apply

background subtraction to detect bats in each image, followed by labeling of connected

components. The position of each bat is located by finding the pixel with the highest

intensity value within the connected component. Because of occlusion, a single component

might correspond to the overlapping images of multiple bats.

Figure 3·8: Corresponding infrared video frames from three cameras (top)
and system-generated trajectories (bottom) from bat dataset.

For dataset of bats, we compare the performance of five track-linking approaches as

well as the two classic measurement-level sequential approaches JPDA and MHT. We

implement both JPDA and MHT in their standard forms that do not model the occlusion

events. Quantitative results are shown in Table 3.4 and Table 3.5. The metrics are “Mostly
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Table 3.4: Quantitative results for track linking on infrared videos with
objects in low density.

Data Method MT ML MOTA MR FPR IDS

JPDA 165 0 0.796 0.129 0.074 17

Bats B1 MHT 172 0 0.836 0.118 0.043 82

View 1 Local Linking 202 0 0.863 0.039 0.095 67

211 objects Network Linking 178 1 0.842 0.091 0.066 17

1100 frames Global Linking 175 0 0.839 0.092 0.068 22

Multiview Linking 187 3 0.819 0.085 0.094 54

DBN [60] 179 5 0.826 0.087 0.085 49

JPDA 166 0 0.813 0.122 0.064 41

Bats B1 MHT 184 1 0.871 0.089 0.033 150

View 2 Local Linking 203 0 0.869 0.025 0.103 74

211 objects Network Linking 179 3 0.851 0.087 0.061 34

1100 frames Global Linking 183 1 0.860 0.077 0.061 35

Multiview Linking 191 3 0.849 0.070 0.079 52

DBN [60] 183 1 0.841 0.079 0.077 52

JPDA 179 0 0.854 0.129 0.067 20

Bats B1 MHT 187 0 0.887 0.094 0.034 93

View 3 Local Linking 200 0 0.910 0.027 0.109 27

209 objects Network Linking 191 0 0.888 0.092 0.064 16

1100 frames Global Linking 192 0 0.889 0.082 0.065 18

Multiview Linking 196 0 0.897 0.074 0.083 29

DBN [60] 198 1 0.902 0.084 0.082 31

Tracked (MT),” “Mostly Lost (ML),” “Multiple Object Tracking Accuracy (MOTA),”

“Miss Rate (MR),” “False Positive Rate (FPR),” and “ID Switches (IDS).” Details of

definitions of these metrics can be found in Sec. 2.3.2. In order to compute these metrics,

the user-defined threshold for hit/miss used by the MOTA metric is set to 10 pixels. We

use 5-scanback for MHT and one-scanback for JPDA. We use the same cost functions for

the track-linking methods as for the synthetic data.

The linking approaches are in general superior to the sequential methods since the

tracks are constructed based on all information in the sequence. Both of the two sequen-

tial methods degrade significantly when tested on datasets with high density, while the

linking methods are less sensitive to the density. The dynamic Bayesian network approach

proposed by Nillius et al. [60] can only work with simple track graphs, and, as a result,

fails to run on dense object sequences. The local, global and network linking approaches

are relatively more efficient in their computations, and therefore could be applied on the
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Table 3.5: Quantitative results for track linking on infrared videos with
objects in high density.

Data Method MT ML MOTA MR FPR IDS

JPDA 136 5 0.738 0.194 0.066 31

Bats B2 MHT 125 7 0.778 0.201 0.019 32

View 1 Local Linking 188 2 0.792 0.073 0.131 53

211 objects Network Linking 172 4 0.836 0.121 0.041 14

200 frames Global Linking 171 3 0.837 0.119 0.042 24

Multiview Linking 167 6 0.788 0.144 0.065 50

JPDA 144 3 0.733 0.208 0.055 57

Bats B2 MHT 139 3 0.795 0.183 0.019 48

View 2 Local Linking 203 0 0.793 0.046 0.153 124

212 objects Network Linking 173 3 0.815 0.127 0.055 42

200 frames Global Linking 172 2 0.823 0.127 0.048 46

Multiview Linking 164 4 0.762 0.136 0.098 71

JPDA 135 5 0.726 0.221 0.051 22

Bats B2 MHT 128 11 0.765 0.214 0.019 40

View 3 Local Linking 198 3 0.807 0.074 0.114 92

221 objects Network Linking 168 5 0.801 0.144 0.052 36

200 frames Global Linking 172 4 0.814 0.132 0.052 35

Multiview Linking 167 6 0.784 0.128 0.082 85

large-scale datasets.

The MOTA difference between the global and local linking strategies is not as conclu-

sive as it is in the simulation. On the one hand, the local linking approach obtains lower

miss rates but presents significantly higher false positive rates, which also implies a higher

frequency in ID switches. On the other hand, both network linking and global linking

methods show better robustness across different evaluation metrics than the local linking

method. The multi-view linking approach does not perform as well on the real as on the

synthetic data. This may be a result of inaccuracies of camera calibration and errors in the

detection step. Nonetheless, it is important to note that the multi-view approach is par-

ticularly relevant for imaging situations in which local or global information is sparse, e.g.,

objects look alike and move in highly nonlinear patterns. In these situations, stereoscopic

geometry might be the only useful information to help tracking through occlusion.
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Figure 3·9: Comparison of MOTA metric on infrared dataset of bats with
low density. The compared methods are sequential filtering methods JPDA
and MHT, local linking, network linking, global linking, multi-view linking
and the dynamic Bayesian network method proposed by Nillius et al. [60].

Figure 3·10: Comparison of MOTA metric on infrared bats dataset with
dense density. The compared methods are JPDA, MHT, local-linking,
network-linking, global-linking, and multiview-linking.

3.4 Summary and Discussion

In this chapter, we proposed a track linking framework for reasoning about both short-

term and long-term occlusions. All linking strategies are unified under the same framework

called “track graph” that describes the track merging and splitting events caused by occlu-

sion. To explain short-term occlusions, when local information is sufficient to distinguish

objects, the process links trajectory segments through a series of locally optimal bipartite-
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graph matches or a minimum-cost flow formulation. To resolve long-term occlusions, when

global features are needed to characterize objects, the linking process computes a logarith-

mic approximation solution to the set-cover problem. If multiple views are available, our

method builds a track graph independently for each view, and then simultaneously links

track segments from each graph, solving a joint-set-cover problem for which a logarith-

mic approximation also exists. Through experiments on different datasets, we show that

our proposed techniques make the track graph a particularly useful tool for tracking large

groups of individuals in images.

The track graph is an interesting representation which could be useful to visualize object

interactions through time. A potential problem is that if interactions happen frequently

between two objects, the number of paths in the graph will grow exponentially which

makes it difficult to apply global reasoning. In practice, the best reasoning might require

a combination of local and global solutions. From the Bayesian point of view, another

extension is to consider maximum-a-posteriori estimation instead of maximum-likelihood

estimation. The prior distribution on the structure of the track graph could be useful

to identify false alarm tracklets as well as abnormal merging/splitting events in the cell

imaging application. With the descriptive modeling of producing tracklets in Sec. 3.2.4, it

is also possible to apply sampling-based techniques when the problem size is too large for

discrete optimization.
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Chapter 4

Coupled Detection and Association

Our previous efforts tackle the occlusion problem purely through a data association step.

The success of these methods either relies on additional views or accuracy of tracklets pro-

duced by low-level trackers. In this chapter, we address the occlusion problem in both the

detection and data association steps. In contrast to the traditional “detection-tracking”

system, the combined decision is more accurate and robust in that it can significantly

reduce the risk of having errors propagate from noisy detector output to data associa-

tion. Detection errors such as false alarms or missed detections due to occlusion could be

corrected by feeding temporal information through tracking. This coupling idea appears

attractive but introduces new challenges as well:

1. What type of objective function should be used? Many existing detection methods

have not even been formalized with an objective function.

2. How can the new objective function be solved? Many current data association meth-

ods are complicated and approximate solutions to intractable problems. A new objec-

tive function that couples detection and data association might be even more difficult

to optimize.

3. How can scalability of the proposed method be ensured? Computer vision systems

face demands for being able to track large numbers of objects in dense formations.

Given such large input sizes, an efficient algorithm to optimize the new objective

function must be found.

Here we address all the questions above with a formulation of a coupling function and a

method to optimize it. In particular, we propose a detection method with the classic sparse-
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signal recovery technique [23] for the dense-object tracking scenario when a background

subtraction technique is available. This method can be used to detect objects moving on

the ground plane as well as objects moving in free 3D space. The sparsity constraint is

important here because it can significantly reduce the number of false alarms and serves

as a replacement for the heuristic technique of non-maximum suppression of hypotheses.

We have to take care, however, that the approach does not lead to overly sparse results,

that is, missed detections. Estimation of occlusion relationships is also naturally embedded

into this detector. To further boost the detection accuracy, we also impose a smoothness

constraint from the data association aspect where we assume the state of each object follows

a first-order Markov process and adopt the classical network flow formulation [24].

Unlike many coupling problems that rely on coordinate descent techniques, our overall

objective function has a simple form and can be solved through a Lagrange dual decomposi-

tion that permits distributed computing. The method distributes the coupling formulation

to subproblems and coordinates their local solutions to achieve a globally optimal solution.

For each subproblem, efficient off-the-shelf algorithms are available. The framework is

novel and also flexible in the sense that other modeling choices for each of the subproblems

are possible.

We first review related work that helps occlusion reasoning from detection or tracking

aspects in Sec. 4.1. In Sec. 4.2, we describe the proposed coupling framework and introduce

our sparsity-driven detector with supporting experiments in Sec. 4.3. We conclude this

chapter in Sec. 4.4 by discussing the strength and possible extensions of the proposed

framework.

4.1 Related Work

Most previous efforts have followed two distinct directions of research for occlusion reason-

ing in tracking: building stronger object detectors and designing better data association

methods. As a result, almost all existing tracking systems use a “detection-tracking design”

with two separate modules to address the occlusion reasoning task independently.
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4.1.1 Occlusion Reasoning in Detection

There are two main challenges for occlusion reasoning in object detection. First, when

occlusion occurs, the occluded object is not observable on image plane, which introduces

unpredicted uncertainty for most model-based detectors. A part-based detector may be

able to handle certain partially occluded objects when sufficient pixel resolution is avail-

able [86, 45], but it fails when objects are completely occluded or the resolution of an object

is too small. Even for pedestrians, a well-studied object category in the computer vision

community, the performance of the state-of-the-art method drops significantly under par-

tial occlusion and degrades catastrophically for lower resolution [33]. Moreover, directly

modeling the occlusion process is difficult in general, as the degree of partial occlusion

needs to be explicitly expressed in the object model. However, a detailed object model is

probably not so necessary for many surveillance applications. Sometimes, it is not even

useful due to limited resolution or challenging imaging conditions. As an alternative, when

a reasonable background subtraction method is available, a common idea is to fit binary

shape templates to the observations with the help of scene knowledge, such as camera

calibration or multiview geometry [2, 40, 44, 91]. These methods all rely on a background

subtraction preprocessing step, which itself could be a difficult research problem. There-

fore, they are sensitive to the quality of background subtraction and the degree of partial

occlusion.

Second, the heuristic “non-maximum suppression” technique, adopted in most detection

methods that aim to cluster close hypotheses, often explains away true detections. This

side effect is particularly undesirable when objects appear with large overlap on the image

plane. Instead of tuning parameters for this heuristic step, a number of recent works have

shown that it is beneficial to formulate object detection as a global optimization problem

constrained by the Minimum Description Length or a context prior [31, 12, 91], and let the

optimization process determine which hypotheses to select without applying any ad-hoc

decisions. Our detection methods used in the coupling framework fall into this category.
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4.1.2 Occlusion Reasoning in Tracking

Despite efforts in detecting partially occluded objects, missed detection/false positives are

still inevitable, and such ambiguity may be resolved in the data association stage. As we

have seen in the previous chapter, research efforts that address multiple object tracking

typically treat occluded objects as missed detection events or track occluded objects all

together with a single tracker, and iteratively grow or stitch tracklets before and after

occlusions [87, 96, 51, 93, 47, 63, 25]. However, all these approaches follow the “detection-

tracking strategy” and therefore rely on good detectors for initialization. This limits the

generalization of these approaches to more challenging data where missed detections or

false alarms are not rare events. Thus, without solving the detection problem first, hoping

data association itself will fix all detection errors is not promising.

Explicit occlusion modeling also appears in a recent work by Andriyenko et al. [6], who

integrated an occlusion model in their global objective function. As the objective function

becomes more and more complicated, it becomes highly non-convex, and the optimization

relies on good initialization as well as ad-hoc sampling heuristics to avoid local minima.

Instead, our formulation is mathematically rigorous and much simpler to optimize.

4.1.3 Coupling Techniques

As the occlusion problem cannot be resolved solely by the detection or data association al-

gorithms, a natural extension is to consider combining these two subproblems into a single

framework and take advantage of the often complementary nature of the two subproblems.

A generative part-based model was proposed by Andriluka et al. [5] that combines tracking

and detection of pedestrians. It models both the approximate articulation of each person

as well as the temporal coherency within a walking cycle. While such a detailed part-

based model offers a principled way to handle inter-person occlusions, the richness of the

representation requires sufficient resolution so that the part appearance can be properly

modeled. Another coupling idea for pedestrian tracking was proposed by Leibe et al. [53],

who coupled the two through a quadratic Boolean function and optimized it according to
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the Minimum Length Description criterion. The objective function is closer to our formu-

lation but it is not easy to generalize to other choices/combinations of detection and data

association methods. Under this formulation, a suboptimal solution was obtained through

EM-type alternating minimizations, and therefore the quality is subject to a good initial-

ization as well. We instead base our method on the foundations of Bayesian estimation

theory. Our objective function has relatively lower complexity and is straightforward to

extend to model higher-order relationships between objects. The proposed formulation has

better scalability, and is very general in the sense that the solution to each subproblem can

be easily substituted by other classic approaches.

4.2 The Coupling Framework

Our coupling framework can be derived from Bayesian estimation theory, where different

choices of modeling the image likelihood and motion prior can lead to various coupling

objective functions. In particular, we give a concrete example that uses a sparsity-driven

detector and a network-flow association method within this framework, which shows a

significant improvement over state-of-the-art approaches on challenging video sequences.

Table 4.1: Notation for coupled detection and association method
Y binary observation (vector) of the entire image

Ŷ non-negative integer observation (vector) of the entire image

D dictionary matrix of all codewords

di codeword (entire image) for an object at encoded position i in 3D

X binary vector to select a subset of codewords from dictionary

c
(t)
i,j transitional cost for moving from vertex vi to vertex vj at time t

f
(t)
i,j flow variable to show an object moving from vi to vj at time t

4.2.1 Bayesian Formulation for Multiple Object Tracking

We formulate the multiple object tracking problem as a maximum-a-posteriori estimation

problem. Given a collection Y of image evidence for the entire sequence, we estimate the
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(a) Traditional Model (b) Our Model

Figure 4·1: The graphical model for the multiple object tracking problem.
(a) The image likelihood is modeled with an independence assumption, that
is, the image evidence yi for each object xi is generated independently, i.e.,
p(Y|X) =

∏

i p(yi|xi); (b) The image evidence Y is jointly determined by
all objects, i.e., p(Y|X) cannot be factorized further.

state of all objects X in the scene as follows:

max
X

p(X|Y)

∝ max
X

p(Y|X)p(X)

= max
X

T
∏

t=1

p(Yt|Xt)p(X1)
T
∏

t=2

p(Xt|Xt−1)

= max
X

T
∏

t=1

p(Yt|Xt)

M
∏

i=1

p(xi,1)

T
∏

t=2

p(xi,t|xi,t−1) (4.1)

Here, p(Yt|Xt) is the image likelihood conditioned on all objects. The joint state of all

objects is governed by a Markov process and objects are independent from each other, so

p(X) can be factorized with respect to each individual object. We do not further factorize

the image likelihood because all objects jointly generate the image. This enables us to

model spatial relationships between objects and handle occlusions. The graphical model

for our generative process is depicted in Fig. 4·1(b).

Without modeling the likelihood for the entire image but instead making certain in-

dependence assumptions, one can further factorize the first term of Eq. 4.1, a technique

used by most earlier tracking approaches, see Fig. 4·1. A side effect of the independence

assumption is that it yields ad-hoc choices (e.g., non-maximum suppression) because the
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number of objects is also a hidden variable to be inferred. In contrast, if the likelihood

for the entire image is modeled, context and the relationship between objects are natu-

rally brought into consideration. This observation has been recognized widely for the topic

of scene recognition [31]. Directly estimating the joint hidden states is difficult here be-

cause we do not even know the dimension of the joint state. We propose a decomposition

technique to tackle the MAP estimation problem. After taking the negative logarithm of

Eq. 4.1, we rewrite the optimization problem as follows:

min
X1,X2

g(X1,Y) + h(X2)

s. t. X1 = q(X2), (4.2)

where X1 and X2 are two copies of hidden state variables (the dimension of the state

variable needs to be determined during the inference since we do not know the number of

objects yet), g is the function that models the detection problem, h the function that models

the data association problem and q the function that enforces the agreement between the

solutions X1 and X2 of the two subproblems. More specifically, g(X1,Y) is minimized to

estimate the states X1 of objects from image evidence Y and h(X2) is minimized to infer

the states X2 of objects from motion or other types of prior knowledge. Both coupling

variables X1 and X2 could be discrete or continuous. If a filtering technique that works in

the continuous domain is used to solve the data association subproblem, q here could be a

quantization mapping. A more general extension to Eqn. 4.2 is to allow two subproblems

to utilize different sources of image evidence Y1,Y2:

min
X1,X2

g(X1,Y1) + h(X2,Y2)

s. t. X1 = q(X2), (4.3)

Eq. 4.2 is a classic setup in operations research: a minimization problem with a coupling

constraint. This type of formulation has been applied to the labeling problem, e.g., MRF-

based image segmentation [52]. In the remainder of this chapter, we show that the coupling
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formulation is also useful for solving the tracking problem. We first define functions g and

h in Section 4.2.2 and 4.2.3 respectively, by giving specific examples of detection and data

association methods.

4.2.2 Sparsity-driven Detector

Inspired by the sparsity-driven people localization method proposed Alahi et al. [2], we

propose the following L1-norm minimization formulation as our object detector. First we

discretize the space in which objects move. If camera information is available, then for each

possible location in 3D, we can reproject the object to the image plane. The reprojected

foreground image can be seen as a template or a “codeword.” The codeword can be just an

image in the single-view case, or a concatenation of images in the multiple-view case. By

construction, each codeword has encoded scale and shape information by re-scaling and

translating templates in the image plane. By collecting all codewords in discretized 3D

space, we build the dictionary D for a particular category of objects, see Fig. 4·2. The

length of each codeword is the size of the observed image(s), while the number of entries

in the dictionary is determined by the discretization. Usually, the step of creating the

codeword dictionary can be performed offline. But for tracking objects in a 3D volume,

as in Fig. 4·3, the discretization of the entire volume is infeasible. In this case, we only

consider valid triangulations formed from 2D detections using epipolar geometry and build

the dictionary on the fly. Here a triangulation is valid if the reconstruction error is within

a certain tolerance.

Given the binary foreground image Y after background subtraction, we want to find the

best way to instantiate the codewords from the dictionary such that the generated image is

as close to observation Y as possible. Mathematically, we want to minimize the following

L0-norm, defined as the Hamming distance from zero, where X is an binary vector to

indicate which codeword to select from the dictionary and N the number of codewords:

min
X

‖Y−DX‖0, where X ∈ {0, 1}N . (4.4)
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Figure 4·2: For objects that move on the ground plane, our method dis-
cretizes the plane into a grid, where the binary image of the instantiation
of an object at each grid point is a codeword (e.g., d1, d2, and d3). Two
binary shape templates for front and side views of pedestrian are used.

Figure 4·3: For objects that move in a 3D volume, our method constructs
the pool of candidate locations in 3D by triangulation, keeping the recon-
struction error below a threshold. The images of the re-projection of each
candidate object is one codeword. Five binary shape templates for flying
bats are used, while each template consists of the same pose in three views.

Because of the way we construct the dictionary, the selection variable X also encodes

the positions of objects in 3D. The L0-norm can be seen as our approximation to the

negative logarithm of image likelihood p(Y|X) defined in Eq. 4.1. It is in general difficult

to optimize, so we take the L1-norm instead. According to the well-studied sparse signal

recovery theory [23], the recovery of X using the L1-norm is “almost” accurate if X is

sparse (only has a few of non-zero entries). Because of occlusion, the real imaging process

we model here should actually be a linear combination of codewords followed by a 1-bit
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quantization step, i.e., Q(DX). A common way to handle quantization is to treat its

effect as noise [20], in addition to the random noise that accounts for the degradation of

background subtraction or inaccuracy of shape templates. Therefore, the whole generative

process can be expressed as Y ∼ DX + er + eq, where er and eq are random noise and

quantization effect respectively. As long as the noise is sparse, the sparse signal recovery

theory still applies.

By replacing the L0-norm with the L1-norm in the Eq. (4.4), the original formulation

can be converted to the following linear programming problem:

min
X,U

1TU

s. t. −DX−U+Y ≤ 0,

DX−U−Y ≤ 0,

0 ≤ X ≤ 1, (4.5)

where U is an auxiliary variable. Notice the above formulation with the L1-norm is a

relaxed version of the original problem because X is continuous in Eq. 4.5. A branch-

and-bound method can be applied to further get the exact integer solution. The L1-norm

introduces sparsity in the solution, which is a desirable property as we want to use a

minimal number of hypotheses to explain the image observation. We refer to the solution

of Eqn. 4.5 as the “Linear Denoising Decoder (LDND).”

In case we need to consider shape variations of the objects, we just enrich our dictionary

by providing multiple templates that model these variations. The shape templates for a

specific category of object can be learned from training examples through unsupervised

clustering. We then impose a uniqueness constraint on our selection variable X, i.e, the

system can only choose one of the multiple templates to explain our image evidence as a

valid solution. The following modified minimization formulation supports multiple versions
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of shape template shown in Fig. 4·2 and Fig. 4·3 used in our experiments:

min
X

‖Y−
∑

i

DiXi‖0,

s. t.
∑

i

Xi ≤ 1,Xi ∈ {0, 1}
N ; (4.6)

The 1-bit quantization described in the above generative process is very crude. In our

detection context, when severe occlusion between objects exists, the noise that accounts

for the quantization effect is not sparse anymore. As a result, the L1-norm approximation

is not applicable. A simple example to demonstrate the quantization effect is given in

Fig. 4·4. One-bit dequantization in general is an ill-posed problem even for the noise-

Figure 4·4: Two binary signals d1 and d2 (codewords) are overlayed on
top of each other which simulates the occlusion effect. From background
subtraction, a 1-bit quantized measurement Q(d1 + d2) is obtained. By
solving the minimization problem in Eqn. 4.4, the “best” recovered signal
is just one binary signal d∗ that tries to cover most nonzero entries as much
as possible, and the remaining uncovered part is considered sparse random
noise. Clearly, if we were able to obtain the dequantized measurement
d1 + d2, it is much easier to recover the original two signals by using the
same minimization formulation.

free case, as the magnitude of the original signal is completely lost. Here we express the

value of the dequantized signal at each pixel by an “occlusion layer” variable, as it can

explain how many objects are involved in the occlusion at that pixel. By definition, this

occlusion layer variable only takes non-negative integer values. We extend Eqn. 4.5 to a

new linear programming problem that simultaneously estimates occlusion layers for 1-bit
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dequantization and sparse signal recovery as follows:

min
X,Ŷ

‖Ŷ−DX‖1 + β‖Ŷ−Y‖1,

s. t. ŷi ≥ yi, ∀i : yi > 0

ŷj = 0, ∀j : yj = 0

and Ŷ ∈ {Z+}N ,X ∈ {0, 1}N , (4.7)

where Ŷ is the occlusion layer to be estimated, which has to preserve the quantization

correctness: Q(Ŷ) = Y. The new appended term in the objective function is the L1

regularization that penalizes the difference between the dequantized and quantized mea-

surements. The parameter β weighs the two terms in the objective function, and Z+ is the

set of non-negative integers. By linear relaxation, the above problem can be converted to a

linear programming problem similar to Eqn. 4.5, where many off-the-shelf LP solvers could

be used. We experimented with both an optimal branch-and-bound method and a simple

rounding approach that yielded an integer solution. We did not find strong evidence that

the branch-and-bound method produced significantly better results, so we ended up using

the simple rounding in our experiments.

Regularization is necessary to ensure that the estimation of the two sets of variables is

not ill-posed. The weighting parameter β controls the quality of dequantization which we

determined by experiment. We refer to the solution of Eqn. 4.7 as “Linear Dequantization

Decoder (LDQD).” From now on, we use the augmented formulation Eqn. 4.7 as our

sparsity-driven detector (SDD).

4.2.3 Network-flow Data Association

The classical network-flow data association method represents every detection returned

from the detector in every frame as a node in a network and every potential match between

detections across time as an arc with an associated cost. We increase the size of network

by setting all possible locations of objects in the scene as the nodes. The black circles in

Fig. 4·5 represent all possible locations at each time frame stacked in columns. Each edge
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(a) (b)

Figure 4·5: Data association as a minimum-cost network-flow problem. (a)
A flow of amount 1 along a path from the source S (track initiation) to the
sink T (track termination) represents a single object. Here, three candidate
detections, (1,2,3), (4,5,6) and (7,8,9), were made in each of three frames.
Duplicate nodes with capacity-one arcs ensure mutually disjoint paths are
computed. Here, up to 27 paths can be represented. (b) An extension of
network used in (a) is to add “jumping” edges in order to represent a path
with miss detection for a few frames. A flow going from 1 directly to 7
without passing any of (4,5,6) means the object disappears at that time
frame.

represents a potential move from one location to another and there is a cost associated

on each edge in the graph. It adds two special vertices, “source” and “sink,” to represent

track initiation and termination. To ensure multiple tracks do not share the same detection,

nodes in each time step are duplicated, and a single, unit-capacity, zero-cost arc is added

between them [24]. By enforcing the upper bound on the flow of this edge to be one, the

paths or the flows going through the graph are guaranteed to be mutually exclusive. The

goal is to push the right amount of flow into the network that corresponds to the trajectories

of objects, i.e., sequences of associated detections so that the total cost along the flows is

minimum; this is a standard min-cost flow problem. As the number of objects present is

unknown a priori, the method needs to search for the amount of flow that produces the

minimum cost. It is important to notice that the network flow data association assumes

the cost function over a track is additive, i.e., it is a summation of edge cost along the

path. Other simple extensions to capture missed detections or model higher order motion

information such as velocity are possible with an increased number of edges [7, 65]. We

here select the network-flow formulation as our data association method because several



67

efficient algorithms exist [15]. The minimization problem is given as follows:

min
f

∑

i

∑

j

ci,jfi,j

s. t.
∑

i

fi,n =
∑

j

fn,j, ∀ n ∈ V

fi,j ≥ 0 . (4.8)

where ci,j is the cost associated with each edge that links node i and j; fi,j is the flow

variable associated with each edge, whose optimal value is always integer for such a network.

The constraint set ensures the conservation property that the amount of incoming flows

is the same as the amount of outgoing flows at each candidate detection node. Notice

that, if all costs defined on edges have positive value, there will be no flow pushed into

the network. The network starts to function properly only when strong detection evidence

shows up. In this case, each node will be associated with a negative detection score that

might make some path in the network have total negative cost. Such dynamic updating of

the cost within the network is the key ingredient of our coupling framework, which will be

explained in the next section.

4.2.4 The Coupling Algorithm

To couple our sparsity-driven detector and network-flow data association methods, we

propose a joint objective function, where
∑

t ‖Ŷt−DXt‖1+β‖Ŷt−Yt‖1 approximates the

negative logarithm of the image likelihood p(Y|X) and the sum of flow costs
∑

i

∑

j ci,jfi,j

approximates the negative logarithm of the Markov motion prior p(X) described in Eq. 4.1.

We separate the set of flow variables f into four subsets: f
(t)
in,n+ is associated with the edge

that connects the source node to the n-th node at frame t; f
(t)
n−,out

is associated with the

edge that connects the n-th node to the sink node at frame t; f
(t)
n+,n−

is associated with the

edge that connects the duplicated n-th nodes at frame t; f
(t)
m−,n+ is associated with the edge

that connects the m-th node at frame t to the n-th node at frame t + 1. By rearranging

the variables in the network-flow problem given in Eqn. 4.8 and using Eqn. 4.7, we have
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the following coupled minimization problem:

min
X,f,Ŷ

∑

t

‖Ŷt −DXt‖1 + β‖Ŷt −Yt‖1

+
∑

t

∑

n

c
(t)
in, n+f

(t)
in, n+ +

∑

t

∑

n

c
(t)
n−, out

f
(t)
n−, out

+
∑

t

∑

n

c
(t)
n+, n−

f
(t)
n+, n−

+
∑

t

∑

m

∑

n

c
(t)
m−, n+f

(t)
m−, n+ (4.9)

s. t. f
(t)
in, n+ +

∑

m

f
(t)
m−, n+ =

∑

k

f
(t)
n−, k+

+ f
(t)
n−, out

= f
(t)
n+, n−

, ∀t,∀n (4.10)

∑

t

∑

n

f
(t)
in, n+ =

∑

t

∑

n

f
(t)
n−, out

(4.11)

xt,n = f
(t)
n+, n−

, ∀t,∀n (4.12)

ŷt,i ≥ yt,i, ∀t,∀i : yt,i > 0

ŷt,j = 0, ∀t,∀j : yt,j = 0

f ≥ 0, Ŷt ∈ {Z
+}N and Xt ∈ {0, 1}

N .

The selection variable X indicates the presence of an object at a particular location in

discretized space. The flow variable f is used in the minimum-cost flow problem, where

fi,j = 1 means there is a match between detections at location i and j, which belong to

the same track. The cost function (4.9) is the summation of two local terms to minimize;

the first term represents the costs of sparsity-driven object detection (Sec. 4.2.2) and the

second term measures the costs of temporal data association in the minimum-cost flow

formulation (Sec. 4.2.3). The first set of constraints (4.10 and 4.11) ensures a balance

of flow. The second set of constraints (4.12) ensures consistency between the two local

variables X and f. In other words, if there is a true detection at location n at time t,

i.e, xt,n = 1, there must be a flow going through the same location at the same time, i.e,

f
(t)
n+,n−

= 1.

Since this is a linear integer programming problem, we can apply a general LP solver to

find the optimal solution. This limits the scalability and generalization when hundreds of

frames need to be computed or another high-order form of the objective function needs to
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be considered. Instead, because of the special structure of the objective function, we can

decompose the problem into two kinds of subproblems, each of which can be solved with an

efficient algorithm, and ensure to coordinate the separate minimizers until an agreement

is achieved. This approach can be pursued by formulating the Lagrangian dual problem

(4.13) to the minimization problem (4.9):

L(λ) = min
X,f,Ŷ

(

∑

t

‖Ŷt −DXt‖1 + β‖Ŷt −Yt‖1 + λ
T
t Xt

+
∑

t

∑

n

c
(t)
in,n+f

(t)
in,n+ +

∑

t

∑

n

c
(t)
n−,out

f
(t)
n−,out

(4.13)

+
∑

t

∑

n

(c
(t)
n+,n−

− λt,n)f
(t)
n+,n−

+
∑

t

∑

m

∑

n

c
(t)
m−,n+f

(t)
m−,n+

)

s. t. f
(t)
in,n+ +

∑

m

f
(t)
m−,n+ =

∑

k

f
(t)
n−,k+

+ f
(t)
n−,out

= f
(t)
n+,n−

, ∀t,∀n

∑

t

∑

n

f
(t)
in,n+ =

∑

t

∑

n

f
(t)
n−,out

ŷt,i ≥ yt,i, ∀t,∀i : yt,i > 0

ŷt,j = 0, ∀t,∀j : yt,j = 0

f ≥ 0, Ŷt ∈ {Z
+}N and Xt ∈ {0, 1}

N . (4.14)

It can be separated into (T+1) independent subproblems, where T is the number of frames:

gt(λ) = min
Xt∈{0,1}N ,Ŷt∈{Z+}N

‖Ŷt −DXt‖1 + β‖Ŷt −Yt‖1 + λ
T
t Xt

s. t. ŷt,i ≥ yt,i, ∀t,∀i : yt,i > 0

ŷt,j = 0, ∀t,∀j : yt,j = 0 (4.15)

h(λ) = min
f≥0

∑

t

∑

n

c
(t)
in,n+f

(t)
in,n+ +

∑

t

∑

n

c
(t)
n−,out

f
(t)
n−,out

+
∑

t

∑

n

(c
(t)
n+,n−

− λt,n)f
(t)
n+,n−

+
∑

t

∑

m

∑

n

c
(t)
m−,n+f

(t)
m−,n+

s. t. f
(t)
in,n+ +

∑

m

f
(t)
m−,n+ =

∑

k

f
(t)
n−,k+

+ f
(t)
n−,out

= f
(t)
n+,n−

, ∀t,∀n

∑

t

∑

n

f
(t)
in,n+ =

∑

t

∑

n

f
(t)
n−,out

(4.16)

Now the dual problem is to maximize
∑

t gt(λ) + h(λ) with variable λ. Here we use a
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subgradient method to solve the “master problem.” The Lagrange multiplier λ will be

updated in each iteration, which can be seen as a perturbation to the original subproblem

without the Lagrange term. Therefore, a re-optimization technique should be considered

so we do not need to solve subproblems at each iteration from scratch. In our problem,

the perturbation only occurs at the objective function and the constraint set remains the

same. A primal method would be suitable for this case since the solution from the previous

iteration remains feasible. As a result, the primal method can reuse the previous solution

as a starting point without the need to search for a starting feasible solution. In particular,

we choose the Cplex implementation 1 of the primal-simplex algorithm to solve the first

T subproblems with parallel computing, and the network-simplex algorithm to solve the

min-cost flow subproblem. Details of the dual decomposition technique are described by

Bertsekas [16].

In summary, the dual decomposition technique then yields the following Coupling Al-

gorithm:

Coupling Algorithm for Tracking
For k = 1, 2, ...,K (max iterations), do

• Solve T sparsity-driven detection problems with the primal-simplex algorithm:
Xt ← argmin gt(Xt,λ).

• Solve the minimum-cost flow data-association problem with the network-simplex algorithm:
f← argminh(f,λ).

• If xt,n = f
(t)
n+,n−

for all n, t, Then Return Xt, f

• Update dual variables λt,n = λt,n + αk(xt,n − f
(t)
n+,n−

), αk = 1
k
(step size).

Return Xt, f

The Coupling Algorithm performs as desired in our tracking context: The Lagrange

multiplier λ serves as a weighting parameter. For the detection subproblem, a higher

value of λ implies a lower preference for detection at a particular location. For the data

association subproblem, a higher value of λ leads to a lower edge cost, so it attracts

1Cplex is available from http://www-01.ibm.com/software/integration/optimization/cplex-optimizer



71

flows passing through that edge. When agreement is achieved, the optimal global solution

is obtained for the primal objective function. The detection output is guaranteed to be

smooth because of the influence of data association. The flow computation produces tracks

as the final output. By changing the value of λ dynamically through dual decomposition,

false alarms can be suppressed and detections missed due to occlusions can be recovered.

4.3 Experiments

In this section, we first test our two versions of the sparsity-driven detector LDND and

LDQD on synthetic data as well as the PETS2009 dataset. Then the coupling algorithm

is applied on pedestrian sequences and infrared video sequences of flying bats with quan-

titative analysis and comparison to the state-of-the-art methods.

4.3.1 Quantitative Evaluation of the Sparsity-driven Detector

We first test our sparsity-driven detector on a simulated dataset. The task is designed to

simulate the occlusion process in real data that incorporates the quantization effect and

random noise, while the goal is to justify the necessity of applying a sparsity prior and a

dequantization estimator at the same time. We are also interested in the robustness of our

detector with respect to the noise level, the sparseness of the signal, and the amount of

occlusion.

We generate rectangular binary boxes with size of 12× 8 pixels randomly positioned in

a square image of size 80 × 80. We call these rectangle binary boxes “box signals.” After

multiple potentially overlapping boxes are placed in the image (Fig. 4·6(a)), a measurement

is taken after 1-bit quantizing the image corrupted by random noise (Fig. 4·6(b)). The noise

is chosen to be uniformly distributed in the image and the sign of binary pixels is flipped

randomly. Given such a measurement, our detector is adopted to recover the original 2D

box signals including the number of boxes as well as their positions in the image.

To set up the minimization problem, each column of dictionary is a binary 80×80 image

with one box at a particular location. The measurement to be generated is controlled by the
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(a) (b) (c)

(d) (e) (f)

Figure 4·6: Sample images and results from the synthetic dataset. (a)
The original noise-free box signals. A higher value at a pixel implies more
boxes overlap at that pixel. (b) The quantized measurement with 20% of
pixels corrupted by uniformly distributed random noise. (c) The estimated
box signals by LDND without considering the quantization effect. (d) The
estimated box signals with the weighing parameter β = 0.01 in LDQD
(Eqn. 4.7). (e) β = 0.1. (f) β = 1. Visually, the reconstructed image (d)
looks most similar to the original image (a).

noise level (percentage of pixels to be corrupted), the number of boxes, and the maximum

overlap ratio allowed among boxes. One example of the simulated data is shown in Fig. 4·6,

where 50 boxes are randomly positioned with maximum overlap ratio of 30% according to

the VOC criterion [37].

We compare the performance of the Linear Denoising Decoder (LDND, Eqn. 4.5) and

the Linear Dequantization Decoder (LDQD, Eqn. 4.7) on simulated data. One hundred

testing samples are randomly generated for each parameter setting that is controlled by the

three parameters mentioned above: the noise level, the number of boxes, and the maximum

overlap ratio allowed among boxes. The overall performance is measured by the root mean

square error (RMSE) between ground truth 2D image (Fig. 4·6(a)) and reconstructed im-

age (Fig. 4·6(c)-(f)). As shown in Fig. 4·7, it is clear that LDQD consistently outperforms
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Figure 4·7: Comparison of LDND and LDQD on the synthetic dataset.
The performance is measured by the root-mean-square-error with respect to
different parameters of the simulator. (a) The performance with different
values of β. (b) The performance with varying noise level. The number
of boxes is 30. The maximum overlap ratio is 0.3. β = 0.01 for LDQD
(Eqn. 4.7). (c) The performance with varying overlap ratio. Higher overlap
ratio means boxes have larger overlap between each other. The number of
boxes is 30. The noise percentage is 10%. β = 0.01 for LDQD. (d) The
performance with varying number of boxes. Higher value means more boxes
can overlap with each other. The maximum overlap ratio is 0.8. The noise
percentage is 10%. β = 0.01 for LDQD.
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LDND by explicitly modeling the quantization effect. A proper value for the weighting

parameter β used in LDQD can be determined empirically by experiment. In scenarios

with relatively fewer overlaps, the recovery by LDQD with a small regularization weight is

almost exact even if the measurement is corrupted by a significant amount of noise. The

quality of the recovered signal seems less sensitive to the random noise, which suggests

that our background subtraction step and the shape templates used in our real dataset do

not need to be perfect. However, the amount of overlap due to occlusions is a more sensi-

tive factor, which justifies the necessity to explicitly model the quantization effect in LDQD.

We also test our sparsity-driven detector on PETS2009 [64] dataset for people localization.

To compare with other reported results in the literature, three subsets (S1L1-1357, S1L2-

1406, S2L1) from PETS2009 are selected. Only the first view of each sequence is chosen,

which is used by most previous methods testing on these sequences. The performance is

measured by four metrics: Multiple Object Detection Accuracy (MODA), Multiple Object

Detection Precision (MODP), Precision, and Recall. Similar to MOTA, MODA accounts

for all possible errors such as miss detection and false alarms. MODP measures the rela-

tive accuracy of alignment between ground truth and the predicted bounding box on image

plane. Details of definitions of these metrics have been provided by Ellis et al. [34].

Implementation details. To obtain the binary image evidence, we run an adaptive

Gaussian mixture estimation method for background subtraction [97]. The ground plane

is discretized with a grid size of 0.3 m × 0.3 m, which is approximately half of the space

a pedestrian could occupy. To speed up the computation, we rescale the binary image to

a 320 × 240 pixel resolution. Two shape templates are used as described in Fig. 4·2. We

further use two heuristics to reduce the size of the dictionary before running the LP solver.

First, if a codeword does not receive sufficient support from the image, i.e., 50% of the

foreground pixels are not detected in the grid, the corresponding column in the dictionary

is removed. Second, the original length of the codeword is 320 × 240, the size of the im-
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age. However, a large portion of pixels in the image will not be covered by any codeword

in the dictionary, either because the pixel is outside of the monitoring region or possible

codewords that can cover this pixel have been removed in the first step. The corresponding

entries for these “uncoverable” pixels are removed from the rows of the dictionary. The final

size of the dictionary constructed for this dataset is approximately 500 codewords, each ap-

proximately representing 20,000 pixels. The regularization parameter β is chosen to be 0.1.

Comparison with the state-of-the-art methods. We compared our detector against

several state-of-the-art methods for which results have been reported on these sequences2.

The MCMC sampler [42] has a flavor similar to our method in that it samples shape

templates from a much richer set to synthesize a binary image and compare it against an

image computed from background subtraction. Such a method does not enforce sparsity on

its solution, nor considers the quantization effect explicitly. Moreover, the sampling process

converges very slowly (30 s per frame in their Matlab implementation) while it is vulnerable

to be trapped in local minima. The Average Synthetic Exact Filter (ASEF) method [19] is

a correlation-based method that captures the gradient information around the silhouette

of the object. Such a filter does not consider possible occlusions so it tends to be sensitive

to the loss of gradient information and fail on partially visible objects. The POM+LP

method [13] is a complete tracking system which also requires discretization of space and a

binary shape template. The presence of an object is modeled in a probabilistic way called

“probabilistic occupancy map” and relies on tracking to identify true detections or false

alarms. We will revisit this method in our tracking experiments in Sec. 4.3.2. Finally,

two popular classifier-based detectors, Cascade [83] and Part-based Model [39], which are

designed for general object detection purposes, are also compared. The evaluation results

at different levels of hit/miss thresholds are shown in Fig. 4·8. The performance of related

methods was previously reported by Ge [42].

We also compare our method with a similar approach by Alahi et al. [2], but where

2The ground truth is provided through http://www.gris.informatik.tu-darmstadt.de/~aandriye

http://www.gris.informatik.tu-darmstadt.de/~aandriye
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(c) Precision vs. Hit/Miss Threshold (d) Recall vs. Hit/Miss Threshold

Figure 4·8: (a). Evaluation results for MODA on PETS2009 S2L1. Our
method is plotted in red. (b) Evaluation results for MODP on PETS2009
S2L1 (c) Evaluation results for Precision on PETS2009 S1L1-13-57 (d) Eval-
uation results for Recall on PETS2009 S1L1-13-57. In official rules of PETS
evaluation, the hit/miss threshold is set to 0.5.
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Figure 4·9: Sample frames and detection results on PETS2009 dataset.
The original sample frames from PETS2009 S1L1-1359 and S1L1-1357 are
listed in the first row. The second row shows the binary images after back-
ground subtraction. The third row shows the estimated occlusion layers by
our detector. The fourth row gives the final detection results.
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we measure the reconstruction error with the L2 norm. In order to compare with their

reported results, we follow the official rule in PETS2009 for the people counting task, where

only the numbers of people passing through specified regions are computed. The quality

of the counting algorithm is evaluated by computing the Average Frame Error (AFE).

Superior performance of our method is reported in Fig. 4·10.

Data Method R0 R1 R2
AFE AFE AFE

S1L1 Alahi et al [2] 4.2 2.3 1.8
-1359 Our LDQD 1.5 0.6 1.0

S1L2 Alahi et al [2] n/a 6.5 4.0
-1406 Our LDQD 6.0 3.6 1.9

Figure 4·10: People counting results on PETS2009 dataset. People passing
through the “R0,” “R1,” and “R2” regions are counted. The performance
is measured by computing the Average Frame Error (AFE), whose ideal
value is 0.

As expected, methods that use the background subtraction technique in general pro-

duce better results than those that are classifier-based methods. Among those that work

with binary images as input, our sparsity-driven detector (SDD) consistently outperforms

competing algorithms in all metrics evaluated. As shown in the third row in Fig. 4·9, our

detector does not only localize the pedestrians but it also produces an estimate of occlusion

layers as well.

4.3.2 Quantitative Evaluation for the Coupling Algorithm

To test our coupling algorithm that combines the sparsity-driven detector (SDD) and

network-flow data association method, we evaluate its performance on the PETS2009

dataset [64] for pedestrian tracking, as well as the infrared BU-Bats dataset described

in Sec. 2.3.1. Four sequences with the first view from the PETS2009 benchmark are se-

lected: S2L1 (795 frames), S2L2 (436 frames), S1L1-1357 (221 frames) and S1L1-1359 (241

frames). We use the ground truth annotation provided by Andriyenko et al. [6]. To enable

comparisons with previously published results, we restrict our evaluation to objects moving
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in the constrained area defined by Andiryenko et al. [6] shown in Fig. 4·12. We use CLEAR

MOT metrics and USC metrics for evaluation, as described in earlier chapters. In order

to compute MOTA, we choose 1 m on the ground plane as the miss/hit threshold for the

PETS data and 0.3 m for the infrared data. MOTP measures the average distance be-

tween ground-truth trajectories and system-generated trajectories. We compute Euclidean

distances for the 3D case (infrared data) and the overlap ratio between ground-truth and

system-generated bounding boxes for the 2D case (PETS data).

Implementation details. We here describe the implementation details on how the shape

templates are learned (Fig. 4·2) and how to set up the network (Fig. 4·5). To develop shape

templates, we assume a pedestrian can occupy a cylinder with radius 30 cm and height

180 cm (Fig. 4·2), and that a flying animal can occupy a sphere volume of 15-cm radius

(Fig. 4·3). The shape variation is learned through K-mean clustering on a training set that

comprises of 200 unoccluded examples, which results in two shape templates for pedestrians

and five templates for bats. The learned template from a typical K-mean clustering is a

real-valued representation and we further binarize it to a binary shape template. The

number of clusters K is chosen empirically to balance the size of the dictionary and the

accuracy of performance. Although increasing the number of templates used in our two

dictionaries could potentially improve the performance, we do not find it necessary given

the relatively small resolution of the objects in the test data.

To set up the network used in data association, we need to define the cost on the edges.

As shown in Fig. 4·5, there are two types of edges: edges between the duplicated nodes

within a time frame, and edges between nodes across time, including the “jumping edges.”

We call the cost defined on the first type of edge the “detection cost,” and the cost on the

second type the “transition cost.” The detection cost is computed as − ln ρ
1−ρ , where ρ is

the ratio between the number of foreground pixels that can be explained by a codeword

and the number of foreground pixels in that codeword, which can be seen as a measure to

support the presence of an object at a particular position. For the PETS dataset, we first
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compute the histogram for the foreground pixels of each codeword. Given two codewords

from consecutive frames, we compute the histogram intersection distance to represent the

transition cost. For the infrared dataset of bats, we use the Euclidean distance between

nodes as the transition cost. Notice that given the topology of the network, the transition

cost computed using histogram intersection actually depends on the image data, so the

result of the data association procedure is not independent of the image evidence but

rather follows the generalized coupling framework in Eqn. 4.3. Without the detection cost

that potentially has a negative value, the network-flow minimizer simply chooses a zero

flow as the best output since all transition costs are non-negative. As a result, a drastic

cost update (by subtracting λi,j) then occurs in subsequent iterations of the Coupling

Algorithm. Finally, to reduce the number of edges, we do not allow transitions that would

model a pedestrian’s unrealistic move more than 2 m (7 fps for PETS) in one time frame

or a bat’s move more than 30 cm (125 fps for Bats). “Jumping edges” are only introduced

within three time frames.

We also develop a sliding-window scheme to handle long sequences. The length of a

sliding-window is limited to the availability of system memory but should not be too short.

Throughout our experiments, at least 100 frames are processed each time with 20 frames

overlap between adjacent subsequences. A bipartite matching is solved to link trajectories

generated from the first and second batch.

Important parameter settings. There are a few user-defined parameters that need to

be determined by experiment. The weighting parameter β in Eqn. 4.7 that governs the

dequantization quality is set to 0.1 for the PETS dataset and 10 for the infrared dataset

of bats, according to the detection performance on the training set. The infrared dataset

has multi-view support so that the need to estimate the dequantization effect is not as

strong as for the single-view PETS dataset. To ensure the numerical balance between the

L1-norm term and the network-flow term in Eqn. 4.9, the L1-norm is re-scaled by another

weighting parameter γ, which is set to 0.01 for both datasets. These weighting parameters
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are not sensitive in general. Once reasonable values for these weighting parameters are

found, a wide range of values nearby could apply as well.

Comparison with the state-of-the-art methods. Our quantitative evaluation provides

the tracking results on six sequences and compares them to the results of five related

approaches, see Table 4.2. The occlusion-modeling (OM) method [6] achieves the best

performance on the PETS dataset so far by combining explicit occlusion reasoning, a full-

body SVM classifier, tracklet stitching, and initialization via extended Kalman filtering.

Two versions of flow-based methods (POM+LP, ILP) have a problem set up similar to ours

– both of which require discretization of the ground plane and background subtraction.

They run the detection and network-flow data association modules sequentially and do not

take advantage of the complementary nature of the two subproblems. We further extend

the reconstruction-tracking method (RT-1), proposed in Chapter 2, by applying our SDD

detector on a dense set of hypotheses of 3D points (SDD-RT-1). To address the noisy

measurement issue, described at the end of Chapter 2, a dense set of 2D measurements is

returned by sampling points from each connected component, which significantly increases

the size of the set of valid triangulation hypotheses. However, running our SDD on this

increased set will return a sparse set of detections.

As shown in Table 4.2, our coupling algorithm is more reliable than competing methods

based on the MOTA, MT, and ML scores and comparably accurate based on the MOTP

scores. We want to emphasize that S2L2, S1L1-1357 and S1L1-1359 test sequences con-

tain crowds of people with frequent occlusions and were originally intended only for testing

methods for density estimation or single object tracking. To the best of our knowledge, very

few tracking results have ever been reported on these sequences. Our coupling algorithm

can achieve high-quality results and outperform the competing method (OM) consistently

in MOTA. We also found that our algorithm is robust because any variations of the pa-

rameters of our systems that we tested resulted in a change of the MOTA score that was

only (±3%).
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Data Method #O MT ML MOTA MOTP

PETS S2L1 OM [6] 23 20 1 0.88 0.76
POM+LP [13] 23 n/a n/a ≤ 0.6 ≤ 0.5
ILP [7] 23 1 8 0.26 0.67
our CP 23 23 0 0.91± 0.03 0.70 ± 0.02

PETS S2L2 OM [6] 75 25 8 0.60 0.61
our CP 75 40 1 0.61± 0.03 0.62± 0.02

PETS S1L1-1357 our CP 46 28 0 0.68 ± 0.03 0.56 ± 0.02

PETS S1L1-1359 OM [6] 36 20 7 0.64 0.67
our CP 36 31 2 0.86± 0.03 0.65 ± 0.02

Infrared S1 RT-1 (Sec.2.3.2) 207 200 0 0.65 8.5 cm
SDD-RT-1 207 198 0 0.80 4.5 cm
our CP 207 201 0 0.90 4.2 cm

Infrared S2 RT-1 (Sec.2.3.2) 203 147 5 -0.31 10.1 cm
SDD-RT-1 203 128 6 0.47 7.8 cm
our CP 203 171 1 0.81 6.2 cm

Table 4.2: Quantitative results for the coupling algorithm. The OM, ILP,
RT, and S-RT trackers sequentially apply the detection and data association
modules, while our CP method couples them. MOTA is ideally 1, MOTP
also 1 or 0 cm. Results are extracted from published papers. The scores for
POM+LP [13] was read from a chart and were based on a different source
of ground truth.

The experiments with the infrared data of bats highlight that our SDD detection

method can successfully suppress ghost reconstructions in 3D space. Although the reconstruction-

tracking algorithm can successfully track most of the objects, it also has a high false positive

rate because of the persistent ghost effect during the reconstruction step. This issue is not

addressed enough in existing literature probably because only a sparse tracking scenario

has been considered so far. Once large groups of objects are under consideration, the need

to eliminate ghost effects starts to emerge. By replacing the spatial data association step

with our sparsity-driven detector, the overall performance MOTA score can be improved

by almost 80%. Moreover, the performance improvement between SDD-RT and CP shows

the important impact of our coupling idea.

The variables in the Coupling Algorithm can be optimized separately. In particular,

each detection subproblem can be solved independently through parallel computing. The
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complexity of the L1 minimization depends on the size of the dictionary, which is deter-

mined by the grid size of ground plane or the number of valid triangulation candidates, the

number of shape templates and the image size. After the preprocessing step to reduce the

dictionary size described earlier, once the problem is constructed, the actual time to solve

the linear programming problem is less than a second per frame in our implementation.

The data association subproblem can also be solved efficiently even for a large network

with one million nodes in our experiment. This is because the network is sparse in our

application and the complexity of the minimum-cost flow algorithm is mainly governed by

the number of edges. At each iteration of dual decomposition, a re-optimization technique

could be applied if available. For our L1 minimization subproblem, the primal simplex

method is adopted and the primal optimal basis is saved to initialize the optimization in

the next iteration. Furthermore, we find simple rounding of the LP solution is sufficiently

accurate, so additional efforts to pursue the exact integer solution are not needed.

We also find that the Coupling Algorithm does not need to run many iterations before

it reaches a good solution. We monitor the tracking quality at each iteration of the sub-

gradient method used by the Coupling Algorithm with two different initializations. If we

first run the SDD detector and initialize the network with detection costs only on those

nodes selected by our detector, we can expect to see nonzero flows pushed into the network

at the first iteration of the Coupling Algorithm. We refer such an initialization scheme as

a “good initialization.” If we do not set the detection cost, no flow will be pushed at the

first iteration, and we call such a scheme a “bad initialization.” As shown in Fig. 4·11,

it is always beneficial to use a “good initialization” if we are confident in the majority of

our detection results. Despite the difference on initialization, the subgradient method used

by the Coupling Algorithm always presents fast improvement at the first few rounds of

iterations but with relatively slow convergence. This kind of behavior is also observed in

other optimization work [72]. In practice, an early stop (25 iterations in our experiments)

is sufficient for producing a good suboptimal solution. Other heuristic stopping criteria

could also be used. Trackers, such as ILP, RT, and S-RT, which apply the detection and
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Figure 4·11: Performance of the coupling algorithm on PETS-S1L1-1359
at each iteration with different initialization. The MOTA score, false pos-
itive rate, miss detection rate change quickly at the first few iterations.
Unlike the traditional “detection-tracking scheme” that reports a fixed de-
tection rate for the detector, here we have a dynamic performance on de-
tection.

data association modules sequentially could be considered to perform the first iteration of

our coupling algorithm. The results in Fig. 4·11 seem to indicate that the performance

of these trackers may increase significantly with additional iterations, if they were placed

within our coupling framework.
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4.4 Summary and Discussion

In this chapter, we presented a novel multiple-object tracking framework that couples ob-

ject detection and data association. The new objective function was derived from Bayesian

estimation theory (4.1), taking advantage of the often complementary nature of the two sub-

problems. As a concrete example, our Coupling Algorithm combines a sparsity-driven de-

tection method and a network-flow data-association method within this framework (4.13).

Our sparsity-driven detection enables us to model the likelihood of the entire image so we

could eschew common heuristics such as non-maximum suppression. Moreover, the spar-

sity constraint also successfully reduces the “ghost effect” that can occur in 3D multi-view

tracking. An extension of such detector that considers both sparseness and quantization is

used to infer the occlusion relationship, which is represented by occlusion layers, to detect

partially visible objects purely from binary images. Through dual decomposition (4.16),

a coupled objective function is optimized iteratively with off-the-shelf efficient algorithms

for each subproblem. The experiments with both monocular and multi-view datasets show

that coupling detection and data association can improve tracking performance compared

to the results of sequentially applying each module.

To evaluate the scalability of the proposed method, we need to consider the processing

complexity of our system, which largely determined by the size of the dictionary. This is

proportional to the number of shape templates, the image size, and the number of grid

blocks on the ground plane or valid triangulations. For the datasets we considered, the

running time of our system was in the order of a few seconds per frame with a Matlab

implementation. Additional efforts should be made to speed up the implementation in

scenarios where objects may have large variation of poses or a fine 2D or 3D granularity is

needed. Moreover, only binary pixels are used in our detector, which is not sufficient for

object localization if objects are in dense formations. Combining gradient features with bi-

nary shape templates has been proven to be effective in the object detection literature [95].

Output from these detectors could be used to introduce a bias on which codeword to select.
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Figure 4·12: Tracking results for the Coupling Algorithm. The first two
rows show sample frames and trajectories from PETS S2L2 and S1L1-1359
sequences. The last two rows show sample frames and 3D trajectories from
infrared sequence S2.
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Chapter 5

Conclusions and Future Work

In this final chapter of the thesis we summarize the main contributions and open issues

in the work that we have described. Following that, we will point out some interesting

directions for future research.

5.1 Main Contributions

We proposed three categories of algorithms to address the occlusion reasoning problem for

tracking large groups of objects imaged with low resolution. In order to recover and track

occluded objects, different sources of additional information were used, such as additional

views in the reconstruction-tracking algorithm, more temporal evidence in the track linking

algorithm, and the interaction between detector and tracker in the coupling algorithm. A

summary of our sparsity-driven detectors (LDND and LDQD) and three categories of

tracking algorithms is given in Table 5.1 and Table 5.2. Competing methods applied

on the same datasets are also listed for comparison. Compared to existing work, our

methods lead to computationally tractable formulations such as set-cover, network-flow,

or L1 minimization problems, where efficient off-the-shelf polynomial-time algorithms are

available.

To the best of our knowledge, we are the first to present an online multi-object multi-

view algorithm (SDD+RT) that is able to track large groups of flying animals and produce

high-quality trajectories for further scientific research. We highlight the track graph rep-

resentation and unify various fast, simple, yet effective linking strategies under the same

framework. We also developed a novel coupling framework that combines detection and

data association modules, which achieved the best performance on our own and publicly
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Table 5.1: Summary of detection approaches

Method Background Sliding Non-maximum Occlusion Core Algorithm
model window suppression estimation

Our approaches

LDND yes no no no Linear programming

LDQD yes no no yes Linear programming

Competing approaches

MCMC [42] yes no no no MCMC sampling

ASEF [19] no yes yes no Correlation

Cascade [83] no yes yes no Boosting Classifier

LSVM [39] no yes yes no SVM Classifier

available datasets.

For object detection, if objects do not have many pose variations, we recommend our

LDQD detector that simultaneously optimizes the selection of hypotheses and estimates

the occlusion layer. For object tracking, if large groups of objects frequently occlude

each other, we recommend the Coupling Algorithm (CP) that combines the LDQD and

network-flow association method; if a set of reliable tracklets can be generated by low level

trackers, we encourage to use the global set-cover linking algorithm to further reduce track

fragmentation errors. In regards to computation complexity for LDQD, our current Matlab

implementation with Cplex LP solver processes each video frame in 2 s for planar-motion

dense sequence, 5 s for 3D-motion dense sequence on an Intel Xeon 3.2 GHz machine.

About 95% of the computation is expended on building the dictionary and the problem

reduction, especially for the 3D case where each triangulation involves solving a linear

system. These preprocessing steps could be significantly speeded up with GPU support.

Once the minimization problems have been set up, our Matlab implementation of the

Coupling Algorithm can process each video frame for the dense tracking scenario in 3 s at

each iteration of the dual decomposition without parallel computing.
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Table 5.2: Summary of tracking approaches

Method Type Applicable to Applicable to Core Algorithm
long-term large groups
occlusion

Our approaches

RT Sequential yes no Greedy randomized
adaptive search

SDD+RT Sequential yes yes Greedy randomized
adaptive search

Loc-linking Batch no no Minimum-flow
Bipartite matching

Net-linking Batch yes yes Minimum-cost flow

Sc-linking Batch yes yes Greedy set-cover

Mv-linking Batch yes yes Greedy set-cover

CP Batch yes yes Linear programming
Minimum-cost flow
Dual decomposition

Competing approaches

JPDA Sequential no no Probabilistic filter

MHT Sequential no no Greedy randomized
adaptive search

DBN [60] Batch yes no Junction-tree

POM [13] Batch yes no Linear programming

OM [6] Batch yes yes Extended Kalman filter
Non-convex minimization

5.2 Limitations and Future Work

The key technical problem in this thesis is how to select a subset from a pool of competing

hypotheses. These hypotheses are competing with each other because they share the

same image evidence due to occlusions. In the tracking context, this is related to the

problem of estimating the number of objects, and the true state of each object. We

have attempted an iterative greedy method (Chapter 2), maximum-likelihood estimation

(Chapter 3), and maximum-a-posteriori estimation (Chapter 4). These methods are only

tested on video sequences where a foreground/background separation can be made. More

analysis is required to examine how to extend these methods to a more general setting.

Specifically, we need to solve the following technical issues:



90

How to generate hypotheses. The step of generating hypotheses usually involves

proposing a possible location of an object or track, and evaluating its likelihood. Due to

the underlying combinatorial nature of the problem, the number of hypotheses might grow

exponentially, and evaluating the likelihood for each of them is even more computationally

expensive. Although there has been interesting work on how to produce a single optimal

hypothesis efficiently for the pose estimation problem [79], currently we have seen very little

activity in the research area of efficiently producing a set of informative but competing track

hypotheses. A data-driven sampling-based technique might be a solution.

How to represent the object. The benefit of using a binary foreground pixel as our

feature representation is that the same pixel can be naturally explained by occluder and

occludee. This is clearly not the case when a more advanced feature representation is used,

for example, based on intensity gradient or color information. However, the hypothesis of

an occluded object can still “imagine” its appearance of the occluded part by synthesiz-

ing corresponding features from the template. How to incorporate feature detection and

synthesis into occlusion reasoning is a fresh new question. Any reasonable solution for this

task would be beneficial for a broader class of computer vision problems. Another related

question is if it is possible to track objects in 2D only so we do not need to consider cam-

era calibration information. Currently this is a necessary input in our coupling algorithm

and sparsity-driven detector. With the 3D-to-2D mapping, we introduce the competition

scheme where the hypotheses of 3D locations “compete” for the 2D measurements. If our

hypotheses only infer 2D locations of objects, an alternative competition scheme should be

developed in order to retrieve a sparse output.

How to speed up the optimization. Although the computation of the optimization

part of our experiments is not intensive, there is still room to improve its efficiency. For

example, if the object shows a strong cyclic motion pattern, which, for example, a flying

bat exhibits, its pose/shape in the next frame will be quite predictable. In this situation,

a prediction on which pose template to select can be used as an initial solution instead of

searching from scratch. In this thesis, we have not explored how to make use of cyclic pose
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prediction in tracking and how much it can speed up the optimization. This step could be

crucial if a fast sequential tracking algorithm is required.

Finally, throughout this thesis, we have frequently used the assumption that objects

in the scene are moving independently, although their observations may be dependent. If

the objects present strong group behavior or they are physically connected with kinematic

constraints, it is better to introduce high-order dependence among object states. It would

be interesting to see how to encode these high-order dependencies in our methods and how

important this would be.
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